loading page

Parametric Study of Prompt Methane Release Impacts III: AOGCM Results Which Respect Historical PIOMAS Measurements
  • PattiMichelle Sheaffer
PattiMichelle Sheaffer
The Aerospace Corp. (ret.), The Aerospace Corp. (ret.), The Aerospace Corp. (ret.), The Aerospace Corp. (ret.), The Aerospace Corp. (ret.), The Aerospace Corp. (ret.), The Aerospace Corp. (ret.), The Aerospace Corp. (ret.)

Corresponding Author:pattimichelle000@gmail.com

Author Profile


Of immediate widespread concern is the accelerating transition from Holocene-like weather patterns to unknown, and likely unstable, Anthropocene patterns. A fell example is irreversible Arctic phase change. It is not clear if existing AOGCMs are adequate to model anticipated global impacts in detail; however, the GISS ModelE AOGCM can be used to locally compare and extend the PIOMAS Arctic ocean historical ice-volume dataset into the near future. Arctic Amplification (AA) mechanisms are poorly understood; to enable timely results, a simple linear, Arctic TOA grid-boundary energy-input is used to enforce AA, avoiding the perils of arbitrary modification of relatively well-studied parameterizations (e.g., restriction of cloud-top height to induce local warming). Only PIOMAS springtime/max and fall/min Arctic ice-volume decadal, linear trends were enforced. This temporally-broad grid-boundary modification produces a surprisingly detailed consonance with 10 out of 12 temporal profiles falling within 1-sigma of PIOMAS temporal data for the entire history modeled (2003 to 2021). The data are then integrated to 2050. The result is a zero-ice-volume, summer/fall half-year, beginning ca. 2035 (onset 1-sigma of ± ~5 years), with mean annual Arctic temperatures increasingly trending above freezing. Persistent, Arctic phase change follows this half-year transition about 20 years later. Also present in later stages, the 500 hPa height minimum is no longer nearly-coincident with the pole, suggesting jet stream disruption and its consequences. Hypothesized large clathrate-methane releases likely associated with Arctic temperature and phase change are also examined. A basic assumption is that the Arctic ice (i.e., temperature) must be preserved at all costs. This work establishes a reasonably detailed timeline for the Arctic phase change based on well-studied AOGCM physics, slightly tuned to decades of PIOMAS data. This result also points to the Arctic as a key, near-term site for localized, nondestructive intervention to mitigate Arctic phase change (e.g., Stjern [2018]), thereby slowing the Holocene -> Anthropocene growing-season disruption. Although such an intervention cannot itself accomplish the requirements of the IPCC SP-15 [2018], nor Planetary Boundaries theory, delaying the Arctic phase change will likely extend the time-window for accomplishing those critical tasks and ultimately to at least slow the rate of increase of climate emergencies.