Optimizing over-summer snow storage at low latitudes and low altitudes

Hannah Weiss ${ }^{1}$, Paul Bierman ${ }^{1}$, Scott Hamshaw ${ }^{1}$, and Yves Dubief ${ }^{1}$
${ }^{1}$ University of Vermont

November 24, 2022

Abstract

Climate change is forcing the ski industry to modify snow-making strategies and facility operations. Over-summer snow storage is an adaptation successfully employed by high-elevation and/or high-latitude ski centers in Europe, Canada, and Asia. The process involves stockpiling winter snow and storing it beneath insulation (e.g., wood chips) through summer. Current methods are empirically-based with few studies quantifying snowmelt through summer or comparing insulation strategies. In this project, we evaluate the feasibility of over-summer snow storage in Vermont, northeastern North America. Soil temperatures were recorded since June 2017 with sensors $5,20,50 \mathrm{~cm}$ and 1 m below the ground surface. In March 2018, two, 200 m 3 snow piles were covered in plastic and wood chips; we monitored their volume bi-weekly through the melt season using terrestrial LiDAR. We also measured air to snow temperature gradients under various insulation materials: rigid foam, open cell foam, and wet wood chips, all with and without reflective coverings. Away from snow piles, ground temperatures at 1 m depth were ${ }^{\sim} 7 \mathrm{C}$ in spring 2017, rising to 12 C in summer, and falling to just above 0 C in winter. As depth decreased, ground temperature became more responsive to air temperature; ground temperature lagged air temperature at all depths. Below summer snow piles, soil temperature at all depths remained near freezing through the summer as cold meltwater percolated into the ground. Snow was lost from each pile at a similar rate ($\sim 1.3 \mathrm{~m} 3$ day-1) from late March to mid-June; melt then accelerated slightly in response to increased air temperature, solar radiation, and humidity. Large crevasses formed in both piles along the edge of the plastic sheeting which exposed snow to direct sunlight. Temperature was at or above 10C over the snow below both rigid foam and open-cell foam with a strong diurnal variation, regardless of the addition of a reflective blanket. Beneath wet wood chips covered with a reflective blanket, temperature remained close to freezing even though air temperature was $>30 \mathrm{C}$. There was no diurnal variation, indicating that wood chips effectively buffered thermal swings. It appears that a reflective surface over $>20 \mathrm{~cm}$ of wet wood chips is most effective at minimizing summer snow melt in humid, northeastern North America.

Optimizing over-summer snow storage at low latitudes and low altitudes

Hannah Weiss ${ }^{1}$, Paul Bierman ${ }^{2}$, Yves Dubief ${ }^{3}$, Scott Hamshaw ${ }^{3}$
Section: H31G-1967
University of Vermont, Natural Resources; ${ }^{2}$ University of Vermont, Geology Department; ${ }^{\text {s }}$ University of Vermont, College of Engineering and Mathematical Sciences

Summary

How Saving Snow Works

Figure 2: (Leftright) A wood chipper oovers piles of snow at two noriic ski centers in Europe.

1. Make a large pile of artificial snow outdoors during cold months
2. Cover the pile in insulating materials (ie, 2. Cover the pile in insulating materials (i.e., wood-chips)
3. Let it sit over the summer

Let it sit over the summer
4. Remove the insulation and spread snow out on trails to open the ski season

Location of this study

Our methodology

1) What affects snowmelt?

2) How do the piles melt over time? - Created two pilot piles (Fig. 3), covered them in a layer of plastic and wood chips

- Surveyed with terrestrial LiDAR (RIEGL VZ-2000i) and tracked - volume change over the summer
- Surveyed and processed scans every 10-14 days for 14 scans of each pile between February and September, 2018

Results - Weather/Environment

Figure $6:$ Key variables monitiored from June, 2017 through O Ctober, 2018. Seasonal change is noted in
panels A, B, B, and D Das these variables respond to changing seasons.
Results -Insulation Experiments

Figure 7: (Top) Temperature results from Experiment 1 reveal that a reflective blanket and wood chiss

Key takeaways

- A reflective blanket, wood chips, and a concrete blanket are the preferable insulation combination to reduce snow melt - Snow storage is possible at low latitudes and low elevations

Looking ahead: Summer 2019 will incorporate what we've learned in 2018 and apply it to a 7,000 cubic meter snow pile at the COC.

