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Abstract

We present a new statistical interpolation method to estimate fire perimeters from Active Fires detection data from satellite-

based sensors, such as MODIS, VIIRS, and GOES-16. Active Fires data is available at varying temporal and spatial resolutions

(375m and up several times a day, or 2km every 15 minutes), but pixels are often missing due to clouds or incomplete data. The

question arises how to fill in the missing pixels, which is useful, e.g., to distinguish in an automated fashion between a single

large fire visible as separate clusters of detection pixels because of cloud cover, and separate fires. We process the satellite data

into information when was fire first detected at a location, and when was clear ground without fire detected at the location last.

We are then looking for the most likely fire arrival time, which satisfies such constraints. Models at various levels of complexity

are possible. Our base assumption in the absence of information to the contrary is that the fire keeps progressing without

change, which is expressed as the assumption that the gradient of the fire arrival time is approximately constant. The method

is then formulated as an optimization problem to minimize the total change in the gradient of the fire arrival time subject to

the constraints given by the data. We consider probabilistic interpretations of the method as well as extensions, such as soft

constraints to accommodate the uncertainty of the detection and the uncertainty where exactly the fire is within the pixel. This

method is statistical in nature and it does not use fuel information or a fire propagation model. The results are demonstrated

on satellite observations of large wildfires in the U.S. in summer 2018 and compared with ground and aerial data.
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ResultsBasic Method – Ideal Case

NH23C-0859

Fire Radiative Power in a time progression of sample VIIRS and MODIS 
granules. Pixel sizes from instrument properties and the scan angle. 
(2018 Camp Fire)

• Perimeters = the fire arrival time is constant
• To spin up and assimilate in coupled atmosphere-fire models
• To fill in missing pixels for smoke estimation
• Light-weight, no physics model, statistically justified
• Use all data granules intersecting the domain and time of interest

Unfortunately in reality…
• Data are often missing (clouds, smoke, obscured by terrain,…)
• Pixels do not form a nice continuous progression in time.

GOAL: Estimate Fire Arrival Time from Satellite Data As 
a Continuous Spatial Field

How Do the Data Look Like? 

No-fire Detections of Clear Ground Are Important Too! 

Fire detections in the 
domain of interest in 
one MODIS granule. 

Green = no fire
Red = fire
Clear = no data

(2015 Cougar Creek 
Fire) Acknowledgements

Partially supported by NASA NNX13AH59G and NSF ICER-1664175. 

• To fill missing data, assume the fire propagates with 
the same rate of spread and direction

• Background state: constant spatial gradient of the 
fire arrival time  T

• Solve grad grad T=0 approximately by least squares 
• First fire detection at a location ⇒ upper bound on 

the fire arrival time
• Last detection of ground with no fire ⇒ lower 

bound on the fire arrival time
• This is the same as the bending of an elastic plate 

between an upper and a lower obstacle

Real Data Are More Tricky

First fire and last no-fire detections 
(2018 South Sugarloaf Fire)

• Many false negative and some false 
positive detections ⇒ make the 
obstacles soft, with the lower obstacle 
even softer.

• After a while, a location with fire 
detected will give no-fire detections 
again  ⇒mask no-fire detections in 
future around every fire detection.

The Math

• The unknown fire arrival time is represented by the Adini element on 
a rectangular mesh as piecewise cubic functions. The degrees of 
freedom are the values and the partial derivatives at the mesh nodes:

• The discrete penalized problem, solved by a multigrid method:

1. Test the scalability of the method with decreasing h, and constant h and increasing size of
the problem.

2. The details in [10, 11] di↵er from here so the results and proofs need to be checked in
they.actually apply.

5.4 Constrained relaxation

The first variable in the block ui is the displacement, which we write as pTui, where p
T = [1, 0, 0] .

With the hard constraints (20), the problem to be solved is then
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But relaxation with projecting just the displacement on an interval, like in (43), however, is no
longer equivalent to the constrained relaxation

u
new
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J (u) , ui  u
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i , (55)

like in (42); if we project just the displacement variable, the other two degrees of freedom in the
block would not have the correct minimizing values. While it is certainly possible to write a more
general projection, we will consider hard constraints as a limit case of soft constraints, which is
where our interest is anyway.

With the soft constraints (23), we have the penalization
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where we use the notation

(x)
�
= min {0, x} , x+ = max {0, x} . (57)

or with better notation T =fire arrival time
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The solution of (56) is unique, and when ai ! 1, bi ! 1, it converges to the unique solution of
(55).

Error estimates for plate elements and elastic obstacle are in [26].
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• Statistical interpretation: maximum a-posteriori probability Bayesian estimate.
• Gaussian prior log density equals minus the bending energy, with maximum probability when gradT is constant.
• The log data likelihood equals minus the sum of the penalty terms.

• Variational inequality for the 4th order plate bending partial differential equation: 

Retrieved perimeters of 2018 Camp Fire estimated from VIIRS and 
MODIS data 

Lower bound, upper bound, fire arrival time, and retrieved perimeters 
with satellite detections at select time points. (2015 Cougar Creek Fire)

1. Test the scalability of the method with decreasing h, and constant h and increasing size of
the problem.

2. The details in [10, 11] di↵er from here so the results and proofs need to be checked in
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The solution of (56) is unique, and when ai ! 1, bi ! 1, it converges to the unique solution of
(55).
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