Retrieving Fire Perimeters and Ignition Points of Large Wildfires from Satellite Observations

Jan Mandel¹, Adam Kochanski², Evan Ellicott³, James Haley¹, Angel Farguell¹, Lauren Hearn¹, and Kyle Hilburn⁴

¹University of Colorado Denver ²University of Utah ³University of Maryland ⁴Colorado State University

November 22, 2022

Abstract

We present a new statistical interpolation method to estimate fire perimeters from Active Fires detection data from satellitebased sensors, such as MODIS, VIIRS, and GOES-16. Active Fires data is available at varying temporal and spatial resolutions (375m and up several times a day, or 2km every 15 minutes), but pixels are often missing due to clouds or incomplete data. The question arises how to fill in the missing pixels, which is useful, e.g., to distinguish in an automated fashion between a single large fire visible as separate clusters of detection pixels because of cloud cover, and separate fires. We process the satellite data into information when was fire first detected at a location, and when was clear ground without fire detected at the location last. We are then looking for the most likely fire arrival time, which satisfies such constraints. Models at various levels of complexity are possible. Our base assumption in the absence of information to the contrary is that the fire keeps progressing without change, which is expressed as the assumption that the gradient of the fire arrival time is approximately constant. The method is then formulated as an optimization problem to minimize the total change in the gradient of the fire arrival time subject to the constraints given by the data. We consider probabilistic interpretations of the method as well as extensions, such as soft constraints to accommodate the uncertainty of the detection and the uncertainty where exactly the fire is within the pixel. This method is statistical in nature and it does not use fuel information or a fire propagation model. The results are demonstrated on satellite observations of large wildfires in the U.S. in summer 2018 and compared with ground and aerial data.

Recovering Fire Perimeters and Ignition Points of Large Wildfires from Satellite Observations Jan Mandel¹, Adam K. Kochanski², Evan A. Ellicot³, James Haley¹, Lauren Hearn¹, Angel Farguell¹, Kyle Hilburn⁴

GOAL: Estimate Fire Arrival Time from Satellite Data As a Continuous Spatial Field

- Perimeters = the fire arrival time is constant
- To spin up and assimilate in coupled atmosphere-fire models
- To fill in missing pixels for smoke estimation
- Light-weight, no physics model, statistically justified
- Use all data granules intersecting the domain and time of interest

Unfortunately in reality...

- Data are often missing (clouds, smoke, obscured by terrain,...)
- Pixels do not form a nice continuous progression in time.

Fire Radiative Power in a time progression of sample VIIRS and MODIS granules. Pixel sizes from instrument properties and the scan angle. (2018 Camp Fire)

¹University of Colorado Denver ²University of Utah, ³University of Maryland, ⁴Colorado State University

41.2

- Variational inequality for the 4th order plate bending partial differential equation:
- The unknown fire arrival time is represented by the Adini element on a rectangular mesh as piecewise cubic functions. The degrees of freedom are the values and the partial derivatives at the mesh nodes:
- The discrete penalized problem, solved by a multigrid method:

First fire and last no-fire detections

(2018 South Sugarloaf Fire)

$$\underbrace{\sum_{i=1}^{n} \sum_{j=1}^{n} T_i^T C_{ij} T_j}_{\text{bending energy}} + \underbrace{\sum_{i=1}^{n} a_i^2 \min\left\{T_{i,1} - L_i, 0\right\}}_{\text{lower penalty}} + \underbrace{\sum_{i=1}^{n} a_i^2 \min\left\{T_{i,1} - L_i, 0\right\}}_{\text{lower penalt$$

42.2

41.8

Latitude

- Statistical interpretation: maximum a-posteriori probability Bayesian estimate.
 - Gaussian prior log density equals minus the bending energy, with maximum probability when gradT is constant.
 - The log data likelihood equals minus the sum of the penalty terms.

- even softer.
- After a while, a location with fire detected will give no-fire detections again \Rightarrow mask no-fire detections in future around every fire detection.

NH23C-0859

Lower bound, upper bound, fire arrival time, and retrieved perimeters with satellite detections at select time points. (2015 Cougar Creek Fire)

Acknowledgements

Partially supported by NASA NNX13AH59G and NSF ICER-1664175.