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Abstract

To a first order, the Caribbean plate converges obliquely at ˜2 cm/yr toward the North American plate. This transpression

is partly accommodated across the island of Hispaniola by the partitioning of motion between a fold-and-thrust belt trending

NW-SE, and two E-W left-lateral fault systems located 150 km apart. The southern fault, the Enriquillo-Plantain Garden Fault

(EPGF), is morphologically well expressed in western Haiti but its precise geometry in eastern Haiti is debatable. There, Lake

Azuei stretches over 20 km in a direction parallel to the fold-and-thrust belt while its southern shoreline strikes EW, parallel

to the expected trend of the EPGF. Because of a high sedimentation rate, the history of transpressional deformation should be

captured in the lake stratigraphy and, accordingly, we acquired 220 km of multichannel seismic reflection (MCS) profiles across

its surface. The survey followed a grid pattern with a spacing of 1.2 km and achieved a penetration of up to 300 m beneath

lakebed. Interpretation of the dataset documents two major structures. First, the western side of the lake is occupied by a

broad NW-trending monoclinal fold. This fold is cross-cut by a few NW-striking vertical (strike-slip) faults. We propose that

this monocline is the surface expression of a SW-dipping blind thrust fault. The progressive steepening of the seismic horizons

with depth suggests that it has been continuously active during the deposition of at least 300 m of sediments. The other major

structure consists of a ˜2 km-wide deformation zone that borders the EW-trending southern shore. This deformation zone is

faintly imaged below a shallow gas front. We tentatively propose that it corresponds to a set of fault-propagation folds that are

developing ahead of an EW, S-dipping oblique-slip fault. Such a model has been proposed already from three other independent

studies involving GPS monitoring, seismological monitoring, and detailed field mapping. It is also supported by CHIRP profiles

acquired concurrently with our MCS data and that document folding of the topmost turbidites but a lack of evidence for any

stratigraphic offset across faults. Furthermore, a set of en echelon folds in that area are trending EW, while WNW-ESE fold

axes would be expected instead above an EW vertical strike-slip fault.
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The Caribbean plate converges obliquely at ~2 cm/yr toward the 
North American plate (Figure 1). This transpression is partly 
accommodated across the island of Hispaniola by the partitioning of 
motion between a fold-and-thrust belt trending NW-SE, and two E-
W left-lateral fault systems. The southern fault, the Enriquillo-
Plantain Garden Fault (EPGF), is morphologically well expressed in 
western Haiti but its precise geometry in eastern Haiti is debatable. 
There, Lake Azuei stretches over 20 km in a direction parallel to the 
fold-and-thrust belt while its southern shoreline strikes EW, parallel 
to the expected trend of the EPGF. We acquired 220 km of 
multichannel seismic reflection (MCS) profiles across its surface. 
This dataset documents the following structures:  
1)  The western side of the lake is occupied by a broad NW-trending 

monoclinal fold (Figures 2 & 3). We propose that this monocline 
is the surface expression of a SW-dipping, NW-striking blind 
thrust fault. The progressive steepening of the seismic horizons 
with depth (Figures 2, 3, and 5) suggests that it has been 
continuously active during the deposition of at least 300 m of 
sediments.  

2)  A ~2 km-wide deformation zone borders the EW-trending 
southern shore (see map poster T31D-0268, at left). This 
deformation zone is faintly imaged below a shallow gas front 
(Figure 4). We propose that it corresponds to a series of fault-
propagation folds that develop ahead of an EW, S-dipping 
oblique-slip fault. This interpretation is compatible CHIRP 
profiles acquired concurrently with our MCS data and that 
document folding of the topmost turbidites but a lack of evidence 
for any stratigraphic offset across faults (see poster T31D-0268, 
at left).  

3)  A NW-trending fold imaged between the monoclinic fold to the 
west and the Matheux Mountain to the east indicates that on-
going tectonic deformation affects the entire length and width of 
the lake (Figure 6). 
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Figure 4.  Seismic line 802 crosses the SE part of the 
lake.  A deformation zone is faintly visible on the MCS 
profile (top) beneath a shallow gas front detected on 
the corresponding CHIRP profile (bottom). Because of 
the attenuation of the seismic amplitude beneath the 
gas front, it remains unclear whether this deformation 
zone reflects faulting and/or folding. However, given 
the presence of well-imaged EW-trending shallow folds 
in CHIRP profiles, we favor a model where it reflects 
fault propagation folding ahead of a S-dipping oblique-
slip fault (second model at left).  

Figure 2. A monoclinal fold in the western part of the 
lake extends ~12 km in a northwesterly direction. The 
dip of seismic horizons increases with depth, indicate 
continuous deformation for at least the time necessary to 
deposit about 300 m of sediments. We propose that this 
monocline is the surface expression of SW-dipping, NW-
striking blind thrust fault. A vertical (strike-slip?) fault 
locally offsets the monocline. 

Figure 6. MCS profiles reveal the presence of a 
fold about ~1 km-wide in the northern part of the 
lake. That fold trends NW, parallel to the 
monoclinic fold as well as the Matheux mountains; 
it is also detected in the bathymetry (see poster 
T31D-0268 at left). Its presence indicates on-
going tectonic deformation also affects the north 
end of the lake. 

Figure 3. MCS profiles image a large monoclinal fold on the west 
side of Lake Azuei. A shallow gas front is absent in that area of the 
lake and seismic horizons can be tied from profile to profile. 

Figure 5.  Horizon surfaces (in ms) highlight the progressive steepening of seismic horizonsbeneath the monoclinal fold. 
Colored lines indicate where identifications of the respective horizons were possible, and the surfaces are extrapolated 
from these. From left to right, maps correspond to the green horizon (shallower), cyan horizon (intermediate) and red 
horizon (deeper). 
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Figure	1.	Tectonic	context	(a,er	Symithe	
&	Calais,	2016).	Two	models	have	been	
proposed	for	the	eastern	terminaRon	of	
the	EPGF	near	Lake	Azuei.		
Top	 model:	 The	 EPGF	 is	 a	 conRnuous,	
verRcal,	 strike-slip	 fault	 associated	with	
minor	 en	 échelon	 drag	 folds	 (Mann	 et	
al.,	 1995)	 and	 possibly	 a	 N-dipping	
reverse	 fault	 subparallel	 to	 its	 strike	
(Wang	et	al.,	2018)		
BoDom	 model:	 The	 EPGF	 transiRons	
eastward	 into	 an	 oblique-slip	 fault	 that	
dips	southward	beneath	the	Massif	de	la	
Selle	 (Saint	 Fleur	 et	 al.,	 2015	 &	 2019;	
Symithe	 &	 Calais,	 2016;	 Possee	 et	 al.,	
2019)	
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A	10	m-long	boat	was	trucked	to	the	lake	
for	the	seismic	survey.	
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