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Abstract

Low-current tributary-estuaries and embayments along the margin of the Hudson River are uniquely at risk for harmful algal

blooms of cyanobacteria (cyanoHABs) due to rising temperatures as a result of climate change. An increased prevalence of

cyanoHABs in near-shore, low-current sections of the Hudson River could be extremely harmful to nearby communities, aquatic

organisms and wildlife. To address this increased risk, it is imperative to understand the current in-stream and upstream

abiotic environmental controls (nutrients, water temperature, etc.) on the current background levels of cyanobacteria within

the Hudson River. It is also important to understand how these controls and cyanobacterial populations vary spatially with

relation to the higher risk, lower-flow sections along the margins of the Hudson River. Locations of tributary-estuaries of

special concern within the Hudson Valley include Esopus Creek in Saugerties, Rondout Creek in Kingston, and Wappingers

Creek in Wappingers, NY. Other locations of concern are embayments along the Hudson River such as Long Dock Park in

Beacon, Port Ewen in Kingston and Norrie Point in Staatsburg, NY. Given the lower-flow nature of these sites, elevated surface

water temperatures are likely a result of settled, striated layers from decreased current. These locations are also susceptible

to growth of the invasive species Trapa natans or commonly known as the European water chestnut. High concentrations of

nutrients like nitrogen and phosphorous within the water chestnut bloom and the captured sunlight from metabolic processes like

photosynthesis can create an ideal microhabitat for harmful algae like cyanobacteria. The background levels of cyanobacteria

in outflows of tributaries, and their lower-flow estuary extensions were observed alongside the water quality within the water

chestnut blooms of these sites at varying depths. By studying the weekly changes in background abundance of cyanobacteria

and their drivers occurring at contrasting locations along the Hudson River, it was found that the strongest controls included

turbidity, temperature and levels of phosphorous. In locations of low turbidity and high surface water temperatures, the

background levels of cyanobacteria were higher in these lower-flow areas than in areas with increased turbidity. Cyanobacteria

was found in greater number within water chestnut blooms than in whole water samples outside the area of the bloom. High

surface temperature and riverbed temperature also related to higher levels of cyanobacteria. Given the concluded information, it

is apparent that invasive water chestnuts within lower-flow extensions of the Hudson River hold a greater threat than originally

understood; creating an ideal habitat for potential cyanoHABs in the wake of climate change.
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• Quantify the background levels of cyanobacteria in lower-
flow areas of the Hudson River like tributary-estuaries

• Determine the abiotic drivers of cyanobacterial growth
• Assess the potential for cyanobacterial harmful algal blooms 

(cyanoHABs) in the Hudson River and the compounding impact 
of the invasive water chestnut (Trapa natans)
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1. Accessed sample sites via 
canoe
1. Every two weeks

2. Water quality
1. HydroLab DataSonde

1. Temperature, salinity, 
specific conductance, 
oxygen reduction 
potential, turbidity, 
dissolved oxygen, and 
total dissolved solids

2. Nutrient Testing
1. Nitrate and 

Orthophosphate with 
spectrophotometry 
(Eckbald 1978)

3. Cyanobacteria Counts
1. PFUs: Light microscopy, 

Palmer-Maloney cell
4. Fluoroprobe III

1. Blue-green chlorophyll
5. Microbial Transects

RESULTS

Figure 3. Time-series of abiotic factors and 
cyanobacterial cells/mL between 7/7/19 and 
9/28/19.
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Figure 1. Climate change and eutrophication from nutrient-polluted runoff and the 
effects on cyanoHABs. 

Figure 2. Site selection and water chestnut bloom.  

A B

Figure 4. (A) Cyanobacteria from PFU sample. (B) 
Cyanobacterial cell counts (cells/mL) and blue-green 
(BG) Chlorophyll (ppb). Trendline is represented by 
the equation y= 0.0048x + 2.1477 with an R2 value 
of 0.9016. 

Figure 5.  The difference of abiotic factors between the open water 
outside of a Trapa bed, and the water within a Trapa bed. Three sites 
were sampled via transect (n=13). Significant p-values are represented 
in bold. 

Figure 6. Distribution of cyanobacterial species: Toxic (Microcystis) 
and non-toxic (Oscillatoria and others) based on sampling location 
(n = 17 to 36). 
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Discussion and implications of main findings:
• Toxic Microcystis is much more dominant in the main-stem waters of 

the Hudson where plant-available N is higher, but these locations are 
not ideal for cyano-bloom formation due to higher turbidity, hence 
lower light, and lower residence time.

• Ideal cyano-bloom locations are in the slack-water side embayments 
and tributary-estuaries of the Hudson, but this is where Trapa also 
currently dominates, and cyanobacteria in these areas are 
dominated by the non-toxic Oscillatoria

• Trapa beds are previously known to significantly denitrify these slack-
water areas, and these lowered nitrogen amounts may 
favor Oscillatoria (a known N-fixer, at times) over Microcystis (never 
an N-fixer)

• These initial findings indicate (pending corroboration with further 
experimental research) that invasive Trapa beds, common to the 
Hudson estuary, may currently limit the likelihood of cyanoHABs due 
to Microcystis even under conditions of climate warming and excess 
nutrient loading

• For management, increased removal of invasive Trapa beds is 
unadvised until significant mitigation strategies for excess nutrient-
loading are completed in municipalities and tributary watersheds of 
the Hudson estuary system
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Figure 7.  Correlation matrix of abiotic factors in relation to cells/mL 
for all observation (n=32). Relevant p-values and corresponding plots 
are outlined. 

Figure 8.  Correlation matrix of abiotic factors in relation to 
maximum, minimum, mean and range of cells/mL at each site (n=5). 
Relevant p-values and corresponding plots are outlined. 
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Figure 9. Discussion figure.
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