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Abstract

Tropical cyclones dominate the disturbance regime experienced by forest ecosystems in many parts of the world. Interactions be-
tween cyclone disturbance regimes and nutrient availability strongly influence forest ecosystem dynamics. However, uncertainty
exists over the importance of soil fertility properties (i.e., total soil phosphorus-P concentration) in mediating forest resistance
and recovery from cyclone disturbance. We hypothesized that forests on soils with low total P (e.g., developed on limited-P
parent material) have a higher resistance to but a slower recovery from cyclone disturbance than forests on high P soils. We
investigated cyclone impacts on litterfall, an essential conduit for nutrient recycling in forest ecosystems. We compiled site-level
forest litterfall data from 53 studies and datasets associated with 15 naturally-occurring one simulated tropical cyclone in 23
sites within five regions (Taiwan, Australia, Mexico, Hawaii, and the Caribbean)and four cyclone basins. We calculated the
effect sizes of cyclone disturbance on the litterfall mass and nutrient (P and nitrogen-N) concentrations and fluxes during the
first (< five) years post-disturbance across a total soil P gradient. We also assessed the effect of 20 covariates on the degree of
cyclone impact on litterfall. Total litterfall mass flux increased by 4820%following cyclone disturbance. Such an initial increase
in litterfall mass reflects the magnitude of cyclone-derived plant material input to the forest floor, which was highest in the
Caribbean and lowest in Taiwan. Among 20 covariates, soil P and region were the best predictors of cyclone effects on total
litterfall mass, explaining 80% of the variance. The effect sizes increased linearly with soil P and region, from significantly lower
in Taiwan (low-P) to largest in the Caribbean (high-P). Total litterfall P and N fluxes increased significantly post-cyclone,
whereas the increase in leaf P flux was twice as that in Nflux. Results highlight the importance of understanding the interac-
tions between disturbance and nutrient gradients in forest ecosystems to understand forest responses to altered cyclone regimes

expected under climate change.
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BACKGROUND & OBJECTIVE

Does soil fertility influence tropical forest stability in response to
cyclone disturbance?

Damage caused by a hurricane in a Puerto Rican forest. Image credit: Dr. Maria Uriarte

- Quantifying ecosystem stability in response to disturbance is critical for predicting how
disturbance regimes altered by climate change will affect ecosystem structure and
function.

- Tropical cyclones, whose intensities are expected to increase with warming
(Reed et al. 2020), dominate the disturbance regime experienced by forest
ecosystems worldwide.

- Forest ecosystem dynamics are strongly influenced by interactions between cyclone
disturbance regimes and nutrient availability.

- Uncertainty exists over the importance of soil fertility properties, like total soil
phosphorus (P) concentration, in mediating forest resistance and recovery from
cyclone disturbance.

To understand the role of soil P in mediating forest stability in
response to cyclone, we investigated the response, resilience, and
recovery of litterfall across a pantropical total soil P gradient.
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HYPOTHESIS & APPROACH

Forests on low-P soils are more resistant but less resilient to cyclone
disturbance than forests on high-P soils.
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Fig 1. Graphical hypothesis.

The hypothesis was tested by a pantropical meta-analysis of published
studies and data sets.
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Fig 2. Schema of the research approach.

- 53 studies and data sets;
- 15 naturally-occurring and 1 simulated tropical cyclone;
- 23 sites within 5 regions - Taiwan, Australia, Mexico, Hawaii, and the Caribbean;

- 4 cyclone basins.
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Fig 3. Study sites located in five regions and four cyclone basins.

Table 1. Studies included in this meta-analysis.
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Fig. 4 a Litterfall mass flux, b nutrient flux and ¢ concentration by region and time since
disturbance, and d-f by Holdridge life zone and region.

Response variables

Using litterfall mass flux data during the first (< five) years post-disturbance, we

calculated:
Response
Rp = In (Litterfall tj/tp)
Rp near zero indicates high resistance
Resilience
Rs = In (Litterfall t,/tg)
Rg near zero indicates high resilience
Recovery

R¢ = In (Litterfall t,/t;)

Moderator variables

Using Random Forest for meta-analysis and multivariate random-effects models,
we assessed the influence of soil phosphorus and 20 variables related to cyclone
disturbance, soil, geology, geography, and vegetation (Fig. 2) on the stability
indices.
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RESULTS: RESPONSE

Across the tropics, response to cyclone disturbance is highest in the

Caribbean.
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Fig. 5 The pantropical overall response to cyclone disturbance, and response by region.

- The pulse of litter was highest in the Caribbean and lowest in Taiwan.

Does soil P explain differential responses?
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Fig. 6 Moderator variables ranked by their importance in explaining forest response to cyclone

disturbance.

Total soil P is a significant predictor of forest response to tropical cyclone
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R2,q = 0.81
p<0.001
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Fig. 7 Predictions of forest response (Rp: In litterfall t;/tg) to cyclone disturbance by linear
regression including total soil phosphorus (mg/kg) and study region as predictors.

Rp=1.496 +
0.00173 soil P Australia
3.957 soil P (Caribbean)
1.321 soil P Hawaii
0.228 soil P Mexico

—0.582 soil P Taiwan
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RESULTS: RESILIENCE & RECOVERY

The overall resilience to cyclone changes from negative in the first
year to neutral thereafter.
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Fig. 8 Overall forest resilience to cyclone by time since disturbance. Asterisks denote a significant
difference from the baseline at the 95% confidence level.

Resilience in the first year post-disturbance is negatively related to
soil phosphorus.
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Fig. 9 (a) Predictor importance ranking using resilience calculated for the first 14 months
post-cyclone response. (b) Resilience by total soil P, storm frequency (number of storms
per year), and tropical region. (c¢) Resilience predictions using storm frequency and
elevation as predictors.

Forest recovery after cyclone disturbance can be predicted by total soil P.
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Fig. 10 Recovery index (In litterfall t,/t;) predictions by linear regression, including total soil
phosphorus as a significant predictor.
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FUTURE DIRECTIONS

- How do P and N fluxes from the canopy to the floor change after cyclone

disturbances?
a b _
® Mass flux = 6 ©'N mg/g '
Wood |4 P flux —_— AP mglg
' N flux —6— 24
—— 2 —— 7 Wood = ’
Leaf  REE - SRR - i
5 —— 31 3
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Fig. 11 The overall response of a litterfall mass, P and N fluxes (by fractions), and b wood and leaf
fall N and P concentrations to cyclone disturbance.

- How does plant functional composition influence the response and resilience
to cyclone disturbance?

- Can we extrapolate the response, resilience, and recovery predictions across
the tropics?
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HIGHLIGHTS & ACKNOWLEDGMENTS

- Across the tropics, forests on high-P soils were less resistant and resilient to tropical
cyclones, at least in the first year post-disturbance.

- Forest recovery after tropical cyclone disturbance was negatively related to soil P
concentration.
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ABSTRACT

Tropical cyclones dominate the disturbance regime experienced by forest ecosystems in many parts of the world. Interactions
between cyclone disturbance regimes and nutrient availability strongly influence forest ecosystem dynamics. However,
uncertainty exists over the importance of soil fertility properties (i.e., total soil phosphorus-P concentration) in mediating
forest resistance and recovery from cyclone disturbance. We hypothesized that forests on soils with low total P (e.g.,
developed on limited-P parent material) have a higher resistance to but a slower recovery from cyclone disturbance than
forests on high P soils. We investigated cyclone impacts on litterfall, an essential conduit for nutrient recycling in forest
ecosystems. We compiled site-level forest litterfall data from 56 studies and datasets associated with 15 naturally-occurring
and one simulated tropical cyclone in 23 sites within five regions (Taiwan, Australia, Mexico, Hawaii, and the Caribbean)
and four cyclone basins. We calculated the effect sizes of cyclone disturbance on the litterfall mass and nutrient (P and
nitrogen-N) concentrations and fluxes during the first (< five) years post-disturbance across a total soil P gradient. We also
assessed the effect of 20 covariates on the degree of cyclone impact on litterfall. Total litterfall mass flux increased by 4820%
following cyclone disturbance. Such an initial increase in litterfall mass reflects the magnitude of cyclone-derived plant
material input to the forest floor, which was highest in the Caribbean and lowest in Taiwan. Among 20 covariates, soil P and
region were the best predictors of cyclone effects on total litterfall mass, explaining 80% of the variance. The effect sizes
increased linearly with soil P and region, from significantly lower in Taiwan (low-P) to largest in the Caribbean (high-P).
Total litterfall P and N fluxes increased significantly post-cyclone, whereas the increase in leaf P flux was twice as that in N
flux. Results highlight the importance of understanding the interactions between disturbance and nutrient gradients in forest
ecosystems to understand forest responses to altered cyclone regimes expected under climate change.

— High soilh

- =Low soil P

Litterfall
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