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Abstract

Extreme runoff modeling is hindered by the lack of sufficient and relevant ground information and the low reliability of physically-

based models. The authors propose to combine precipitation Remote Sensing (RS) products, Machine Learning (ML) modeling,

and hydrometeorological knowledge to improve extreme runoff modeling. The approach applied to improve the representation

of precipitation is the object-based Connected Component Analysis (CCA), a method that enables classifying and associating

precipitation with extreme runoff events. Random Forest (RF) is employed as a ML model. We used 2.5 years of nearly-real-

time hourly RS precipitation from the PERSIANN-CCS and IMERG-early run databases (spatial resolutions of 0.04 o and

0.1 o , respectively), and runoff at the outlet of a 3391 km 2-basin located in the tropical Andes of Ecuador. The developed

models show the ability to simulate extreme runoff for the cases of long-duration precipitation events regardless of the spatial

extent, obtaining Nash-Sutcliffe efficiencies (NSE) above 0.72. On the contrary, we found an unacceptable model performance

for a combination of short-duration and spatially-extensive precipitation events. The strengths/weaknesses of the developed

ML models are attributed to the ability/difficulty to represents complex precipitation-runoff responses.
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Abstract 1 

Extreme runoff modeling is hindered by the lack of sufficient and relevant ground information 2 

and the low reliability of physically-based models. The authors propose to combine 3 

precipitation Remote Sensing (RS) products, Machine Learning (ML) modeling, and 4 

hydrometeorological knowledge to improve extreme runoff modeling. The approach applied 5 

to improve the representation of precipitation is the object-based Connected Component 6 

Analysis (CCA), a method that enables classifying and associating precipitation with extreme 7 

runoff events. Random Forest (RF) is employed as a ML model. We used 2.5 years of nearly-8 

real-time hourly RS precipitation from the PERSIANN-CCS and IMERG-early run databases 9 

(spatial resolutions of 0.04o and 0.1o, respectively), and runoff at the outlet of a 3391 km2-basin 10 

located in the tropical Andes of Ecuador. The developed models show the ability to simulate 11 

extreme runoff for the cases of long-duration precipitation events regardless of the spatial 12 

extent, obtaining Nash-Sutcliffe efficiencies (NSE) above 0.72. On the contrary, we found an 13 

unacceptable model performance for a combination of short-duration and spatially-extensive 14 

precipitation events. The strengths/weaknesses of the developed ML models are attributed to 15 

the ability/difficulty to represents complex precipitation-runoff responses. 16 

Keywords: Extreme runoff; Machine Learning; PERSIANN-CCS; IMERG-early-run; Feature 17 

Engineering; Tropical Andes. 18 
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1. Introduction 19 

Physically-based precipitation-runoff models used in water management describe the physical 20 

processes that occur in a system (basin) by using balance and conservation equations (Clark et 21 

al., 2017). However, those models demand extensive data and might be subject to 22 

overparameterization, limiting its operational value (Mosavi et al., 2018; Young, 2002). As a 23 

solution, during the last decades, a data-driven approach, using Machine Learning (ML) 24 

techniques, gained popularity among hydrologists (Bontempi et al., 2012; Chang et al., 2019; 25 

Galelli and Castelletti, 2013; Mosavi et al., 2018). An important reason responsible for the 26 

increasing interest is the fact that ML exploits the available and relevant information (e.g., 27 

precipitation, past runoff) to find relations to the target variable (i.e., runoff) without requiring 28 

knowledge about the underlying physical processes. Among ML techniques, the Random 29 

Forest (RF) algorithm is mostly used for normal and extreme runoff modeling due to its 30 

simplicity (few parameters to calibrate), higher accuracy when compared to other ML 31 

techniques, the robustness of the model, and its capacity to deal with small size samples and 32 

complex data structures (Biau and Scornet, 2016; Breiman, 2001; Contreras et al., 2021; Li et 33 

al., 2016a; Li et al., 2020; Muñoz et al., 2018, 2021; Orellana-Alvear et al., 2020; 34 

Papacharalampous and Tyralis, 2018; Tyralis et al., 2019; Wang et al., 2015). 35 

In terms of data availability, in many regions, ground precipitation networks are either 36 

inexistent or scare, and if available mostly with extremely low areal density. This is especially 37 

true for mountainous regions, such as the tropical Andes, where the remoteness of the study 38 

areas and budget constraints limits the development of accurate precipitation-runoff models. 39 

Fortunately, continuous development of Remote Sensing (RS) products, e.g., space-based 40 

satellites have dramatically enhanced the quantity (spatiotemporal resolution) and quality of 41 

areal precipitation observations. However, RS precipitation obtained from a single sensor 42 

(satellite) hardly provides accurate estimations (Hong et al., 2019). This has stimulated the 43 
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development of multi-satellite precipitation products such as the NASA Global Precipitation 44 

Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) (Huffman et al., 45 

2015), and the Precipitation Estimation from Remotely Sensed Information using Artificial 46 

Neural Networks (PERSIANN) (Hsu et al., 1997). IMERG and PERSIANN products are 47 

characterized by quasi-global coverage, free access, high spatiotemporal resolutions, and in 48 

continuous development (Tang et al., 2016). Given previous, both RS products are nowadays 49 

widely used in hydrometeorological applications including tracking of precipitation anomalies 50 

(Nguyen et al., 2014; Sakib et al., 2021), precipitation early-warning systems (Sorooshian et 51 

al., 2014), and flood forecasting and mapping (Belabid et al., 2019; Nguyen et al., 2015). 52 

Once the issue of data availability is solved the arising research questions are: a) is precipitation 53 

well represented by RS data? and b) can RS precipitation be properly assimilated during the 54 

learning process (in the context of extreme runoff ML models)? The first research question is 55 

mandatory for the cases when the interest lies in providing accurate precipitation estimations. 56 

This can be achieved by validating RS products with ground precipitation estimations, see for 57 

instance the studies of Laverde-Barajas et al. (2019) and (Li et al., 2016b). While, the second 58 

issue can be addressed regardless the validation of the precipitation, for the cases when 59 

precipitation is merely an estimator for the modeling of another variable (e.g., precipitation is 60 

an estimator in precipitation-runoff models). In this case, the methodology consists of applying 61 

a feature engineering strategy to RS precipitation data enabling a better ML precipitation 62 

assimilation during the learning process, improving ultimately extreme runoff model 63 

efficiencies. In addition, ML precipitation assimilation can be improved by building runoff 64 

models able to discriminate between different precipitation event types (Laverde-Barajas et al., 65 

2020). This is because different precipitation events produce different runoff responses as a 66 

result of various runoff generation processes, mainly infiltration and saturation excess 67 

(Gutiérrez-Jurado et al., 2019). 68 
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Precipitation events can be distinguished by applying object-based methods to RS imagery 69 

(Davis et al., 2006; Laverde-Barajas et al., 2019; Li et al., 2016b; Peña-Barragán et al., 2011; 70 

Vogels et al., 2020). A simple yet effective object-based method is the Connected Component 71 

Analysis (CCA) employed by Laverde-Barajas et al. (2019). The CCA includes a physical 72 

description of precipitation events (centroid, extension area, etc.), as well as key meteorological 73 

attributes (intensity, duration, volume, etc.). These characteristics are then used for classifying 74 

precipitation events which can be contrasted with their associated runoff responses. 75 

In this context, the objective of this study was to develop specialized (smart) ML extreme 76 

runoff models for a 3393-km2 basin in Ecuador. We used a feature engineering methodology 77 

to improve the areal representation of the precipitation and to maximize runoff model 78 

efficiencies by identifying and classifying precipitation events associated with extreme 79 

hydrological events. 80 

1.  Study area and Dataset 81 

1.1 Study area 82 

The Jubones Basin, located in the tropical Andes of Ecuador, was selected as the study area 83 

(Figure 1) and covers an area of ~3391 km2 upstream of the Minas-San Francisco hydroelectric 84 

dam, with an elevation ranging between 1250 to 3920 m above sea level. The climatology of 85 

the basin is extremely variable due to the presence of the Andean mountain range, trade winds, 86 

and ocean currents from the Pacific Ocean. A distinction can be made between at least 4 rainfall 87 

regions, including a semi-arid region. The basin climate ranges from humid to arid, with 88 

average annual rainfall ranging spatially from 350 to 1170 mm. 89 
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 90 

Figure 1. The Jubones basin in the Tropical Andes of Ecuador, South America. 91 

1.2 Dataset 92 

The dataset comprises hourly satellite-derived precipitation covering the Jubones basin, and 93 

hourly runoff data collected at the hydrological station, situated in the outlet of the basin, 94 

consisting of the Minas-San Francisco hydropower dam. Since the dam was completed in 2018, 95 

lasted the study period ~2.5 years, from 18 November 2018 to the 31st of March 2021. 96 

Precipitation from Remote Sensing (RS) products 97 

Precipitation information was retrieved from two near-real-time multi-satellite sources, the 98 

IMERG-early run, and the PERSIANN-Cloud Classification System (CCS) precipitation 99 

subproducts. Data were derived at hourly intervals. The main difference between both 100 

precipitation sources is the spatial resolution. The PERSIANN-CCS possesses the highest 101 

spatial resolution for the region (0.04o x 0.04o), being the result of infrared imagery processing 102 
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and cloud classification using artificial neuronal networks (Hong et al., 2004). Whereas the 103 

IMERG-early run approach interpolates various microwave precipitation estimates and 104 

delivers data with a spatial resolution of 0.1o x 0.1o. 105 

Figure 2 shows the mean annual precipitation of the Jubones basin, measured by the 106 

PERSIANN-CCS (728.5 mm) and IMERG-early run (727.2 mm) precipitation satellite 107 

subproducts. For this plot, we used hourly information for 2019 and 2020 (see also the 108 

precipitation plot in Figure 3). We found differences of 1.3 and 116 mm between the mean and 109 

the maximum annual precipitation obtained from the PERSIANN-CCS and the IMERG-early 110 

run subproducts, respectively. This is attributed to the spatial resolution difference and to the 111 

measurement principle of each satellite subproduct. 112 

  

Figure 2. Mean annual precipitation in mm (2019 and 2020) measured by the PERSIANN-113 
CCS and the IMERG-early run precipitation satellite subproducts. 114 

 115 

Runoff at the entrance of the MSF hydropower dam 116 

Hourly time series of runoff at the outlet of the Jubones basin were derived from the server of 117 

the Corporación Eléctrica del Ecuador (CELEC EP, https://www.celec.gob.ec/), the company 118 

that manages the Minas-San Francisco hydropower dam. Figure 3 depicts the runoff 119 

information for the study period. Figure 3a shows the hourly time series, whereas Figure 3b 120 
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the corresponding probability of exceedance from which 55 nearly-independent peak flow 121 

events were selected based on peak-over-threshold values (red dots in Figure 3a). The peak 122 

flow events selection was done using the WETSPRO tool (Willems, 2009). Exceedance 123 

probability analysis reveals that for the study period the runoff magnitudes of 103.5 and 159.4 124 

m3.s-1 are exceeded with probabilities of 10% and 5%, respectively. These probabilities, which 125 

correspond to the 90 and 95% quartiles, served to determine extreme hydrological runoff events 126 

for the development of the extreme precipitation-runoff models. 127 

 
(a) 

 

 

 

 

 

 

 

 
(b) 

 

Figure 2. (a) Runoff and precipitation (PERSIANN-CCS) time series at the outlet of the 128 
Jubones basin. Peak flow events are displayed as red dots. (b) Exceedance probability for the 129 

study period (18/11/2018 to 31/03/2021). 130 
 131 

 132 
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2. Methodology 133 

2.1 Determination of nearly independent peak hydrological events 134 

The extreme hydrological events from the complete runoff time series were derived by 135 

applying the following two criteria: i) extreme hydrological events must exceed the 90% 136 

quartile values (98.8 m3.s-1), and ii) such events must be nearly independent. For meeting both 137 

criteria of independence, we used the WETSPRO time series tool (Willems, 2009), which splits 138 

runoff series in nearly independent peak and low flow events following a peak-over-threshold 139 

approach. The WETSPRO has two parameters to be calibrated, the inter-event time and peak 140 

height. In summary, we selected extreme hydrological events with a definition of independence 141 

controlled by the recession time and peak height difference of two consecutive runoff events. 142 

2.2 Object-based Connected Component Analysis 143 

Once extreme hydrological events were selected, the next step was to analyze their 144 

correspondent precipitation imagery from the highest-resolution satellite subproduct, the 145 

PERSIANN-CCS. The precipitation analysis was done by applying a feature engineering 146 

strategy based on an object-based Connected Component Analysis (CCA) algorithm. The CCA 147 

algorithm is fully detailed in Laverde-Barajas et al. (2019). We implemented the CCS 148 

algorithm through the scikit-image processing package in Python® version 3.7 (der Walt et al., 149 

2014). The approach consists of the following steps (see also Figure 4): 150 

i. Clipping of the precipitation imagery to the Jubones basin (Figure 4a). 151 

ii. Identification and localization of precipitation objects (latitude, longitude, see 152 

Figure 4b). For this we defined a precipitation threshold volume of 0.5 mm, i.e., 153 

precipitation objects with an associated precipitation volume of less than 0.5 mm 154 

are trimmed-off. This was done on a trial-and-error basis validated with 155 

precipitation objects observed in randomly selected precipitation events. The target 156 
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was to remove noise from precipitation imagery and keep only clear precipitation 157 

objects in the precipitation imagery (Figure 4c). 158 

iii. Filtering of the identified precipitation objects according to size criteria. Similarly, 159 

we found and used a number-of-pixels threshold of 6, according to a trial-and-error 160 

procedure with the same target as employed in step (ii). 161 

iv. Morphologically the identified and filtered precipitation objects were closed, by . 162 

applying as a final procedure a dilatation-and-erosion algorithm for refining 163 

precipitation objects (Figure 4d). 164 

v. Retrieval of physical (centroid and extension area) and hydrometeorological 165 

attributes (volume of precipitation, maximum intensity, precipitation duration) 166 

from the precipitation objects defined in step (iv). For the duration of the 167 

precipitation, we defined that two precipitation objects are considered consecutive 168 

(i.e., belong to the same event) when the time between their appearance is shorter 169 

than 2 hours. This threshold was calibrated on a trial-and-error basis. 170 

 171 

 

 
 

(a) 
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(b) 

  
(c) (d) 

Figure 3. Precipitation identification with an object-based Connected Component Analysis 172 
Illustration of the PERSIAN-CCS 2021-12-25 05:00 UTC image. (a) Jubones basin clipping, 173 

(b) Precipitation identification in mm from PERSIANN-CCS imagery, (c) Initial 174 
identification of 7 precipitation objects (different colors) with CCA analysis, and (d) 175 

Selection of 2 precipitation objects according to object size filtering and morphological 176 
closing. 177 

 178 

Additionally, a modular precipitation approach for the analysis of the precipitation imagery 179 

was used. For the cases when no precipitation is observed by the PERSIANN-CCS subproduct, 180 

we switched the precipitation data source to IMERG-early imagery, following a simple 181 

spatially under-sampling technique. This means that an IMERG-early run cell of size 0.1x0.1o 182 

was directly divided into ~6.4 cells with a resolution of 0.04x0.04o, matching the resolution of 183 

the PERSIANN-CCS subproduct. This modular approach assures that all extreme hydrological 184 

events are trained with an existent precipitation signal, reducing noise and improving the 185 

learning process of the further developed runoff models. 186 
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2.3 Classification of precipitation events associated with extreme hydrologic events 187 

The hydrometeorological attributes derived from the CCA analysis are used to classify 188 

precipitation events together with their associated runoff response. For this we used the 189 

following two criteria, respectively the extension of the precipitation objects (local and 190 

spatially extensive), and the duration of the precipitation events (short and long). As a result, 191 

by defining extension and duration thresholds we could establish four precipitation event 192 

classes: i) Local and short extreme events (LSE), ii) Local and long-duration extreme events 193 

(LLE), iii) Spatially extensive extreme events (SEE), and iv) Spatially extensive and long-194 

duration extreme events (SLE). 195 

2.4 Event-based runoff modeling 196 

We developed one runoff model for each precipitation event class and one model without 197 

precipitation discrimination (base model). For this, we used the ML technique known as 198 

Random Forest (RF) for regression. The RF is described in the following subsection. Moreover, 199 

the input feature space to each model was formed with hourly precipitation and runoff, as well 200 

as an indicator of the belonging precipitation class. In addition to current-time precipitation 201 

and runoff information, we used past lag information which is determined according to 202 

statistical correlation analyses: partial- and auto-correlation functions for runoff, and cross-203 

correlation function for precipitation. The construction of the input feature space was 204 

conducted following the methodology developed in Muñoz et al. (2018), with the purpose to 205 

add only relevant information to the models and improve their efficiencies. 206 

3.4.1 Random Forest for regression 207 

Random Forest (RF) is a ML technique of supervised learning where the main idea is to build 208 

multiple decorrelated trees (models), in which the input feature space is related to output(s) by 209 

successively applying a set of hierarchically organized conditions (Breiman, 2001). The key to 210 
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the RF algorithm is the random selection of resampled datasets from the input feature space 211 

(bagging technique), which assures decorrelation between stochastically formed models. 212 

We implemented the RF runoff models through the scikit-learn package for ML in Python® 213 

version 3.7 (Pedregosa et al., 2011). A full explanation of the RF algorithm can be found in 214 

Breiman (2001), and can be summarized as follows: 215 

i. Construction of each decision tree by randomly selecting several bootstrap samples 216 

from the input feature space. A process known as out-of-bag (OOB) is used for 217 

forming each bootstrap with roughly two-thirds of the input feature space. On one 218 

hand, the OOB process serves to obtain unbiased estimates of the regression, and 219 

on the other hand, it allows to estimate the importance of each feature (predictor) 220 

of the feature space in the tree construction process. 221 

ii. Optimally splitting of the data selected in step (i) at each node of each tree. This is 222 

done by determining a maximum number of features to perform the best split from 223 

the total number of predictors in the feature space. This also avoids overfitting by 224 

assuring variety and nonexistence of duplicated models. 225 

iii. Growth of all the trees constructed in step (i) with the splits defined in step (ii) up 226 

to a size defined either by a maximum depth parameter or a minimum number of 227 

samples expected in the final node. Control of the depth of the trees aims to reduce 228 

the structural complexity of the models, leading to model parsimony and noise 229 

reduction. 230 

iv. Determination of the output of the model as the mean response from all regression 231 

trees. 232 

According to Contreras et al. (2021), the most-influencing RF hyperparameters for 233 

hydrological forecasting applications are the number of trees in the forest (n_trees), the 234 

maximum number of features to perform the splits of the data (max_features), and maximum 235 



 13 

depth for pruning purposes (max_depth). For all runoff models, we determined the optimal 236 

combinations of hyperparameter following a random grid-search procedure implemented with 237 

a 10-fold cross-validation process to prevent overfitting. The measure of agreement was 238 

evaluated according to the coefficient of determination (R2) between simulations and 239 

observations for the training subsets. Table 1 presents the domain of the selected 240 

hyperparameters which forms the search space for the optimization task. 241 

Table 1. Search space (grid) of the RF runoff models. 242 
 243 

Hyperparameter Domain 
n_trees* 40;800;10* 

max_features n_features,n_features("/$), log$(n_features) 
max_depth* 40;800;10* 

* Domain defined by min, max, and increment. 

3.4.2 Model evaluation 244 

We used four goodness-of-fit metrics for evaluating the efficiencies of the four runoff models. 245 

The Nash-Sutcliffe Efficiency (𝑁𝑆𝐸) coefficient was set as the reference for measuring and 246 

comparing the overall model accuracy. To complement the analysis, we relied on the Kling-247 

Gupta Efficiency (𝐾𝐺𝐸), the Percent Bias (𝑃𝐵𝐼𝐴𝑆), and the Root Mean Square Error (𝑅𝑀𝑆𝐸) 248 

metrics. The following equations were used: 249 

𝑁𝑆𝐸 = 1 −
∑ @𝑄&(𝑖) − 𝑄'(𝑖)C

$(
)*"

∑ (𝑄'(𝑖) − 𝑄'DDDD)$(
)*"

 250 

𝐾𝐺𝐸 = 1 −	F(𝑟 − 1)$ + (𝛼 − 1)$ + (𝛽 − 1)$ 251 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑄' − 𝑄&)(
)*"
∑ 𝑄'(
)*"

 252 

𝑅𝑀𝑆𝐸 = 	K
1
𝑛M

(𝑄& − 𝑄')$
(

)*"

 253 

where 𝑛 is the number of instances, 𝑄& is the simulated runoff, 𝑄' is observed runoff, 𝑄'DDDD is the 254 

mean observed runoff, 𝑄&DDD is the mean simulated runoff, 𝑟 is the correlation coefficient between 255 
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𝑄& and 𝑄',	𝛼 = +!
+"

 is the variability ratio, 𝛽 = ,!----	
,"----	

 is the bias ratio, and 𝜎 is the standard 256 

deviation. 257 

The 𝑁𝑆𝐸 is dimensionless and ranges between −∞ and 1.0, 𝑁𝑆𝐸 = 1 being the optimal value. 258 

A limitation of 𝑁𝑆𝐸 is the underestimation of peak flows and overestimation of low flows, in 259 

such cases the 𝐾𝐺𝐸 is suggested (Gupta et al., 2009), with 𝐾𝐺𝐸 = 1 the optimal value. 260 

Additionally, the optimal value of 𝑃𝐵𝐼𝐴𝑆 is 0, positive values indicate model underestimation 261 

bias and negative values overestimation bias. Finally, 𝑅𝑀𝑆𝐸 measures how model residuals 262 

are spread out from the best fit between simulations and observations, being 𝑅𝑀𝑆𝐸 = 0 the 263 

optimal value. 264 

3. Results 265 

3.1 Determination of nearly independent peak hydrological events 266 

The WETSPRO tool for the Jubones basin was calibrated using the following parameters: inter-267 

event time of 120 hours (i.e., consecutive extreme hydrological events must be separated by a 268 

time frame of at least 5 days), and a maximum ratio of runoff drop down of 0.6 (i.e, runoff, 𝑞, 269 

drops down in between two consecutive events to a ratio /#$%
/#&'

< 0.6). Moreover, we considered 270 

only events exceeding the 90% quartile values of the runoff time series (98.8 m3.s-1). With 271 

these criteria, we obtained 55 nearly independent peak hydrological events (see Figure 3a). 272 

4.2 Object-based Connected Component Analysis 273 

For the 55 peak hydrological events, we firstly retrieved hourly precipitation maps from the 274 

PERSIANN-CCs and the IMERG-early run subproducts. Then, we applied the CCA algorithm 275 

with the precipitation threshold volume of 0.5 mm to derive the meteorological attributes and 276 

classify the precipitation event. The step-by-step application of the CCA algorithm for the map 277 
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corresponding to the PERSIAN-CCS 2021-12-25 05:00 UTC is presented in Figure 4 (see the 278 

Methodology section). 279 

CCA results showed that, for 15 extreme hydrological events, there was nearly or even an 280 

inexistent precipitation signal from the PERSIANN-CCS subproduct. For these 15 cases, we 281 

performed the CCA algorithm on the IMERG-early run dataset, and this resulted in a reduction 282 

of 40% of the events without any precipitation signal. In other words, although we used two 283 

precipitation satellite sources, we encountered 9 hydrological events where either no 284 

precipitation at all was observed or any precipitation object was identified according to the 285 

CCA algorithm. Therefore, these events were trimmed off, leaving 46 events available for 286 

further analyses. 287 

The validity of the precipitation modular approach is demonstrated in two extreme hydrological 288 

events (see Figure 5). For instance, for the event from 2019-07-13 20:00 to 2019-07-14 20:00 289 

UTC, it seems evident that the highest resolution of the PERSIANN-CCS subproduct leads to 290 

a clearer precipitation-runoff relation when compared to precipitation obtained from the 291 

IMERG-early run subproduct. The opposite happened for the event from 2019-10-07 16:00 to 292 

2019-10-08 16:00 UTC, where the PERSIANN-CCS signal was practically inexistent, and the 293 

IMERG-early run signal was used to relate precipitation with runoff. 294 

 295 

 296 
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(a) 

 
(b) 

Figure 4. Illustration of the precipitation-retrieval modular approach using PERSIANN-CCS 297 
and IMER-early run data sources, respectively for the events from (a) 2019-07-13 18:00 to 298 

2019-07-14 18:00 UTC, and (b) from 2019-10-07 12:00 to 2019-10-08 12:00 UTC. 299 
 300 

Moreover, the precipitation objects identified with the CCA algorithm for each one of the 46 301 

extreme hydrological events were tracked down. From this analysis, the following information 302 

was retrieved: quantity, localization (centroids) and extension of precipitation objects, 303 

precipitation duration, total precipitation volume, and precipitation maximum intensity. This 304 

information is summarized in Figure 6 and served to infer duration and extension thresholds of 305 

7 hours and 50 km2, respectively. These thresholds were used in the following subsection to 306 

classify the precipitation events. 307 

 308 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 5. Meteorological precipitation information retrieved from 47 extreme hydrological 309 
events: (a) maximum intensity, (b) duration, (c) total volume, and (d) maximum area. 310 

 311 

With respect to the localization of precipitation objects within the Jubones basin, centroid 312 

occurrence appeared to be unaffected by any physical attribute that could be derived for the 313 

basin (i.e., altitude, land use, etc.). Interestingly, no hotspot of precipitation occurrence was 314 

detected for the Jubones basin (see Figure 7). This suggests, for instance, that there is no evident 315 

orographic precipitation enhancement, and that the runoff generation process is rather driven 316 

by infiltration and saturation mechanisms before precipitation becomes streamflow. 317 
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 318 

Figure 6. Localization of precipitation object centroids (green dots) associated with extreme 319 
hydrological events in the Jubones basin. 320 

 321 

4.3 Classification of precipitation events associated with extreme hydrologic events 322 

The combination of duration and extension thresholds of 7 hours and 50 km2 served to define 323 

four precipitation classes. We determined 24 extreme hydrological events for the LSE 324 

precipitation class, 5 for the LLE, 7 for the SEE, and 10 for the SLE. Figure 8 depicts the visual 325 

discrimination between precipitation classes, from which it is apparent that the majority of 326 

extreme hydrological events occurred as a result of short duration and spatial local (LSE) 327 

precipitation events, and long duration and spatially extensive events (SLE). 328 
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 329 

Figure 7. Precipitation classes associated with extreme hydrological events: Local and short 330 
extreme events (LSE), Local and long-duration extreme events (LLE), Spatially extensive 331 
extreme events (SEE), and Spatially extensive and long-duration extreme events (SLE). 332 

 333 

4.4 Event-based runoff modeling 334 

First, we defined the dimension of the input feature space of all extreme runoff models as a 335 

combination of current time precipitation together with past precipitation and past runoff data 336 

influencing current rime runoff. In this regard, results from partial- and auto-correlation 337 

functions for runoff suggest using past lags (hours) from 1 up to 12 lags, with a 95% confidence 338 

level for both correlation functions. Similarly, the cross-correlation function for precipitation 339 

determined 13 past lags (hours) of precipitation with correlations higher than 0.2. These results 340 

are congruent with the concentration-time of the Jubones basin, which was estimated at 11 341 

hours by averaging the concentration times found with the equations of Giandotti, Johnstone, 342 

and the U.S. Army Corps of Engineers (equations recommended for the basin area, see de 343 

Almeida et al. (2014)). 344 

Once the input feature space was defined, we constructed RF models for each precipitation 345 

class and the base model. For the model training and testing of each model, we assigned 70% 346 

of the events for training and the remaining 30% for testing. For instance, there were 46 events 347 
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available for the LSE precipitation class; therefore, we assigned 32 events for training and 14 348 

for testing. Moreover, since the objective was to simulate the hydrographs corresponding to 349 

each event, we used a time frame of 24 hours before and after peak events. Concerning RF 350 

hyperparameterization, Table 2 presents the optimized combination of hyperparameters for 351 

each runoff model. The coefficient of determination between simulations and observations for 352 

the training subsets of each model was always higher than 0.91. 353 

 354 

Table 2. RF hyperparameterization of extreme runoff models. 355 
Hyperparameter None LSE LLE SLE SEE 

n_trees* 300 280 250 300 300 
max_features 2100("/$) log$(2100) n_features("/$) 2100("/$) log$(2100) 
max_depth* 200 200 150 180 200 

 356 

Table 3 summarizes the number of events used for developing extreme runoff models, and a 357 

comparison of the NSE coefficients obtained for each precipitation class and the base model. 358 

It is apparent from this table that LSE and especially SEE precipitation events are causing 359 

decay in the overall NSE-value of 0.83 (see also Figures 9b and 9d). Surprisingly, LSE presents 360 

the majority of extreme hydrological events, and it seems contradictory that for LSE events, 361 

the higher number of events for training did not result in a higher NSE. This suggests that there 362 

are physical processes not well represented in the input feature space that disturbs the learning 363 

process of the RF models, as further discussed. 364 

 365 

Table 3. Number of events and efficiencies on test subsets of runoff models specifically 366 
developed for different precipitation events. 367 

Precipitation 
class 

# Total Events 
(Test) 

NSE  KGE  PBIAS  RMSE  

None 46 (14) 0.83 0.85 4.49 55.38 
LSE 24 (7) 0.67 0.71 -1.45 35.00 
LLE 5 (2) 0.72 0.74 -23.94 41.76 
SEE 7 (3) -1.93 -0.48 -61.44 60.44 
SLE 10 (3) 0.90 0.94 -2.72 69.09 

 368 
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From the data in Figure 9, we can infer the spectrum of the runoff magnitudes modeled for 369 

each precipitation class. What is striking from the subfigures in Figure 9 is that regardless of 370 

the spatial extension, short-duration precipitation events (LSE and SEE classes) caused the 371 

lowest extreme runoff magnitudes at the outlet of the Jubones basin. Now, since we developed 372 

models for extreme runoff, we maximized the efficiencies for the highest runoff magnitudes. 373 

Therefore, it is evident that the lowest NSE coefficients for the LSE and SEE classes are found. 374 

Physically, this finding may be explained by the fact that the runoff response of short-duration 375 

events is somehow softened by the infiltration and saturation processes. This means that the 376 

volume of precipitation that becomes streamflow is somehow lower when compared to long-377 

duration precipitation classes (LLE and SLE). If we now turn to the modeling of all extreme 378 

hydrological events (Figure 9a), we can infer that the learning process is biased towards lower 379 

runoff magnitudes, and the results for the highest magnitudes are more spread out. However, 380 

the bias for long-duration events was reduced by classifying precipitation types before the 381 

modeling task (Figures 9c and 9e). 382 

 
(a) 



 22 

 
(b) 

 
(c) 

 
(d) 
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 383 
Figure 8. Scatter plot between extreme runoff observations and simulations for (a) No-384 

precipitation event classification, (b) LSE events, (c) LLE events, (d) SEE events, and (e) 385 
SLE events. 386 

4. Discussion 387 

In this study, specialized (smart) extreme runoff models were developed for a 3391-km2 388 

representative basin of the Ecuadorian tropical Andes. The efficiencies of the developed ML 389 

models are comparable and outperformed the ones obtained with traditional physically-based 390 

models such as HEC-RAS (see the study of Belabid et al. (2019)), wflow-sbm (see Laverde-391 

Barajas et al. (2020)), and the hydrologic-hydraulic HiResFlood-UCI model (see Nguyen et al. 392 
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(2015)). Particular to this finding is that unlike physically-based models, data-driven runoff 393 

models exploit precipitation satellite data without prior ground validation. Therefore, this study 394 

represents a solution for the cases when ground precipitation networks are scarce or even 395 

inexistent. 396 

The specificities of our extreme runoff models were delineated for four precipitation-event 397 

types based on a combination of their duration and spatial extension (LSE, LLE, SEE and SLE). 398 

Developing specialized models served to identify the hidden strong-and-weak points of the 399 

base runoff model without precipitation classification. For instance, this approach could be 400 

used in the study of Belabid et al. (2019), where they obtained, in some cases, unacceptable 401 

runoff efficiencies (negative NSE). 402 

For the Jubones basin, the vast majority of extreme hydrological events are the result of local 403 

and short-duration (LSE) precipitation events. In addition, we found that the centroids of LSE-404 

associated objects were well distributed across the Jubones basin. These results indicate that 405 

small precipitation volumes are concentrated on many small different land use areas, 406 

characterized by a variety of specific runoff generation processes. Therefore, even for a 407 

discriminated LSE precipitation event, multiple precipitation-runoff responses can mislead the 408 

learning process of RF models. This explains the lower model efficiencies of LSE events 409 

(NSE=0.67) in comparison to SLE (0.90) and LLE (0.72) events. The opposite occurred for 410 

the case of long-duration and spatially extensive events (SLE), which were associated with the 411 

most extreme runoff magnitudes. For such events, even though we had less than half of the 412 

events available for LLE, model efficiencies reached the maximum (NSE=0.90). The LLE 413 

runoff model was clearly optimized for extreme runoff magnitudes (KGE=0.94). Physically, 414 

this is explained by the fact that the RF learning process becomes straightforward after a greater 415 

portion of the basin is saturated, and any additional precipitation volume is directly converted 416 
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into streamflow. The major difficulty comes from the modeling of extreme runoff triggered by 417 

spatially-extensive and short-duration precipitation events (SEE). 418 

The efficiencies of the developed and tested models highlighted the advantage of developing 419 

specialized extreme runoff models but also revealed the need to include additional information 420 

on antecedent soil saturation and its dynamic along with extreme hydrological events. This is 421 

particularly required for short-duration precipitation events (SEE and LSE), where the runoff 422 

generation process is governed by the antecedent saturation state of the basin. Foregoing is the 423 

reason why short-duration and non-extreme precipitation intensities can trigger extreme 424 

hydrological events. Given this, we encourage the approach employed by Massari et al. (2018) 425 

where they used satellite soil moisture observations to improve extreme runoff forecasting. 426 

Moreover, unveiling the limitations of runoff modeling for the Jubones basin opens the path 427 

for future research focused on exploring additional ML algorithms. We recommend, for 428 

instance, exploration of additional ML algorithms for the modeling of LSE and SEE events, 429 

and to come up with a superior model consisting of an ensemble of specialized runoff models. 430 

5. Conclusions 431 

This study exploits the possibility of using two near-real-time satellite precipitation sources 432 

(without ground validation) for the development of smart extreme runoff models for a 3391-433 

km2 basin. Smart models are characterized by the use of a ML algorithm with prior data 434 

assimilation enhancement under hydrometeorological criteria. For dealing with complex 435 

precipitation-runoff response and the optimization of the runoff model efficiency a 436 

straightforward feature engineering methodology was used. The major finding emerging from 437 

this study is that improvement of the representation of precipitation maximizes the efficiency 438 

of extreme runoff models. In addition, precipitation discrimination also served to unveil the 439 

precipitation-runoff scenarios misleading the learning process of RF extreme models. 440 
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In general, we found that the spatial extension of precipitation events made no significant 441 

difference in the learning process of RF models when they occurred for long-duration periods. 442 

In fact, these particular events produced the highest runoff magnitudes at the outlet of the basin. 443 

Physically, the success in modeling such precipitation events is attributed to a clear 444 

precipitation-runoff signal resulting from a gradual soil saturation process before precipitation 445 

is turned into runoff. This signal served to improve the learning process of RF models by 446 

reducing noise and maximizing model efficiencies. In terms of input data, the present study 447 

intentionally used and tested two near-real-time precipitation satellite sources, the PERSIAN-448 

CCS and IMERG-early run subproducts. We used a modular framework of precipitation data 449 

acquisition that reduced 40% of precipitation events with nearly- or even inexistent 450 

precipitation signal. 451 

All in all, the knowledge gained from the functioning of the basin, the proposed feature 452 

engineering methodology, and the evaluation of nearly-real-time satellite precipitation sources 453 

provides hydrologists with the tools for the future development of real-time runoff forecasting 454 

models. In addition, this study can be used to assist decision-makers in the fields of flood 455 

forecasting, water resources management, optimization of hydropower generation, and many 456 

more. 457 
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