Developing Customized NRCS Unit Hydrographs for Ungauged Watersheds in Indiana, USA

Tao Huang¹ and Venkatesh Merwade¹

¹Purdue University

November 22, 2022

Abstract

The Natural Resources Conservation Service (NRCS, formerly the Soil Conservation Service, SCS) unit hydrograph (UH) is one of the most commonly used synthetic UH methods for hydrologic modeling and engineering design all over the world. However, previous studies have shown that the application of the NRCS UH method for some ungauged watersheds in the state of Indiana produced unrealistic flood predictions for both the peak discharge and the time to peak. The objective of this work is to customize the NRCS UH by analyzing the role of its two key parameters, namely, the peak rate factor (PRF) and the lag time, in creating the runoff hydrograph. Based on 120 rainfall-runoff events collected from 30 small watersheds in Indiana over the past two decades, the observed UHs are derived and the corresponding PRF and lag time are extracted. The observed UHs in Indiana show that the mean value of PRF is 371, which is lower than the standard PRF of 484, and the NRCS lag time equation tends to underestimate the "true" lag time. Moreover, a multiple linear regression method, especially the stepwise selection technique, is employed to relate the NRCS UH parameters to the most appropriate geomorphic attributes extracted from the study watersheds. Both the statewide and regional regression models show that the main channel slope is a major factor in determining the PRF and lag time. A customized Indiana unit hydrograph (INUH) is derived with updated parameters and the Gamma function. Validation results show that the INUH provides more reliable and accurate predictions in terms of the peak discharge and the time to peak than the original NRCS UH for the watersheds in Indiana.

PURDUE

Email: huan1441@purdue.edu

Developing customized NRCS unit hydrographs for ungauged watersheds in Indiana, USA

Tao Huang and Venkatesh Merwade Lyles School of Civil Engineering, Purdue University, USA

Study Area and Data

No	Divor	USGS	Drainage	Main Channel
INO.	River	Gauge ID	Area (mile ²)	Slope (Cs)
1	Weesau Creek	03328430	9.3	0.0013
2	Galena River	04096100	17.9	0.0056
3	Forker Creek*	04100252	19.3	0.0014
4	Rimmell Branch*	04100295	11.0	0.0017
5	Solomon Creek	04100377	36.2	0.0009
6	Fish Creek	04177720	37.4	0.0020
7	Spy Run Creek	04182810	13.9	0.0024
8	Cobb Ditch	05517890	30.6	0.0012
9	Iroquois River	05521000	38.1	0.0006
10	Juday Creek	04101370	37.3	0.0011
11	Whitewater River	03274650	10.4	0.0024
12	Little Mississinewa River	03325311	9.8	0.0016
13	Big Lick Creek	03326070	29.0	0.0012
14	Kokomo Creek*	03333600	25.3	0.0008
15	Buck Creek	03347500	35.1	0.0035
16	Crooked Creek	03351310	17.9	0.0032
17	Pleasant Run	03353120	8.2	0.0026
18	Little Buck Creek	03353637	17.1	0.0027
19	West Fork White Lick Creek	03353700	28.9	0.0019
20	Plum Creek	03357350	3.0	0.0049
21	Little Indian Creek	03302300	17.1	0.0040
22	West Fork Blue River*	03302680	19.1	0.0053
23	Crooked Creek	03303400	8.0	0.0060
24	Busseron Creek	03342100	16.9	0.0032
25	Harberts Creek	03366200	9.3	0.0027
26	Brush Creek	03368000	11.3	0.0047
27	Back Creek	03371520	24.1	0.0048
28	Stephens Creek	03372300	10.8	0.0079
29	Patoka River	03374455	12.6	0.0057
30	Hall Creek	03375800	21.7	0.0035

* represents the watersheds used for validation.

Dataset	Resolution	Source
Precipitation (rainfall)	15 min	NOAA (<u>https://www.ncdc.noaa.gov/cdo-web</u>)
Streamflow	15 min	USGS (<u>https://maps.waterdata.usgs.gov</u>)
Topography	30 m	USGS Digital Elevation Model (DEM) (<u>https://apps.nationalmap.gov/downloader/#/</u>)
Land Cover	30 m	National Land Cover Dataset (<u>https://www.mrlc.gov/viewer/</u>)
Soil	1:250,000 spatial scale	Gridded Soil Survey Geographic (https://datagateway.nrcs.usda.gov/GDGOrder. aspx)

$$RE(x) = \frac{x_{sim} - x_{obs}}{x_{obs}} \times 100\%$$

where: x is the peak discharge or the time to peak.

Business Media.

Referenc<u>es</u>

[1] Wilkerson, J., Merwade, V. (2010). Incorporating surface storage and slope to estimate Clark unit hydrographs for ungauged Indiana watersheds. Journal of Hydrologic Engineering, 15(11), 918-930. [2] NRCS. (2007). Part 630, Hydrology National Engineering Handbook.

[3] Rawlings, J. O., Pantula, S. G., Dickey, D. A. (2001). Applied regression analysis: a research tool. Springer Science &