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Abstract

Year-to-year variability of precipitation and temperature has significant consequences for water management decision making.

“Whiplash” is a term which describes this variability at its most severe, referring to events at various timescales in which the

hydroclimate switches between extremes. Tree-rings in semi-arid environments like the Truckee-Carson River Basin (Califor-

nia/Nevada watersheds with headwaters in the Sierra Nevada) can provide proxy records of hydroclimate as their annual growth

is tied directly to limitations in water-year rainfall and temperature, but traditional metrics of reporting explained variance do

not distinguish a reconstruction’s sensitivity to whiplash events. In this study, a pool of total ring width indices from five snow-

adapted conifer species (Abies magnifica, Juniperus occidentalis, Pinus ponderosa, Pinus jeffreyi, Tsuga mertensiana) were used

to develop a series of standardized reconstructions of water-year PRISM precipitation (P12) using stepwise linear regression.

A nonparametric analysis approach was then used to determine positive and negative whiplash events in reconstructed and

instrumental precipitation records. Hypergeometric distribution of the resulting timeseries datasets illustrates relationships

between reconstructions and recorded whiplash events and allows for determination of patterns in tree-ring growth response.

The results of this study suggest that ring-width indices from the assessed conifer species in the snow-belt of the Sierra Nevada

are often able to record consecutive years of opposing extreme precipitation and report such events through derived models.

Negative WL events are tracked more consistently across species in site-specific reconstructions of P12 than positive ones. It

appears that residual effects of a preceding year’s drought or pluvial do not necessarily suppress records of WL, though sen-

sitivity to precursor conditions in tracking of WL events may differ across species, and the absolute WL events captured in a

reconstruction vary.
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BACKGROUND

 

Figure 1. Regional map showing chronology sites color coded by species and coordinate locations used for PRISM water-year

precipitation interpolation.

 

Introduction

Year-to-year variability of precipitation and temperature has significant consequences for water
management decision making. “Whiplash” (WL) is a term which describes this variability at its most
severe, referring to consecutive events in which the hydroclimate switches between extremes. Tree-
rings in semi-arid environments like the Truckee-Carson River Basin (California/ Nevada watersheds
with headwaters in the central Sierra Nevada) provide proxy records of hydroclimate as their annual
growth is tied directly to climate limitations such as water availability (e.g., Biondi and Meko 2019), and
therefore the practice of dendrochronology is useful for contextualizing long-term annualized climate
variability (Meko et al. 2011). However, persistence in the total-ring width as a result of biological
carryover processes can obscure records of WL events by supporting or suppressing growth in
subsequent years (Fritts 1976).

 

In this analysis, we seek to determine:

1. Do tree-ring reconstructions of annual precipitation in the TCRB identify
whiplash in the observed precipitation record?

2. Are there differences in the tracking and recognition of whiplash events among
species?
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Study Area/Climate

Watershed characteristics of the TCRW have led the Bureau of Reclamation (2015) to describe the
management of the Truckee River as a “zero-sum game for water.” Climate variability is an integral
characteristic of the TCRW, where seasonal climate fluctuates widely annually driven by large-scale
oceanic and atmospheric patterns which result in hot dry summers and cold wet winters (Pandey, 1999;
Mason and Goddard, 2001; Biondi and Meko 2019). However, recent studies have found that the
interannual precipitation regime has become increasingly volatile since the mid-20th century,
characterized by high intensity events and dry periods (Dettinger, 2011; Berg and Hall, 2015; Swain et
al., 2018; Zamora Reyes et al. 2021). The increasing complexity of interannual precipitation in the
region coupled with the annual fluctuations typical of the climate system make water management an
increasingly challenging task. It is in this context that understanding the baseline frequency of annual
WL events through dendrochronology can support water management efforts.
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DATASETS

PRISM Precipitation Records

PRISM (Parameter-elevation Regressions on Independent Slopes Model) climate data provides values
for a range of variables that are interpolated from point and spatial datasets to generate estimated
climate parameters at any given coordinate location (Daly et al., 1994). The precipitation records as
described by PRISM provide a strong metric for precipitation in the western United States when
assessed in comparison to instrumental climate datasets (Buban et al., 2020) and they are particularly
well suited for mountainous regions (Daly, 2006). PRISM draws from a wide network of climate stations
and provides records back to 1895; however, due to the sporadic nature of data availability in the
instrumental record during the early part of the 19th century, for this analysis we chose to limit
precipitation records to a start year of 1920. 



The particular PRISM time series selected as the primary variable for reconstruction is water-year (Oct-
Sep) total precipitation averaged over coordinate points corresponding to 12 snow-monitoring locations
throughout the TCRB (Figure 1). From this point forward this precipitation series will be referred to as
P12. 

 

Tree-Ring Chronologies

Five snow-adapted conifer species (Abies magnifica (ABMA), Juniperus occidentalis (JUOC), Pinus
ponderosa (PIPO), Pinus jeffreyi (PIJE), and Tsuga mertensiana (TSME)) were selected for this analysis
(Figure 1). Species were required to meet specific requirements for spatial representation and time
coverage. Data files of measured total ring width were initially sourced from the public-domain data set
available through the International Tree-Ring Data Bank (Contributors of the ITRDB, accessed 2021),
and further supplemented by contribution of the authors (Table 1). Highly diverse chronology lengths
were trimmed to a start date of 1800; some site records began later. Individual cores that did not have
RWI values in 1950 were removed from the model to ensure a minimum of overlap with the calibration
period by 30 or more years.

 

Reconstruction

Chronologies were transformed into estimates of precipitation by distributed-lag stepwise regression
models (e.g., Meko and Graybill 1995). Single-site models (29 models) were developed by individually
regressing P12 on each chronology and its lags t-2 to t+2 years from the year of P12. Species-specific
models (5 models) were developed by including all chronologies, with lags, of each species in the pool
of potential predictors. An additional full-pool model (ALL) was developed that included all 29
chronologies and their lags in the pool. Before stepwise regression, the pool of potential predictors was
reduced, if needed, by correlation screening against P12 to ensure that the number of potential
predictors was no more than 1/5 the sample size (number of years) in the calibration period of the
regression model. The stepwise regression was guided by a cross-validation stopping rule (Wilks 2019).

 

Table 1. Complete pool of predictor chronologies used in various tree-ring reconstructions of P12. 
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METHODS

Figure 2. Time series of P12 precipitation data, from 1920 - 1989, which is the calibration period for all reconstructions. WL events are

identified at the end of WL period by positive (blue) and negative (red) triangles, and ranked by cumulative distance from the mean

during year n-1 and n.

 

Whiplash

Measuring Whiplash:

WL events were measured as successive water years featuring opposing unusual departures from
median precipitation. The resulting time series from reconstruction and the P12 dataset were analyzed
through a non-parametric approach to determine the most extreme positive (low to high value years)
and negative (high to low) WL events as told by each series, with the period of analysis set to match the
global common period; 1920-1989 (Figure 2). After exploratory analysis we settled on a goal of 6
positive and 6 negative events in 1920-1989. The procedure for identifying a WL event series is as
follows:

1. Single year values were sorted from smallest to largest and ranked, identifying the most extreme
positive and negative thresholds, which were defined by cp1=(s(1)+s(2))/2 and cp2=(s(n2) +s(n2-
1))/2 respectively.

2. A positive event was defined as a change from below the lower threshold to above the upper
threshold, and vice-versa for a negative event . 

3. The thresholds were relaxed by collapsing them toward the median by 1 ranked value.  

4. Steps 1-3 were repeated until some specified number of events were represented in the analysis
period. 

5. The process was repeated independently for each time series. Because events were identified
separately for each series, the thresholds for inclusion to reach the desired event tally varied among
series. 

 

Hypergeometric Distribution

Determining the significance events through hypergeometric distribution:
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Statistical significance of the match of WL events in each reconstructed series and the P12 was
assessed through hypergeometric distribution, which has been applied in past studies to examine
relationships in climate and hydrologic variables (e.g., Dracup and Kahya, 1994; Meko and Graybill,
1995). If there are m=6 events in the precipitation series for the N=70 year analysis period, the
hypergeometric distribution gives the probability of drawing x of those events in k attempts by chance
alone. In our application, we treat the events in the reconstructed series as the k "attempts."  For the
reconstructions, k=6 or k=7, because the collapsing-quantile procedure outlined earlier cannot
guarantee exactly 6 events. 
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SPECIES RECONSTRUCTIONS

Figure 4. WL events plotted at the second year of an identified event. Stacked events report P12 record, species-specific

reconstructions, and full-pool reconstruction (ALL). Positive events are above the x axis, and negative events below. Numbers above

stacks indicate P12 WL event ranking.

 

Events:



Figure 4 illustrates the WL events identified by P12 and reconstructed series. Tracking of P12 WL
events varied over the species-specific and full-pool reconstructions. 

Some events were more consistently tracked by numerous reconstructions including a positive WL
event in 1977-1978 and a negative WL event in 1965-1966 which were tracked by all but one
model.

Some WL events were missed by most reconstructions, though no P12 WL event was missed by all
models. 

Tracking ability has no clear association with severity of WL event. The highest ranked P12 WL
events were not tracked at the highest rates. The second and third ranking WL events had the
highest tracking in positive and negative P12 WL events respectively. 

 

Figure 3. Plots illustrating positive (left) and negative (right) WL event significance as described through hypergeometric analysis and

total explained variance (r2) for time series models of P12. 
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Hypergeometric Distribution:

A positively trending relationship between R² and log(p) would indicate that the WL events captured are
directly related to overall explained variance. However, in a simple linear regression model of R² against
log(p), the slope was not significant at 95% CI for either positive or negative WL events (Pr(>|t|) = 0.578
and 0.579 respectively), and there is no obvious pattern in the scatterplots. (Figure 3). 

ABMA and PIPO models correlate least with P12. However, while ABMA failed to track either
positive or negative P12 WL with 99% significance, PIPO's tracking of events was on par with the
success of other models including those with highest overall explained variance. 

JUOC, TSME, PIPO and ALL tracked both positive and negative P12 WL events at 99%
significance. 

PIJE tracked positive WL events better (>99%CI) than negative events (<95%CI).

Table 2. Summary statistics of reconstructions of P12 from species-specific reconstructions and from full-pool reconstruction (ALL).
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SITE RECONSTRUCTIONS

Figure 5. Plots illustrating significance of tracking of positive (left) and negative (right) events through hypergeometric analysis for

single-site models. Species color coded. Each box plot summarizes distribution of p-values for tracking for chronologies of that

species.

 

Figure 6. WL event significance and explained variance for site-specific reconstructed series. Plotting convention as in Figure 3.

Trendlines are shown where sites grouped by species have a significant linear trend, and are colored to match corresponding species. 

 

Hypergeometric Distribution: 

Box-plots in Figure 5 showcase the distribution of P12 WL event significance for single-site
reconstructions. Overall, negative events were tracked more often than positive events. 
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All species showed some variation among sites in their tracking of P12 WL events.

Positive P12 WL events were tracked poorly (<50% sites at 95% CI) by all species except TSME,
which tracked them well (all sites at >95% CI). 

Negative P12 WL events were tracked well (PIJE >50% sites at 95% CI, all other species >50%
sites at a 99% CI). 

In Figure 6 single-site reconstructions of three species (TSME, PIPO, and PIJE) show a positive linear
trend between R² and log(p) in positive WL event series, while the remaining two positive and all
negative series do not. 

 

Figure 7.  WL events for single-site reconstructions grouped by tree species. Plotting convention as in Figure 4. Stacked events are

color-coded by chronology site code (see Table 1).



Events: 



Patterns in event tracking described below relate to particular WL events identified in Figure 7. 
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A) The most severe Positive P12 WL event was tracked by less than <50% of sites across all
species.

B) The second most severe Positive P12 WL event was tracked by >=50% of sites by all species
except JUOC and PIJE

C) The most severe Negative P12 WL event was tracked by >50% of PIJE and PIPO and <50% by
other species.

D) The second most severe Positive P12 WL event was tracked by <50% of sites by all species.

E) Three concurrent WL years were tracked >50% by TSME and <50% by all other species. 

F) Post-drought recovery in 1925, which did not qualify as P12 WL due to near-median
precipitation in 1924, was reported as as WL by >=50% of JUOC, PIJE, and PIPO sites. Some
other hydrologic time series we investigated (e.g., Northern Sierra 8 Station Precipitation (CDEC,
2021)) do record this two-year period as a WL event.



7/12/22, 4:07 PM AGU - iPosterSessions.com

https://fihm22-agu.ipostersessions.com/Default.aspx?s=DA-A1-C6-95-5B-25-63-93-44-26-38-42-64-AA-43-3D&pdfprint=true&guestview=true 13/17

KEY TAKEAWAYS

Figure 8. PIJE collection site Shakespeare Point (code SSP), above east shore of Lake Tahoe.

 

Outcomes

Tree-ring reconstructions of P12 by five conifer series track a significant number of WL events, and
tracking varies among species. 

Single-site reconstructions track negative P12 WL events well, while only TSME tracks positive
events well.

Species-specific reconstructions of P12 often display non-random tracking of positive and negative
WL events (4/5 species in each), where some events had more matches by reconstructions than
others, with no event tracked by all series. A higher event ranking did not always correspond to
better tracking. 

The full-pool reconstruction tracks positive and negative WL significantly at a 99% CI. 

Traditional metrics of skill (e.g., R ) are not directly related to WL tracking outcomes.

 

Future Directions

Sensitivity Analysis:

Factors in reconstruction procedures such as inclusion or exclusion of lagged years in the predictor
pool, choice of analysis period, choice of hydrologic variable, standardization method and use of
standardized vs residual chronologies could affect WL outcomes in reconstructed series.

Alternatives to the nonparametric approach to determining WL events in favor of other mathematical
evaluations could be considered. 

Thresholds were set with a goal of  the same  number of WL events in each series for the analysis
period; this is only one of many possible approaches to WL classification.

Opportunities for further analysis: 

Trends in thresholds regarding positive vs negative events, event severity, etc.

Climate in years defined as WL by reconstructions or chronologies.

2
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Climate impacts on WL tracking including effects of multi-year drought or pluvial periods preceding
P12 WL event years or interannual or seasonal variability.

 

Concluding thoughts

The results of this study suggest that ring-width indices from the assessed conifer species in the snow-belt of the
Sierra Nevada are often able to record consecutive years of opposing extreme precipitation and report such events
through derived models. Residual effects of a preceding year’s drought or pluvial do not necessarily suppress
records of WL, though sensitivity to precursor conditions in tracking of WL events may differ across species.

In some cases, tree ring reconstructions track known WL events at a significant rate even with relatively low
explained variance by the model overall. The findings suggest that it may be unwise to assume that WL events will
be well-tracked just because a reconstruction model has a high explained variance. The methodologies developed
for this study could assist in testing models for their sensitivity to WL events. 
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ABSTRACT
Year-to-year variability of precipitation and temperature has significant consequences for water management decision making. “Whiplash” is a
term which describes this variability at its most severe, referring to events at various timescales in which the hydroclimate switches between
extremes. Tree-rings in semi-arid environments like the Truckee-Carson River Basin (California/Nevada watersheds with headwaters in the Sierra
Nevada) can provide proxy records of hydroclimate as their annual growth is tied directly to limitations in water-year rainfall and temperature. In
this study, a pool of total ring width indices from five snow-adapted conifer species (Abies magnifica, Pinus jeffreyi, Juniperus occidentalis, Tsuga
mertensiana) were used to develop single-species standardized reconstructions of annualized hydroclimate phenomena using stepwise forward
linear regression. A nonparametric analysis approach was then used to determine positive and negative whiplash events in reconstructed and
instrumental hydroclimate variables. Multivariate analysis of the resulting timeseries datasets illustrates relationships between reconstructions and
recorded whiplash events and allows for determination of patterns in tree-ring growth response. Individualized species response provides
analytical and methodological insight for past and potential climate reconstruction using similar approaches, as well as possible species growth
response to future increases in hydroclimate variability brought on by climate change.
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