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Abstract

This chapter discusses efforts to measure surface observations of air pollution at the country-scale. The countries with the

most comprehensive regulatory systems to monitor air pollution are the older industrial nations such as countries in the United

Kingdom and the United States. Recent proliferation of low-cost air quality monitors (LCAQM) are making near-real-time

air pollution monitoring more prevalent across the globe. While unique challenges exist between regulatory and LCAQM data

access and usability, there are common challenges in using these data for decision support and research applications. This

chapter discusses common statistical methods for estimating air pollution including spatial interpolation methods, statistical

regression methods, machine learning, and chemical transport modeling.
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1 Introduction 18 

The impact of air quality (AQ) on health has been acknowledged by governments of 19 
individual countries and the World Health Organization (WHO) for more than half a century. 20 
The United States, the United Kingdom, and the Union of the Soviet Socialist Republics (USSR) 21 
were among the first to enact a version of a “Clean Air Act” around 1955-1956 aimed at 22 
controlling air pollution and minimizing negative impacts on public health (Barker et al., 1961). 23 
In 1958, the World Health Organization (WHO) published its first technical report – Air 24 
pollution – that explicitly linked exposure to high concentrations of pollutants to adverse health 25 
outcomes (World Health Organization, 1958). Although the report neither discussed the 26 
toxicology of individual pollutants nor proposed any guidelines on concentrations, it nonetheless 27 
was a major step towards the eventual development of national and subsequently global AQ 28 
standards. 29 

Over time, many countries worldwide developed a set of rigorous science-based AQ 30 
standards, enacted laws and regulations, and established networks of monitoring stations. 31 
Reflecting the historical development of the AQ regulations, the monitoring stations are 32 
primarily focused on urban AQ with attention to populated areas (Ambient Air Quality 33 
Surveillance, 1994). In addition, considering that the primary purpose of these networks is to 34 
meet defined regulatory AQ goals from the regional to international levels, the expected 35 
accuracy of measurements and the precision of the instruments require careful cost consideration 36 
and make high-density spatial observations prohibitively expensive. While these traditional 37 
government-sponsored national air monitoring networks provide “gold standard” observations 38 
for a large suite of air pollutants, they are frequently far too sparse and suboptimally located to 39 
support monitoring of air pollution associated with biomass burning (Reid et al., 2015). Globally, 40 
biomass burning is highly varied (see Chapter 2).  41 

New advancements and global proliferation of less costly air monitors, termed low-cost 42 
air quality sensors or LCAQS, has dramatically increased the potential for near-real-time 43 
monitoring of smoke events by governments, researchers, and citizen scientists alike. Although 44 
the advance of LCQAS has increased the availability of stationary measurements, their spatial 45 
patterns are frequently subject to similar limitations and biases towards urban environments but 46 
to a lesser degree.  47 

This chapter provides a brief overview of the following topics:  48 
1. An overview of AQ monitoring networks, including established regulatory networks, 49 

global and emerging networks, and LCAQS networks. 50 
2. Common statistical methods to derive spatiotemporally resolved AQ estimates, with a 51 

focus on applications to particulate matter. 52 
3. A discussion of the challenges associated with using AQ monitoring networks for 53 

smoke pollution monitoring. 54 
4. The future directions and opportunities for monitoring smoke pollution. 55 

2  Monitoring networks  56 

Air quality monitoring networks, also referred to as surveillance networks, record 57 
information about levels of air pollutants (Marć et al., 2015). Monitoring networks measure a 58 
range of ambient air pollutants. The air pollutants that are most commonly collected include 59 
particulate matter that is less than or equal to 10 and 2.5 micrometers in aerodynamic diameter in 60 
size (known as PM10 and PM2.5, respectively), ozone (O3), mercury (Hg), sulfur dioxide (SO2), 61 
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nitrous oxides (NOX), nitrous dioxide (NO2), and persistent organic pollutants (Marć et al., 62 
2015). Monitoring networks can be classified into two categories: regulatory (or reference) 63 
monitoring networks and LCAQS networks.  64 

 65 

2.1  Regulatory AQ networks 66 
Air pollution can contribute to a range of negative effects that impact humans, 67 

ecosystems, and man-made structures. Governments and regulatory bodies have a vested interest 68 
in monitoring AQ for economic, public health, and political reasons. Air quality monitoring 69 
systems operated by governments have increased since the 1800’s, coinciding with air pollution 70 
impacts from the Industrial Revolution, and other large-scale air pollution events that resulted in 71 
negative impacts, such as the London Smog Event of 1952 that served as a catalyst for legislative 72 
change and investment in technology to monitor goals. Countries have adopted their own 73 
systems for monitoring AQ using ground-based monitors, with the responsibility for collecting 74 
and disseminating information typically assigned to entities broadly referred to as environmental 75 
protection agencies.  76 

Regulatory monitors are broadly defined here as ground-based, stationary monitors (also 77 
known as in situ monitors) that are deployed by or on behalf of country-level governments. This 78 
section primarily focuses on regulatory networks to monitor AQ, defined as meeting two criteria: 79 
1) the network is mandated or sponsored by or on behalf of a country’s government, 2) the 80 
network is constructed of ground-based, stationary AQ monitors. Additionally, the focus is on 81 
networks where data are publicly available via the Internet, but other programmatic efforts are 82 
also discussed. They are typically used to meet legislative requirements such as ambient air 83 
quality standards or research purposes (Castell et al., 2017). However, with the proliferation of 84 
LCAQS, governments have also begun to invest in those to make information available in near 85 
real-time to support emergency management and to provide more information to communities 86 
interested in tracking smoke events (Morawska et al., 2018).  87 

While not discussed here, there are dedicated efforts to assessing technology and methods 88 
associated with sampling AQ (Helsen, 2005; Shaddick & Zidek., 2014) and determining optimal 89 
locations where monitors should be located for optimal spatial distribution (Chapter 10) (Hao & 90 
Xie, 2018; Piersanti et al., 2015). Quantifying spatiotemporally resolved air pollution 91 
concentrations is critical for mapping biomass burning and understanding how biomass burning 92 
emissions are transported (Chapter 8).  93 

Information about country-level AQ monitoring networks was derived from peer-94 
reviewed and grey literature that described air AQ monitoring networks in the US by an English-95 
speaker; therefore, a limitation for information provided in this section may be attributable to 96 
language or website accessibility from the US.  97 
 98 
2.1.1 Established national AQ networks 99 

Overall, as can be expected, most extensive networks and the longest archives of 100 
measurements are found within wealthy countries with a long history of industrial development. 101 
The world’s older industrial giants (the US, UK, and USSR) were among the first to enact laws 102 
governing air pollution in the mid-20th century (Barker et al., 1961). These were rapidly joined 103 
by other industrialized countries, including many European countries, Canada (Government of 104 
Canada, 2021), and Japan (Wakamatsu et al., 2013), which initialized their national monitoring 105 
networks in the late 1960s – early 1970s. Over half of the century, these networks have 106 
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undergone several major improvements, including the increase in number of measured 107 
pollutants, technical advances in instrumentation, improved statistical techniques, and substantial 108 
network growth.  109 

In the US, the Environmental Protection Agency (EPA) is charged with collecting and 110 
disseminating AQ information from local, state, and tribal entities using Federal Reference 111 
Methods and Federal Equivalent Methods. The EPA monitoring network consists of over 4,000 112 
stations that are distributed across all states and territories for criteria pollutants (CO, NO2, O3, 113 
Pb, PM10, PM2.5, and SO2) and 188 other toxic air pollutants (US Environmental Protection 114 
Agency, 2021a). Data from the EPA monitoring cites are publicly available since 1980 for the 115 
criteria gases, 1988 for PM10 and 1999 for PM2.5. Hazardous air pollutants and toxic air 116 
pollutants are available from 1980 (US Environmental Protection Agency, 2021d)). While these 117 
monitors are not specifically designed for biomass burning pollution, they are often used in 118 
studies focused on assessing the health effects of pollution from biomass burning (Chapter 10). 119 
These measurements are supplemented by over 90 Clean Air Status and Trends Network 120 
(CASTNet) deposition monitoring sites operated by EPA (US Environmental Protection Agency, 121 
2021c) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) network 122 
with 160 sites as of 2019 located in National Parks and in wilderness areas (Interagency 123 
Monitoring of Protected Visual Environments, 2020). In addition, the National Oceanographic 124 
and Atmospheric Administration (NOAA) Earth System Science Laboratory has measured 125 
surface ozone since 1973 at 20 sites across the world National Oceanic and Atmospheric 126 
Administration Global Monitoring Laboratory Earth System Research Laboratories, n.d.).  127 

Like the EPA regulatory network across the US, Canada operates the National Air 128 
Pollution Surveillance (NAPS) program (Environment Canada, 2020), which aims to deliver 129 
consistent high-quality observations across the nation. At present, the NAPS boasts 286 sites in 130 
urban and rural communities across all provinces and territories. Although country-wide 131 
summaries have been published since 1972, these early reports are based on observations from a 132 
very small fraction of currently available sites. The NAPS program collects continuous and time-133 
integrated measurements for a predetermined number of pollutants. Observations include CO, 134 
NO2, NO, NOX, O3, SO2, PM2.5, and PM10, with hourly and annual data are available for CO, 135 
SO2, NO2, and O3 available since 1974. Particulate matter data is available since 1992 for PM10 136 
and since 1995 for PM2.5.  137 

The European Environment Agency is responsible for establishing the policy framework 138 
for monitoring AQ across the EU zone (Directorate-General for Environment, n.d.). Through a 139 
series of directives, the EU established standards for ambient air concentrations for several 140 
pollutants, defines the methodologies for data collection, and monitors the compliance for each 141 
of the EU Member States. The Member States are expected to monitor and report AQ data by 142 
pre-defined zones and agglomerations (established by the Member States following the 143 
methodology defined by the agency), as well as make the AQ information available to the public 144 
through the European Air Quality Portal. At present, the number of operational stations totaled 145 
around 5,300 stations across the 41 contributing countries and territories (Air quality assessment 146 
methods (data flow D), 2020)). 147 

In Australia, the National Clean Air Agreement establishes the framework for AQ 148 
monitoring (Commonwealth of Australia, 2015). Although Australia’s urban areas are reported 149 
to have some of the best AQ in the world, biomass burning is widely acknowledged as a one of 150 
the primary sources or air pollution (Keywood et al., 2016). Similar to the EU framework, the 151 
National Environmental Protection Council administers legislation pertaining to AQ and 152 
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provides scientific and policy support. Data collection, which follows pre-determined standards, 153 
called National Environment Protection Measures (NEPMs), is the responsibility of provincial 154 
and state governments who are also charged with managing AQ. While there was no centralized 155 
data repository found for all Australian data across all states, each jurisdiction offers varying 156 
levels of access to AQdata.  157 

Although the USSR was the first country in the world to define the standards for 158 
acceptable AQ (Izmerov, 1974), the data from the government-sponsored monitoring network 159 
nor information about the precision of instruments, statistical methods, reporting frequency, or 160 
the number of monitoring sites does not appear to be publicly available. The Russian Federal 161 
Service for Hydrometeorology and Environmental Monitoring reports annually on the most 162 
polluted cities in Russia (Klyuev, 2019), which indicates the presence of the state-wide network 163 
of monitoring stations at least across major urban areas.  164 
 165 
2.1.2 Global and emerging AQ networks 166 

The global awareness of health impacts from AQ in urban areas was growing from the 167 
early 1970s, when the WHO published its technical report on air quality guidelines for urban 168 
areas (WHO Expert Committee on Air Quality Criteria and Guides for Urban Air Pollutants & 169 
World Health Organization, 1972), which included contributors from Egypt, India, and Japan in 170 
addition to the European and North American experts. However, AQ monitoring networks in 171 
much of the rest of the world have been relatively slow to grow. In Central, South America, the 172 
Caribbean, and Africa, the monitoring networks are sparse (Awokola et al., 2020; Riojas-173 
Rodríguez et al., 2016). Riojas-Rodríguez et al. (2016) found in their review that only half (17 of 174 
33) Latin American and Caribbean countries had AQ monitoring stations. There appears to be 175 
less consistency in collected measurements across the region, for example, PM10 measurements 176 
are collected in 104 cities while PM2.5 measurements are collected only in 57 cities. According to 177 
Rees et al. (2019), only 13% (7 of 54 countries) in Africa provide reliable, real-time AQ 178 
monitoring; however, it is unclear if these are monitors meet the criteria of this section. Ghana, 179 
Nigeria, and Kenya each have 5 national level, manual stations (Gulia et al., 2020). South Africa 180 
is the only country in Africa with a monitoring network that was found to be available to the 181 
public. The network of 130 fully automated stations within the National Ambient Air Quality 182 
Monitoring Network (NAAQMN) of South Africa was launched in the late 2010s as a 183 
partnership between the Department of Environmental Affairs and the South African Weather 184 
Service (Gwaze & Mashele, 2018). In line with best practices from the international community, 185 
the agency monitors pollutants following established criteria and methodology and delivers the 186 
information to the public through a mobile application tool. 187 

Air quality monitoring in Asia presents a unique set of challenges. On the one hand, 188 
expansive monitoring networks exist in some parts of Asia, with the other two largest 189 
government-run networks within Japan and South Korea. The Korean Ministry of Environment 190 
has provided real-time data at 16 locations since 2002 near the World Cup Stadium located in the 191 
capital city of Seoul and has provided public access to data in real-time since 2005 on a 192 
nationwide scale for CO, NO, SO2, and PM2.5 and 10 from 332 stations via the AirKorea website 193 
(Hwang et al., 2020). On the other hand, the two largest industrial economies of the continent – 194 
China and India – only comparatively recently launched their AQ monitoring networks. 195 
Although the China National Environmental Monitoring Center (CNEMC) was founded in 1980 196 
by the Ministry of Ecology and Environment of China, AQ data has been collected only since 197 
2013. The monitoring network has grown very rapidly to currently reach over 2,100 stations that 198 
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monitor CO, NO2, O3, PM2.5, PM10, and SO2 (China National Environmental Monitoring Centre, 199 
n.d.; Chu et al., 2021). The data are available via the CMEN website, , but the volume of 200 
observations is skewed towards eastern parts of the country. The Government of India initiated 201 
the National Clean Air Program (NCAP) only in the beginning of 2019 under the oversight of the 202 
Ministry of Environment, Forests and Climate Change (International Trade Administration, 203 
2020). The network currently includes a suite of 703 manual monitoring stations and 134 204 
Continuous Ambient Air Quality Monitoring Stations (CAAQMS – low-cost monitoring 205 
sensors), which is expected to grow substantially in the near future to the total of 1500 manual 206 
monitoring stations and an additional 150 CAAQMS (Sundaray, & Bhardwaj, 2019). In other 207 
parts of Asia, Vietnam has 29 fixed and mobile CAAQMs, Pakistan has 70 manual and 208 
CAAQMS, Bangladesh has 11 CAAQMS, Sri Lanka has 78 manual stations, Nepal and Bhutan 209 
have 12 and 3 CAAQMS, respectively (Gulia et al., 2020).  210 

2.2  Low-cost air quality sensor (LCAQS) networks 211 
Technological advances of the past decades combined with the growing public awareness 212 

of health consequences of environmental pollution globally have created a favorable climate for 213 
the development of alternative approaches to the regulatory AQ monitoring stations. Fueled by 214 
investment from commercial companies, governments, non-governmental organizations, and lay 215 
citizens, LCAQS networks have rapidly increased in number across the world. Considerably 216 
lower financial costs and expertise are required to set up and maintain these stations compared to 217 
regulatory-grade monitors, which has allowed for a manifold increase in surface measurements 218 
for a suite of pollutants (Table 1) deployed by government agencies and private citizens alike. 219 
LCAQS networks are attractive for use in biomass burning and prescribed fire smoke exposure 220 
assessment as they offer denser and more dispersed observations and are available worldwide, 221 
often in countries that do not have robust national monitoring networks. Although mobile 222 
LCAQS are available, they offer only episodic observations frequently associated with a 223 
particular event or project. In contrast, stationary LCAQS and monitoring networks – the focus 224 
of this chapter – provide consistent observations for a given location, similarly to those obtained 225 
by the regulatory networks.  226 

The LCAQS networks contain several important components. First, the data is collected 227 
by low-cost technologies largely referenced as “sensors”. The investment can range roughly 228 
between tens of dollars (for a single sensor) and $5,000 USD for more comprehensive kits 229 
(Feenstra et al., 2019; Holder et al., 2020; Rai et al., 2017). Adopting the definition from Rai et 230 
al. 2017, “low-cost sensors” refer to “anything costing less than the instrumentation cost required 231 
for demonstrating compliance with the air quality regulations” and can include single sensors or 232 
“sensing kits/nodes/platforms [that] typically include one or more sensors, microprocessor, data-233 
logger, memory card, battery, and display” (Rai et al., 2017). . Monitoring networks are 234 
constructed of sensors and typically rely upon the internet of things, generally physical objects 235 
that are connected by the Internet (Xia et al., 2012), to disseminate access to the data collected by 236 
the sensors. For example, the PurpleAir LCAQS network collects data from Plantower PMS1003 237 
sensors; the data collected from the sensors is made publicly available using a web map and an 238 
Application programming interface (API) for data download by end-users. The number of 239 
LCAQS networks are growing rapidly: the Fire and Smoke Map, OpenAQ, and Urban Air 240 
Action Platform, and the UN’s Urban Air Action web platform help illustrate the potential 241 
capabilities of LCAQS for biomass burning AQ monitoring.  242 
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The US has piloted a web map called the Fire and Smoke Map (US Environmental 243 
Protection Agency, 2021b) that is targeted for biomass burning exposure assessment in North 244 
America (Figure 1). The web map integrates AQ and fire information from a variety of sources. 245 
Specifically, PM2.5 concentrations are provided from permanent monitors, which feed into the 246 
AirNow network, and temporary PM2.5 monitors, that are deployed by governmental agencies to 247 
monitor smoke events PurpleAir data - an increasingly popular network. For example, Gupta et 248 
al. (2018) used 180 PurpleAir PM2.5 data in conjunction with satellite data to estimate PM2.5 249 
during California fires in 2017. The EPA led a nationwide effort of over 30 agencies at the state, 250 
local, and tribal levels to develop a nationwide correction for PurpleAir PM2.5 measurements that 251 
are applied to the data displayed on the Fire and Smoke Map (“AirNow’s Fire and Smoke Map”, 252 
n.d.). Over 70 PurpleAir sensors were co-located with regulatory-grade monitors in the 253 
evaluation (“AirNow’s Fire and Smoke Map”, n.d.). Active fire detections from the National 254 
Oceanic and Atmospheric Administration’s Hazard Mapping System (National Oceanic and 255 
Atmospheric Administration Office of Satellite and Product Operations National Environmental 256 
Satellite, Data and Information Service, n.d.)  and large fire incidents from the US National 257 
Interagency Fire Center (InciWeb, n.d.) are also available as data layers on the web interface. 258 
The US AirNow Department of State network (US Department of State and US Environmental 259 
Protection Agency, n.d.) provides real-time PM2.5 data from monitors on US embassies and 260 
consulates across the globe. 261 

OpenAQ is an open-source platform that integrates reference-quality data from 262 
governments and low-cost AQ data from the Air Quality Data Commons, HabitMap, PurpleAir, 263 
and Carnegie Mellon University (OpenAQ, 2021). The platform primarily provides data 264 
regarding CO, NO2, O3, PM2.5, PM10, SO2, and black carbon. The web platform provides 265 
download capability of two years of data (historic data can be retrieved from Amazon Web 266 
Services), an R wrapper, and a Python wrapper. The wrappers allow users to access the 267 
Application Programming Interface (OpenAQ, n.d.). Importantly, OpenAQ does not perform 268 
quality assessment of the data, which necessitates substantial effort in data cleaning and pre-269 
processing when those datasets are acquired for research or management purposes.  270 
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 271 
Figure 1. Screen capture of the Fire and Smoke Map web portal over California, US. Three 272 
types of air monitoring sensors are displayed with different shapes: squares represent PurpleAir 273 
sensors, triangles represent temporary sensors, and circles represent permanent stations. Each of 274 
the three types of air monitoring sensor is colored according to the Air Quality Index (legend 275 
shown) (“US Environmental Protection Agency”, 2021a). Fire symbols large fires, and smaller 276 
circles represent active fires that are detected by satellites.  277 
 278 

On a global scale, the United Nations (UN) Environment Programme and UN-Habitat 279 
deployed the Urban Air Action web platform in 2020 (United Nations Environment Programme, 280 
n.d.). The web platform displays near-real-time PM2.5 data in collaboration with the commercial 281 
company IQAir, wind data, world population data, and fire locations.   282 
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Table 1. Selected low-cost air quality sensor (LCAQS) networks. Prices were retrieved in June 283 
2021.  284 

Network 
name 

Pollutants 
measured 

Sensor technology 
used and cost per 
individual sensor 

Data retrieval location(s) 

IQAir • PM2.5 
• CO2 

• $269 (AirVisual 
Pro Air Quality 
Monitor) 

Web map:  
United Nations Environment 
Programme, n.d  
 

PurpleAir • PM0.3 

• PM0.5 

• PM1 
• PM2.5 
• PM5 
• PM10 
• PM1 
•  

• $199 (PurpleAir 
PA-I-Indoor) 

• $249 (PurpleAir 
PA-II) 

• $279 (PurpleAir 
PA-II-SD) 

Web map:  
PurpleAir, n.d.  
 
API:  
PurpleAir, 2021   

Air Quality 
Egg 

• CO,  
• CO2,  
• NO2,  
• O3,  
• PM1, 
• PM2.5, 
• PM10,  
• SO2, 
• VOCs 

• $130 (indoor) 
• $160 (outdoor) 

Web map:  
Air Quality Egg, n.d.   

AQICN • PM2.5 

• PM10 
Aggregated from web 
sources 

Web map:  
World Air Quality Index 
Project, 2022 
 

 285 

3 Methods to estimate air pollution concentrations 286 

Methods to develop spatially contiguous estimates of air pollution have rapidly evolved 287 
in the past nearly two decades with interest in using ground-based monitors and sensors for that 288 
exposure assessment in epidemiological studies (Chapter 7). Four categories of methods for 289 
developing continuous measurements will be discussed below, with particular attention to 290 
particulate matter: 1) spatial interpolation methods, 2) land use regression, 3) machine learning, 291 
and 4) chemical transport models (CTMs). Biomass burning events exhibit unique characteristics 292 
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in space and time, and those unique characteristics can affect which modeling approach best 293 
represents smoke concentration and is feasible given model limitations (Mirzaei et al., 2018). 294 
Most of these approaches provide some measure of uncertainty. While statistical metrics are 295 
often reported to express error and uncertainty in interpolation, machine learning, regression, and 296 
chemical transport model efforts, it is common for only a sub-suite or the final chosen model to 297 
be presented and details regarding sensitivity analyses are absent (Gan et al., 2017; Hu et al., 298 
2017; Stafoggia et al., 2019). Often, effect estimates due to model uncertainty are not reported 299 
for models that did not meet specified criteria, but this information could be useful for model 300 
selection in other applications (Arhami et al., 2013).  301 

 302 

3.1 Spatial interpolation  303 
Spatial interpolation involves using values with known locations to predict estimates 304 

where values are not known. For AQ applications, this frequently means using AQ monitor 305 
readings at one location to predict values where AQ readings do not exist, but can also be applied 306 
to raster data, such as satellite imagery. With the most simplistic spatial interpolation methods, 307 
no other ancillary data is required (Watson et al., 2019). Spatial interpolation methods are 308 
commonly used given the primary data input is known information and popular geostatistical and 309 
mapping software such as ArcGIS, QGIS and GRASS GIS, and R readily support spatial 310 
interpolation methods through functions and packages.  311 

Thirty-eight spatial interpolation methods and sub-methods exist, with progress 312 
continuing to be made in this field (Li & Heap, 2014). These methods are commonly described 313 
and categorized according to dichotomies of features (Deligiorgi & Philippopoulos, 2011; Li & 314 
Heap, 2008; Li & Heap, 2014), including:  315 

• Deterministic and stochastic methods: the primary difference between the two suites of 316 
methods is that deterministic methods do not incorporate randomness into their models 317 
while stochastic methods do. Thus, deterministic methods do not provide a measure of 318 
uncertainty, whereas stochastic methods provide error estimates.  319 

• Global and local methods: global methods derive estimations using all data available in 320 
the study area whereas local methods use a sample of estimates in their calculation.  321 

• Exact interpolators and approximate interpolators: exact interpolators derive values that 322 
are part of the known data whereas approximate interpolators can estimate values that are 323 
not the same as data that already exists.  324 
To assist practitioners and researchers in determining which spatial interpolation method 325 

is best suited for the available information and desired results, Li & Heap (2014) provide a 326 
detailed decision tree that classifies spatial interpolation methods. 327 

Two common spatial interpolation methods for wildfire AQ applications include inverse 328 
distance weighting (IDW) and kriging (Krige, 1951). Both methods realize Tobler’s First Law: 329 
phenomena that are closer together in space are more like each other than to things that are 330 
located further away (Tobler, 1970). The IDW function interpolates values using existing values 331 
at a specified distance from the location without known values. Therefore, optimal application of 332 
IDW is when the known values are close in distance to unmeasured locations. Conversely, this 333 
method is less useful when predicting over areas where known values are farther away, such as 334 
remote rural areas where known values are sparse. Studies have used IDW to predict PM2.5 using 335 
ground monitors (Wu et al., 2006; Yang et al., 2020). A large body of literature exists that is 336 
dedicated to developing new formulations for IDW (Ma et al., 2019). 337 
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Kriging also uses weights for closer values, but the weights also take into consideration 338 
the spatial patterns of known data. Currently, over 20 versions of kriging methods are in 339 
existence (Liu & Heap, 2014). As a geostatistical method, kriging delivers an uncertainty metric 340 
that can be useful to assess the performance of the algorithm. Kriging has been used to estimate 341 
PM2.5 over Washington State, USA from reference-grade monitors (Gan et al., 2017) and over 342 
the coterminous USA and Ontario, Canada from 1988-2016 from research-grade monitors.  343 

3.2 Statistical regression methods 344 
Common statistical models to estimate pollutant concentrations include multiple linear 345 

regression, land-use regression, mix-effects modeling, generalized additive models (GAM), and 346 
geographically weighted regression (GWR). Earlier studies that used multiple linear regression 347 
to predict PM values established the importance of improving model estimations by including 348 
meteorological covariates (Chu et al., 2016). Land use regression (LUR), an extension of 349 
multiple linear regression, refers to regression models that are used to predict AQ concentrations 350 
(as the dependent variable), using covariates of ancillary information. However, despite what the 351 
name of this technique implies, the parameters are not always associated with land use (Watson 352 
et al., 2019). In practice, LUR models commonly incorporate meteorological information, 353 
including temperature, humidity, precipitation, wind, and air related variables, topographic 354 
variables, aerosol optical depth (AOD) (Chapter 7). For these methods, ground-level PM, ozone, 355 
or other pollutants are the dependent variable, and independent variables include AOD and other 356 
ancillary variables (Liu et al., 2005). Both multiple linear regression and land-use regression are 357 
limited in their effectiveness where covariates and ground-level PM have a non-linear 358 
relationship. Additionally, these approaches can become difficult to handle with large amounts of 359 
data (Hu et al., 2017; Shin et al., 2020).  360 

Another extension of the multiple linear regression, the GAM, accounts for non-linear 361 
relationships between variables (Ma et al., 2014; Shin et al., 2020; Sorek-Hamer et al., 2013). 362 
The mix-effects modeling has largely replaced the use of MLR since 2010 (Chu et al., 2016). 363 
Fixed and random effects are incorporated into the mix-effects modeling to represent the 364 
background relationship between PM and AOD, and temporal and regional variation, 365 
respectively (Shin et al., 2020). Finally, geographically weighted regression accounts for non-366 
stationarity and different relationships between ground-level and covariates (Luo et al., 2017; 367 
Shin et al., 2020). However, these models are highly sensitive to locations and distribution of 368 
ground stations (Shin et al., 2020) as well as the suite of ultimately selected variables. 369 
Considering that inclusion or exclusion of variables is subject to the discretion of the user, the 370 
resultant predictive capability is highly diverse as the tactics for selecting variables can vary 371 
widely among individual researchers and by discipline (Watson et al., 2019).  372 
Using a linear regression model, Yao and Henderson (2014) estimated PM2.5 concentrations in 373 
British Columbia in areas that did not have a monitoring network. They assessed model 374 
performance on low-, moderate-, and high-smoke days.  375 

3.3 Machine learning  376 
Machine learning refers to methods that use artificial intelligence which fit independent 377 

variables that are spatiotemporally variant (Watson et al., 2019). Machine learning approaches to 378 
estimate smoke concentrations have quickly become a dominant method in the past few years, as 379 
they do not assume linearity between the dependent variable and covariates and are stable and 380 
efficient for processing large amounts of data, increasing the capabilities for predicting longer 381 
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time series of trace gases and atmospheric pollutants (Bellinger et al., 2017). Popular machine 382 
learning techniques include kernel and tree-based approaches. Kernel-based approaches, such as 383 
support vector regression, are often used in multi-stage modeling (Shin et al., 2020; Song et al., 384 
2014). Tree-based approaches rely upon decision trees to make predictions. These include 385 
classification/regression trees and random forest (RF) ensembles (Breiman, 2001), gradient 386 
boosting machines (Ferreira & Figueiredo, 2012), and extreme gradient boosting.  387 
In 2015, Reid et al. compared eleven statistical models for predicting PM2.5 during the 2008 388 
biomass burning event in Northern California fires and found that the RF had among the highest 389 
cross-validated accuracy. Since this finding, machine learning algorithms, and specifically RF 390 
models, have been increasingly used to estimate the PM at regional and national scales (Chen et 391 
al., 2018a; Chen et al., 2018b; Di et al., 2019; Hu et al., 2017; Park et al., 2019; Reid et al., 2015; 392 
Stafoggia et al., 2019; Zhao et al., 2020). A more recent study showed a RF approach to 393 
predicting PM10 over China had better performance and improved predictive capabilities 394 
compared to traditional regression models (Chen et al., 2018b). In addition to predicting PM, 395 
machine learning has been used to predict other pollutants, including ozone exposure before and 396 
after biomass burning events (Watson et al., 2019). Cross-validation methods are common 397 
metrics to use to evaluate model performance and estimate uncertainty. A disadvantage of 398 
machine learning methods they often rely on specialized computer coding languages that are not 399 
always publicly available (Watson et al., 2019), although a number of open-source applications, 400 
including an R-package and a Python-based implementation, are openly available and easily 401 
accessible. In addition to the steep learning curve required to implement these methods, RF 402 
models are frequently referred to as “black box” methods, which implies that the internal 403 
algorithm decisions that produce the ultimate outcome are not always transparent, and it may be 404 
difficult to interpret the results (Affenzeller et al., 2020). 405 

3.4 Chemical Transport Modeling 406 
Chemical transport models rely upon meteorology, emissions inventories, and chemical 407 

and physical processes to quantify spatiotemporal patterns of atmospheric gases (Engel-Cox et 408 
al., 2013). Chemical transport models have been used to estimate PM and have been shown to be 409 
effective at coarser spatial resolutions and global scales. As CTMs do not rely upon ground-410 
based measurements, these approaches are useful in areas where ground records do not exist or 411 
are highly heterogeneous (Boys et al., 2014; Chu et al., 2016; van Donkelaar et al., 2003). CTMs 412 
are more commonly used in multi-stage models for gap filling missing information, such as 413 
aerosol optical depth (Di et al., 2019; Stafoggia et al., 2019). Studies have also used CTMs to 414 
model biomass burning emissions on air pollution and to determine emission factors, (Akagi et 415 
al., 2011; Garcia-Menendez, Hu, & Odman et al., 2014; Hodzic et al., 2007; Konovalov et al., 416 
2011; Wiedinmyer et al., 2006). A limitation of CTMs’ utility for biomass burning smoke is 417 
limited by knowledge of fire properties such as injection height and fuel loading (Paugam et al., 418 
2016), meteorology uncertainties, and computational limitations to integrate the information into 419 
a useful model (Lassman et al., 2017). Chapter 8 provides a full review of CTM for biomass 420 
burning smoke concentration mapping.  421 
 422 
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4 Gaps and challenges in monitoring wildfire pollution 423 

This chapter provides a selected overview of international AQ monitoring efforts based 424 
on information that is publicly available and accessible. Although these observations are 425 
undoubtedly a vital resource, comprehensive monitoring fire pollution using ground-based 426 
stations is unattainable because the task requires spatially and temporally inclusive estimates. 427 
Ultimately, the regulatory networks were never designed to monitor air pollution originating 428 
from biomass burning. Thus, they present a very limited, although valuable, source of 429 
information.  430 

The technology that regulatory-grade monitors rely upon delivers highly accurate 431 
measurements at the point of data collection. However, the tradeoff is that the instruments are 432 
heavy, large, and expensive to construct and maintain. As a result, the spatial coverage of 433 
measurements from regulatory networks is very sparse. Fire events can be unpredictable in size, 434 
scale, and duration, making cost-effective instrumentation for effective monitoring extremely 435 
challenging. Considering the primary focus of regulatory networks on air pollution associated 436 
with industrial activity and transportation, monitors are typically found in urban centers. This 437 
positions the stations both away from the majority of ongoing biomass burning events. While 438 
stationary monitoring networks are established and continue to grow (Section 2) and temporary 439 
monitors are deployed during smoke events (Section 2.1), they deliver point measurement in 3-440 
dimentional space and time. They also require a large subsequent effort to produce spatially 441 
contiguous estimates of AQ and pollutants’ concentrations.  442 

In addition to limited spatial coverage, conventional ground-based measurements 443 
represent measurements offer limited temporal coverage. Temporally, comprehensive AQ 444 
records rarely date back before the mid-20th century and are extremely limited in spatial 445 
coverage. Furthermore, some regulatory measurement sites record data every few days. This 446 
frequency may not be optimal to capture fire emission concentrations that are often short, 447 
episodic events. While there are benefits for collecting more data regarding ambient AQ, 448 
especially in unmonitored areas, there has been no concerted movement to increase the spatial 449 
resolution of reference monitors (Engel-Cox et al., 2013).  450 

Despite government investment into using LCAQS to supplement regulatory data, there 451 
are still growing concerns that they are not able to replace reference measurements for regulatory 452 
decisions. While LCAQS offer advantages to supplement regulatory-grade information and 453 
empower more people to be engaged with monitoring AQ, the novelty of these sensors for 454 
regulatory purposes presents challenges. A primary known challenge is the quality of data 455 
reported by LCAQS. Previous studies have shown that data are subject to biases, and there are 456 
important considerations for obtaining high-quality data that is comparable to reference 457 
measurements (Giordano et al., 2021). A substantial effort has been focused on developing 458 
robust statistical approaches to calibrate data collected by LCAQS to those collected by 459 
instruments at the regulatory network stations (Barkjohn et al., 2021; Delp & Singer, 2020; Liu 460 
et al., 2017; Wallace et al., 2021). However, limited consensus has been reached in the literature 461 
regarding the best calibration, and it is likely regionally dependent upon other factors such as 462 
topography, meteorology, and other contributing factors. Assessing spatially contiguous AQ 463 
from regulatory and LCAQS networks presents an additional major challenge. Even in densely 464 
populated areas where many monitors may exist, there are no agreed-upon methods for 465 
extrapolating the stationary measurements to community and regional scales (Diao et al., 2019). 466 

A key limitation of LCAQS is the lack of access to historical data. For example, web 467 
portals that integrate LCAQS information such as the Fire and Smoke map offer near-real-time 468 
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information that is useful to track impact of on-going fire events. However, the tool has limited 469 
or no ability to download historic data. Therefore, these portals have very little utility in historic 470 
analysis or retrospective health studies that aim to study trends over longer time periods. Many 471 
sensors within LCAQS are owned and operated by lay citizens, which on the one hand 472 
diversifies the spatial distribution of sensors while on the other hand opens the door for potential 473 
measurement errors due to sensors that may have inaccurate location (e.g., wrong location 474 
provided to protect the owners’ privacy), deployment, or maintenance of individual instruments 475 
(Barkjohn et al., 2021). Additionally, particularly for historical analysis, the global record of 476 
monitors is highly skewed towards high-income countries (The World Bank, 2021), limiting the 477 
utility for global analysis. Even in countries such as the US with a longer and denser network of 478 
AQ monitoring, the spatial resolution of reference monitors is generally too sparse to capture the 479 
behavior of smoke and provide decision-support information for managing decisions associated 480 
with exposure to biomass burning emissions (Reid et al., 2015; Sánchez-Balseca & Pérez, 2020; 481 
Watson et al., .  482 

Key challenges exist for establishing and expanding AQ monitoring networks, especially 483 
at the global scale. For example, real-time AQ monitoring relies upon internet infrastructure and 484 
transportation infrastructure to support routine maintenance. In low and lower-middle-income 485 
(defined for fiscal year 2022 as countries that have gross national income per capita less than and 486 
between $1,046 and $4,095, respectively), both, and other reasons present challenges to these 487 
efforts (The World Bank Group, 2021). 488 

 489 

5 Opportunities and future directions in monitoring wildfire pollution 490 

The rapidly developing networks of LCAQS offer an exciting opportunity for delivering 491 
a more robust system of ground-based measurements valuable for smoke monitoring. Their 492 
potential is widely recognized by governments within developing and developed nations alike. 493 
And although outside the scope of this chapter, there is a large, growing body of literature that 494 
focuses on sensor technology, including calibration methods (Wallace et al., 2021) and 495 
performance compared to regulatory monitors during smoke events (Delp & Singer, 2020). With 496 
continuing development and improvements of cost-effectiveness among LCAQS and the 497 
improvements in the global satellites that enable web connectivity, it is reasonable to expect that 498 
LCAQS networks will become the leading component of global AQ monitoring system with an 499 
increased data availability in remote and sparsely populated regions where fire activity and 500 
smoke pollution are frequent and persistent. Open access to the observations from such a dense 501 
network will likely lead to substantial improvement in models delivering spatially and 502 
temporally resolved estimates of fire-related air pollution.   503 
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