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Abstract

Space weather phenomena occur from the Sun to the Earth with damaging impacts on ground-based and space-borne tech-
nological infrastructure. The geomagnetic auroral electrojet indices, AU, AL, and AE, have been widely used for monitoring
space weather and geomagnetic activities during space storms and substorms. The time series data of solar wind monitored
by upstream satellite and ground-based auroral electrojet indices form the input-output system characterizing the dynamic
coupling among solar wind, Earth’s magnetosphere, and ionosphere. The data-driven predictions of auroral electrojet indices
during geomagnetic storms and substorms face the challenges of capturing the variations of ionospheric electrojet current driven
by multiple solar wind variables and are modeled as a coupled complex system with finite and variable memory. The recurrent
neural network (RNN) based Long Short-Term Memory (LSTM) machine learning algorithm is well suited to classify, process,
and make predictions of the coupled solar wind-magnetosphere-ionosphere system by preserving important information from
earlier parts of the coupled time series and carrying it forward. In this study, an RNN-based LSTM model has been built to
predict the time series of AE/AL indices with multi-variate solar wind inputs. Both 5-minute and hourly long-term time series
data from the NASA OMNI database were used to drive the LSTM model. The coupled time series data are divided into
training and testing datasets. The Root-Mean-Square-Error (RMSE) between the predicted and actual AE/AL indices of the
testing sets was used to evaluate the roles of the number of layers in the LSTM, memory length of the coupled system, prediction
time, and different combinations of solar wind input parameters (magnetic field, velocity, and density). The performance of the
LSTM model in predicting AL/AE indices during major geomagnetic storm and substorm events is analyzed. The differences

and challenges of applying LSTM to predict 5-min and hourly AE/AL indices are also discussed.
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 Comparing prediction performance between Setup 1 and 2: the IMF Bz and solar wind V values within the same hour can affect the
AE index. The aurora electrojet index can be affected by solar wind within the same hour which is consistent with the time scale of
the development of geomagnetic substorms.

Solar Wind-Magnetosphere Interaction, LSTM Model and Dataset
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solar wind-auroral electrojet index system by dynamically preserving important information from earlier parts of the coupled time

| serlesand carrying it forward. | | | LSTM 5-min Prediction Setup 1: Input (V, Bz, AE), Nshift = 6 (30 min), Memory= 48

LSTM Implementation: Multi-variate LSTM developed with Python Deep Learning TensorFlow/Keras Library.

 Datasets: Solar wind IMF Bz magnetic field, velocity, density and geomagnetic AE indices obtained from NASA OMNI webpage (4 hou r), RMSE =97.0 _ .
https://omniweb.gsfc.nasa.gov/ (both low resolution (hourly) and high resolution (5-min) data). Testing Dataset Comparison
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 RMSE between predicted and actual hourly AE index for the entire (~ 8 years) testing dataset is 104.18 nT. Variation Of LSTM model setup on 5-min AE index prediction performance
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