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Abstract

Purpose:There have been concerted efforts towards cataloging rare and deleterious variants in different world population using

high throughput genotyping and sequencing based methods. The Indian populations are underrepresented or its information

w.r.t. clinically relevant variants are sparse in public datasets. The aim of this study was to estimate the burden of monogenic

disease causing variants in Indian populations. Towards this, we have assessed the frequency profile of monogenic phenotype

associated ClinVar variants. Methods: The study utilized genotype dataset (global-screening-array, Illumina) from 2795 individ-

uals (multiple in-house genomics cohorts) representing diverse ethnic and geographically distinct Indian populations. Results:

Of the analyzed variants from GSA, ˜12% were found to be informative and were either not known earlier or underrepresented

in public databases in terms of their frequencies. These variants were linked to disorders, viz. Inborn-errors of Metabolism,

Monogenic-diabetes, hereditary cancers and various other hereditary conditions. We have also shown that our study cohort is ge-

netically better representatives of Indian populations than its representation in1000 genome project (South-Asians). Conclusion:

We have created a database, ClinIndb [(http://clinindb.igib.res.in) and (https://databases.lovd.nl/shared/variants?search -

owned by =%3D%22Mohamed%20Faruq%22)], to help clinicians and researchers in diagnosis, counseling and development of

appropriate genetic screening tools relevant to the Indian populations and Indians living abroad.

INTRODUCTION

Advancements over the last decade in genetic tools and high throughput detection methods has accelerated
the pace of novel genes and variants associated with monogenic Mendelian diseases. Currently 7000 OMIM
phenotypes with distinct genetic etiologies have been delineated (Hamosh, Scott, Amberger, Bocchini, &
McKusick, 2005). These global efforts have significantly advanced our understanding of rare genetic dis-
orders and monogenic diseases. Though there have been significant contributions of population genomics
research of Indian populations very few studies have provided a comprehensive genome level understanding of
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monogenic disorders in Indian populations. In the present era of precision medicine, there is an urgent need
for nationwide genomics efforts to establish - a framework for genomic medicine guided healthcare delivery
needs; provide extensive coverage of genomic biomarkers across populations that facilitate rapid diagnosis
and affordable genomic healthcare solutions.

India comprises of 1.3 billion people from diverse ethnic, cultural and linguistic lineages and shared ancestries
with many global populations. Further, the genetic diversity of the populations has also been shaped by
socio-cultural factors such as endogamy and consanguinity, geographical clines, its vast history of migration
events during intercontinental exchange of trade and art as also admixtures with local population (Basu et
al., 2003; Basu, Sarkar-Roy, & Majumder, 2016; I. G. V. Consortium, 2008; Reich, Thangaraj, Patterson,
Price, & Singh, 2009). This provides a unique gene-variant-pool and a reservoir for founder events in recent
past, extensive nationwide genomic efforts have been undertaken to understand its genetic diversity. For
instance, in IGVdb a consortium level efforts have provided a catalogue of single nucleotide polymorphisms of
900 genes that map to disease associated regions across 55 diverse Indian populations (I. G. V. Consortium,
2008; Narang et al., 2010). Genetic analysis revealed that ethnicity and language are major determinants
than geography. These studies highlighted that Indian populations can be divided broadly into four genetic
clusters (Austro-Asiatic (AA), Dravidian (DR), Indo-European (IE) and Tibeto-Burman (TB)) based on
ethno-linguistic classification. DR and IE large are known to exhibit a large degree of admixture and there
are multiple sub-clusters, however, isolated populations, specifically from DR and AA group are distinct
and unique (I. G. V. Consortium, 2008). In addition, mitochondrial and Y-chromosome haplogroup based
studies have also helped in characterization of gene pool of diverse Indian populations (Bamshad et al.,
2001; Borkar, Ahmad, Khan, & Agrawal, 2011; Kivisild et al., 2003; Majumder et al., 1999; Thanseem et
al., 2006). The utility of an India specific baseline variability has been demonstrated during pre-NGS days
- in infectious diseases (For example, Malaria, HIV), pharmacogenomics studies, disease associations and
identification of at-risk populations for various neurological, cutaneous and high altitude adaptation related
disorders (Aggarwal et al., 2015; Aggarwal et al., 2010; Bhattacharjee et al., 2008; A Biswas et al., 2007;
Arindam Biswas et al., 2010; Chaki et al., 2011; Giri et al., 2014; Grover et al., 2010; Gupta et al., 2007; P.
Jha et al., 2012; Kanchan et al., 2015; Kumar et al., 2009; Sinha, Arya, Agarwal, & Habib, 2009; Sinha et
al., 2008; Talwar et al., 2017).

Due to limited availability of high throughput platforms systematic efforts to understand the spectrum of
Mendelian and monogenic variants have not carried out across the diverse Indian populations. With the
advent of NGS, Indian other global research groups have put in additional efforts to provide variant informa-
tion at the genome wide scale - SAGE (South Asian Genome and Exome) (Hariprakash et al., 2018), South
Asian genomes from 1000 Genomes Project (G. P. Consortium, 2015), south Indians individuals (INDEX-db)
(Ahmed P et al., 2019) and a few others. The Indian Genetic disease database v1.0 provides information on
1000 genetic disease in over 3500 Indian patients (#IGDD). Other noteworthy contributions have been made
in the genetics of hemoglobinopathies (thalassemia and sickle cell anemia), Duchenne Muscular Dystrophy
(DMD), cystic fibrosis (CF), spinocerebellar ataxias, Mitochondrial disorders, cardiomyopathies (Pradhan et
al., 2010). There is now also representative knowledgebase of Indian genetic disorders that aggregate infor-
mation from NGS and single sequencing based multiple case reports studies in Lysosomal storage disorders,
skeletal dysplasias and disorders of primary immunodeficiencies, genodermatosis and other neurogenetic ail-
ments (http://guardian.meragenome.com/). A recently published GenomeAsia 100k Project (GAsP) data
provided a comprehensively covered genome level data of over 1700 individuals from different Asian coun-
tries, thus highlighting the need for adequate representation of Asian genome level information in public
databases (GenomeAsia100K Consortium, 2019).

Multiple country wide efforts are ongoing from government funded basic and translational genomic research
laboratories, genetics unit of tertiary hospitals and commercial enterprise to meet the needs of clinical genetics
segment of healthcare system in India. Despite these there are a few unmet challenges for implementation of
genomics medicine in Indian populations. Primarily, either due to lack of representation of different ethnic
populations of India or low sample size in earlier studies conducted in Indian populations. Therefore, we have
1.) paucity of knowledge for mutations spectrum and their frequencies, 2.) lack of systematic characterization
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of known pathogenic mutations linked to various monogenic disorders, 3.) scarcity of knowledge of genetic
spectrum of 7000 OMIM phenotypes and other prevalent genetic disorders, 4.) characterization of novel
mutations.

To address these issues primarily, our study provides a comprehensive catalogue of monogenic disease linked
variants in diverse Indian populations (n=2795). Our study utilized a high throughput and affordable ge-
nomics tool that provides information of over 19,538 global clinical annotated variants using Global Screening
Array (GSA) from Illumina. In brief, the content of our study is novel and unique as : i) it covers diverse
multiethnic Indian cohorts with large sample size of 2795 healthy subjects, ii) provides frequency distribution
of known pathogenic variants for Inborn errors of Metabolism, hematological disorders and other Mendelian
disorders in Indian populations, (iii) representation of SAS pathogenic variants is higher in our study i
when compared with other global repositories like 1000 Genome populations (G. P. Consortium, 2015), The
Genome Aggregation Database (gnomAD) (K. Karczewski & Francioli, 2017) and The Exome Aggregation
Consortium (ExAC) (K. J. Karczewski et al., 2016) and GenomeAsia100K (GenomeAsia100K Consortium
(2019). We have created a unique database to catalogue and register the information of clinically relevant
variants for Indian population. Further, we were able to demonstrate that our cohort is genetically much
more diverse than representative South Asian populations in 1000 genome dataset to provide opportunities
and gaps for future research.

MATERIAL AND METHODS

Study subjects/samples details

We have analyzed the frequencies of ClinVar reported pathogenic and likely pathogenic variants from genome-
wide genotyping data (Global screening array, Illumina inc.) of 3132 Indian subjects who were part of four
different in-house GWAS based cohort studies. The subjects included in these cohorts represent diverse
ethnic and geographic background of India. These cohorts were – 1.) TRISUTRA Ayurgenomics cohorts
(n= 958), 2.) CARDIOMED cohort (n= 1449), 3.) HAP (Hypoxia adaptation and pregnancy outcome)
study cohort (n=438 ) and 4.) GOMED study cohort (n=287).

Since, this study aimed at curation and frequency analysis of Mendelian and mongenic phenotype asso-
ciated variants in Indian populations from ongoing genomics based cohort studies (in-house) for various
non-mendelian or polygenic or other related physiological conditions. The genotype datasets from following
cohorts were analyzed: i) TRISUTRA Ayurgenomics cohorts included individuals from Indo-European (IE)
and Dravidian (DR) linguistic lineages from IE-North (CBPACS), DR-South (KLE), IE –West (IPGTRA)
and IE-East (JBR) for genetic study of various health and related other non-mendelian morbid conditions.
There was near equal representation of both genders and the age group of the subjects were from 19-40
years (Prasher et al., 2017). ii) CARDIOMED cohort included 1449 subjects recruited for case control based
GWAS study for coronary artery disease and it comprised897healthy individuals and 552patients of coro-
nary artery disease (Table-S1 for cohort details). iii) The HAPS study included subjects from high altitude
Tibeto -Burman lineage (TB) from Leh and Indo-European IE lineage from North Indian regions (AIIMS,
Delhi). iv) GOMED study: to understand the utility of high throughput genotyping chip in clinical setting,
287 subjects referred from clinicians for genetic investigations of various hereditary disorders were included.
Data about gender, age and disease status of samples included in Cardiomed and GOMED cohort is provided
in Table S1 .

Genotyping, Data processing and Quality control (QC)

Genotyping was performed in the Illumina iScan system using the high throughput Infinium Global Screen-
ing Array version 1.0 that contains 642,824 genome-wide probes. Experiments were performed as per the
manufacturer’s protocol. This chip has representation of clinically important markers from ClinVar, GWAS
and pharmacogenomics information from PharmaGKB. (Figure-1 )

To reduce genotype calling errors, we tried to follow best practices for illumina data processing. Raw data
for 3,132 samples were loaded in the GenomeStudio version 2.0 for clustering and calling genotypes. Out
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of 3,132, there were 2,976 samples that passed genotype call rate of >=0.95. Further, we selected 612,322
SNPs with GenTrain score >=0.7. SNPs with GenTrain >=0.7 are expected to be clustered correctly. Data
filtered through GenomeStudio criteria was processed by zcall (Version3.4). Zcall is a variant caller that was
suited for calling rare SNPs. We used z-score threshold of 8 and retrieved output in the PLINK format,
preferable for QC and analysis (Goldstein et al., 2012).

PLINK (v1.9) was used (Chang et al., 2015) to filter out the variants and samples with 10% missing values,
additional 1,373 SNPs were removed while there was no exclusion at sample level. We removed SNPs that
significantly deviate from Hardy Weinberg equilibrium (HWE). 12,970 variants were excluded with p-value
<10-6. We applied HWE filter only for common SNPs (–maf 0.05) as it is not appropriate to use this filter
for rare SNPs. In addition, we also checked for relatedness among samples using –genome function. For
this, autosomal SNPs with –maf 0.1 were LD pruned to estimate proportion of Identity-by-descent (IBD)
between two individuals. We removed 181 individuals with PI HAT >0.2, an estimate of IBD. Further,
exclusion of samples was based on the rate of missing genotypes. Individual with high rate of missing
genotypes was excluded among the two. After all QC, final set included 597,979 variants in 2795 indi-
viduals for which frequency was computed. Allele frequencies of the variants were computed using –freq
option in Plink. Frequency was computed with respect to the alternate allele defined in the 1000 genomes
(http://grch37.ensembl.org/Homo sapiens/Info/Index). An in-house developed perl script was used to count
the homozygous (ref/alt) and heterozygous genotypes.

Assessment of genetic structure/architecture of subjects

Principal component analysis (PCA) was performed using smartpca module in EIGENSOFT package to
elucidate as well as to compare the genetic structure of our study cohorts with populations in the1000
genomes project (Price et al., 2006).. For genetic mapping of our study subjects w.r.t diverse Indian ethnic
and linguistic groups, we used genome-wide reference dataset of 471 healthy individuals genotyped on OMINI
array, Illumina Inc. (Data unpublished) as a representation of Indian genomic diversity. These samples were
collected as part of Indian Genome Variation (IGV) Consortium study. We compared the representation of
Indian genomic diversity with our study samples as well as with 1000 genomes data (n=2,504).

To perform PCA analysis, we used 161,484 markers common across three datasets i.e. samples in this study,
1000 genomes as well as reference IGV data. PLINK was used to merge the data for common markers.
ggplot package in R was used to create customized PCA plots. FST values from smartpca results were also
used to compare genetic differentiation among populations.

Mapping of clinically important / relevant variants in GSA with ClinVar database

We mapped the variants genotyped in our subjects with the variants in ClinVar database (ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab -
delimited/, downloaded on April 1, 2019 (Landrum et al., 2015) . Both the coordinates and dbSNP RSID
names were used. In case of multi-allelic variants, we retained only those alleles with exact matches in Clin-
Var. After manual QC, we selected 19,538 variants (SNPs and Indels) with alternate allele frequency [?]0.05.
As the focus of our analysis was only rare and clinically relevant variants we further narrowed our query
to only pathogenic and likely pathogenic variants. To retrieve these variants, we used clinical significance
value of 1 given in ClinVar database and then applied keyword filter of “Pathogenic or Likely pathogenic”.
Pathogenic or likely pathogenic variants are designated as pathogenic throughout this manuscript.

Variants with keywords “conflicting” and “no or uncertain interpretation” of pathogenicity and other such
keywords as “uncertain significance, association, risk factor, affects” were selected and analysed using a com-
bination of three tools to ascertain their effect. We used CADD scores, Polyphen DIV and SIFT predictions
from ANNOVAR (Wang, Li, & Hakonarson, 2010). A score of 3 has been assigned Variant of Uncertain
Significance if all three tools predict pathogenicity with following criteria - deleterious in SIFT, Probably
Damaging (D) in Polyphen , >=20 CADD and this we classified as (VUS-I). A score of 2.5 was assigned if
the variant is deleterious in SIFT, Possibly Damaging (P) n Polyphen , >=20 CADD and was assigned as
VUS-II.

4



P
os

te
d

on
A

u
th

or
ea

4
A

p
r

20
20

—
C

C
B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

60
2
48

8.
82

27
15

38
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Annotation of genes and variants associated rare and complex disorders: Inborn errors of metabolism (IEM),
MODY, Cystic fibrosis, hereditary cancers and other hereditary conditions using different resources.

1. Genes associated with different IEM classes were retrieved from The Monarch Initiative database
(https://monarchinitiative.org/) (Mungall et al., 2016). 419 unique genes for IEM related to four
classes- carbohydrate, amino acid, thyroid and energy metabolism as well as subclasses defined under
different every IEM class is provided in Table S2 andFigure S1 .

2. Maturity onset diabetes of the young (MODY) associated genes: This data is compiled from two
sources. Source A – DiabetesGenes (https://www.diabetesgenes.org/tests-for-diabetes-subtypes/a-
new-test-for-all-mody-genes/) houses 33 genes, implicated in MODY or its related form like MIDD
(maternally inherited diabetes and deafness) or partial lipodystrophy and Source B: Fidrous et al.
2018 compiled and classified genes into 14 MODY subtypes (Firdous et al., 2018). Table S3 provides
annotation of 35 genes associated with MODY.

3. Germline Variants in Hereditary cancers: List of 851 Genetic variants in 99 cancer predisposing genes
that are associated with hereditary cancers is provided in the study by Huang et al. Table S4

4. Genetic Variants associated with Cystic Fibrosis Table S5 : CFTR2 (https://www.cftr2.org/) database
which reports pathogenic variants in cystic fibrosis transmembrane conductance regulator (CFTR) gene
from 88,664 patients (Sosnay et al., 2013). Data was downloaded from - https://www.cftr2.org/sites/default/files/CFTR2 -
11March2019%20%281%29.xlsx. We prioritized 28 pathogenic variants from cystic fibrosis transmem-
brane conductance regulator (CFTR) gene. This included classical Cystic Fibrosis (CF) causing Pheny-
lalanine 508 (F508) deletion (rs113993960) which has ˜70% frequency in CFTR2 database. To investi-
gate the haplotype origin of most common F508del mutation in CFTR gene, we performed haplotype
analysis using genotype data on 4389 variants from 1000 genomes project. These genotype datasets
were divided separately for the four major group of populations. We first selected those variants (209)
that have frequency of [?]0.05 in European populations. Tagger was used to identify tag SNPs and we
also included less frequent F508del variant with tag SNPs to identify the segregation of this variant
on different haplotype backgrounds. The frequency of the inferred haplotypes was estimated using
PHASE algorithm (Stephens, Smith, & Donnelly, 2001)Table S6 .

5. Among other hereditary conditions, variants with high occurrence ([?]5) were analyzed for disorders
viz. Neurological and other neuromuscular disorders, Cardiac disorders, Cornelia de Lange syndrome
and other syndromic disorders.

6. We also shortlisted 30 variants relevant from pharmacogenomics perspective which are tagged with the
keyword “drug response” in ClinVar (Table S7 ).

Database Implementation

The ClinIndb browser was designed using open source tools. The front end was developed using HTML5,
PHP 5, Bootstrap.3.2.1, Javascript and Jquery. Highcharts was used to plot the graphs. Annotation, and
frequency information of all variants are stored in mysql database. We used PHP to retrieve the information.
Out of common 19,538 markers between ClinVar and GSA, 9853 markers belong to the pathogenic or likely
pathogenic class.

RESULTS AND DISCUSSION

Genetic diversity analysis of the study cohorts

In this analysis, PCA used to compare and assess the genetic diversity of our study cohorts with respect
to the 1000 genomes and IGV populations (Figure-S2 ). As expected, 1000 genomes European (EUR,)
American(AMR) and African (AFR) super populations are distant while SAS is proximal to majority of
the IGV large populations. Though TB group is closer to EAS super population than any other super
population of 1000 genomes as well as IGV populations(Figure-2). OG-W-IP (an outgroup population of
African descent), which was earlier demonstrated to be an admixed Indo-African population from western
part of Indian is present in a cline between Indian and African populations (Narang et al., 2011; Shah et
al., 2011). Further, we excluded the 1000 genomes AFR, AMR and EUR super populations as well as the
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Indian outgroup population (OG-W-IP) to fine map genetic structure. We clearly observed that majority
of the IE and DR large populations are proximal to the 1000 genomes SAS group (1kg SAS). However, AA
and DR isolated populations as well as TB genetic cluster are under-represented in the 1000 genomes. EAS
group (1kg EAS) in 1000 genomes is genetically distinct from populations in TB cluster (FST=0.01-0.02)
(Figure S3) . Underrepresentation of Indian genomic diversity in 1000 genomes was earlier reported and
also substantiated our findings (Sengupta, Choudhury, Basu, & Ramsay, 2016). Also, recently published
GAsP project lacks representation from TB group and moreover, has comparatively less number of samples
in SAS group (n=724) which might bias frequency estimations in SAS group.

Lastly, we compared the genetic diversity of our study cohorts with IGV populations as well as 1000 genomes
SAS and EAS group. Figure 3shows we have representation of IE and DR large populations as well as from
TB group (high altitude populations) in our cohorts. Representation of AA and DR isolated groups in our
study samples is also lacking. However, FST analysis suggests that our study cohorts are more proximal to
IGV populations than 1Kg SAS. More specifically, AA and DR isolated groups as well as TB low altitude
populations are genetically more closer to our study cohorts than 1kg SAS

(Figure 3).

Spectrum of known pathogenic mutations in Clindb and other genomic databases

We have created a resource “Clindb” that houses frequency spectrum of known 9853 pathogenic variants
(out of 19,538 mapped variants in ClinVar) in diverse Indian populations. Frequency distribution of 9853
pathogenic variants in Clindb was compared with SAS groups in 1000 genomes, gnomAD, ExAc and GAsP.
Figure 4a – shows that Clindb has maximum unique variants (1128) with frequency of pathogenic variants in
comparison to other databases. This number remains higher even if include variants with number of carriers
>1. This necessitates the use of large and diverse cohorts from Indian populations in further genomic studies.

To evaluate the reliability of frequency estimates of Clindb, we compared the average frequency difference
between Clindb and other databases under study and, also, compared the average frequency difference of of
GAsP with other databases. Our analysis revealed that overall frequency difference between Clindb is lower
than GAsP (Figure 4b ).

We found 12 genes with carrier frequency [?] 1% (Table S8 ). MBL2, CBS and ZGRF1 are top genes with
highest frequencies. Apart from cystathionine beta-synthase (CBS gene, category: Inborn errors of amino
acid metabolism), there are few other genes with high carrier frequency that are related to different IEM
classes. The distribution of variants in different IEM categories is discussed below.

Clinically relevant variants in Indian populations

We have analysed and compared pathogenic variants with [?] 5 carrier frequency in genes related to different
phenotypic classes: Inborn errors of metabolism, Maturity onset diabetes of the young (MODY), Cystic
fibrosis and hereditary cancers.

Inborn errors of metabolism: We have compiled genes related to thyroid, carbohydrate, energy and amino
acid IEM classes. Table – provides list of pathogenic variants in different IEM classes. Majority of these
disorders are treatable. Therefore, inclusion of variants implicated in IEM disorders in genetic screening
might benefit patients by early treatment or dietary interventions. In amino acid metabolism, a pathogenic
variant (rs5742905) in cystathionine beta-synthase (CBS) gene is associated with homocystinuria. This
variant has highest carrier frequency of 4% (f=0.04) in our cohorts while other databases doesn’t report
any frequency for this variant. Frequency of another frequent variant (rs13078881) in BTD gene (f=0.03)
is similar in our cohorts as well as SAS populations in other global databases. This variant is associated
with Biotinidase deficiency whose partial deficiency is reported to be higher and is majorly asymptomatic
in nature. In thyroid metabolism, a variant in SLC2A4 has frequency of 0.01% frequency in Clindb as well
as SAS populations in other databases under study. This variant is associated with thyroid hypoplasia.

In carbohydrate metabolism, a variant (rs267606858) in GYG1 gene has frequency of 3% (frequency (f) =

6
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0.03) in our cohorts while SAS populations in global resources reported has frequency of 0% Mutations in
GYG1 are associated with glycogen storage disease XV disorders. Similarly, in energy metabolism, variant
rs148639841 in ACAT1 gene has frequency of 0.04% (f=0.004) in Clindb while there is no representation
from global populations.

1. MODY: Maturity-onset diabetes of the young (MODY), one of the diseases inherited as an autosomal
dominant trait. This form of diabetes is underrepresented either because of misdiagnosis or sometimes
it remains undetected (Nair, Chapla, Arulappan, & Thomas, 2013). It has high prevalence rate in
Asian Indians, is genetically heterogeneous and has many subtypes (Table 4). We screened 14 genes
related to 14 MODY subtypes. We found three variants in GCK gene (Maturity-onset diabetes of
the young, type 2) with our defined frequency criteria. These variants having frequency ranging from
0.0009-0.04 have frequency in our study with absence in global databases. Majority of the cases are
known to be have either GCK or HNF1A mutation in European populations. However, a recent study
highlighted that they observed GCK mutations in <1% of Indian patients and HNF1A is commonly
mutated among patients (˜7%) (Mohan et al., 2018). However, GCK mutations are more represented
in our cohorts than reported earlier. It is possible that the earlier studies have been conducted on fewer
samples. Equally possible is that the so-called pathogenic variants are non-consequential and does not
necessarily need pharmacological intervention and therefore, remains underrepresented in patients.

2. Cystic Fibrosis: We have prioritized 6 pathogenic variants from cystic fibrosis transmembrane con-
ductance regulator (CFTR) gene. This included classical Cystic Fibrosis (CF) causing Phenylalanine
508 (F508) deletion (rs113993960, f=0.0016) which has ˜70% frequency in CFTR2 database. It causes
misfolding of CFTR and is known to be the most common cause of autosomal recessive Cystic Fibrosis
(CF). Our analysis suggests that other variants in CFTR are as frequent as this classical deletion in
our cohorts (f=0.001-0.002). Representation of these variants is either less or nearly absent in global
databases expect rs193922500 (f=0.001-0.03 in SAS groups in global databases). The CFTR variants
are also linked to other phenotypes. For example, pancreatic insufficiency, male infertility and sino-
pulmonary disease. Heterogeneity in CFTR phenotypes depends upon the type of mutations in CFTR
gene (Noone & Knowles, 2001). Mutations that doesn’t lead to complete loss of function has less severe
phenotypes as compared to classical cystic fibrosis, where there is a complete loss of function of CFTR
gene.

3. Hereditary Cancers: On mapping 853 pathogenic genetic variants (in 99 cancer predisposing genes)
from 33 cancer subtypes in 10,389 cases with our dataset, we retrieved set of 18variants (13 genes)
in our study. Number of carriers in these variants’ ranges from n=1 to n=5, which is less than our
described threshold. Number of carriers for variants in GJB2 (Deafness related) and CHEK2 (Familial
cancer of breast) genes are 5 and 4 respectively. On mapping 99 cancer predisposing genes, we retrieved
26other pathogenic variants with high carrier frequency in ALK, Neuroblastoma (f=0.01), MAP2K2,
multiple tumor types (f=0.007) and BRAC2, Breast-ovarian cancer, familial 2 (f=0.005) and GJB2,
deafness related (f=0.005).

4. Variants in gene related to other system disorders: the observed data of the monogenic disease related
genes responsible for other critical organs, brain, heart etc (Table-2 ). Thus, it highlights the gap in
the knowledge and their true occurrence of the genetically confirmed cases of various rare childhood
and adult onset Mendelian disorders in Indian population. For instance, 133 heterozygous occurrences
of 11 pathogenic variants in genes related to cardiac arrhythmias (Channelopathy genes, KCNH2 ,
KCNQ1 andSCN5A ), cardiomypathies (MYBPC3 and TNNT2 ) were observed. Seven variants with
145 heterozygous count in various muscular dystrophy genes; mainly in CAPN3 and SELENONwere
observed. In addition multiple heterozygous calls were observed in the genes linked to various syn-
dromic, neurological, renal and hemoglobinpathies disorders. Thus this frequency data of multiple rare
pathogenic variants necessitates the relevant identification of patients carrying such defects in clinics
and also allow appropriate mutation centric approach for rapid diagnosis.

Validation

Validation of genotying results were done by doing GSA-genotyping of selected smaples in replicates (n=13)
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and also by concordance analysis with the whole exome sequencing data (n=48), out of which two samples
has been eliminated due to poor genotyping quality score HWE significance test. The concordance analysis
between GSA and Exome data, 1274 a common set of variants have shown, 99.69% genotyping concordance

Table S10.

ClinIndb database

We have developed this database to facilitate clinicians and researchers using various search options such as
gene, location, rsid, batch gene, batch rsid to explore the database. Links to UCSC genome browser (hg19),
ExAC, 1000 Genome and dbSNP has also been provided. There are 1974 unique variants of VUS category
which have frequency in our cohorts. This list is provided in supplementary as well as in databaseTable
S11. Variants of uncertain significance were also evaluated and cataloged in the database for users.

Clinical Utility

GSA based genetic investigations of patients samples which were referred for various clinical diagnosis of
rare genetic diseases under GOMED cohort, yielded us a very low positivity rate for known clinical markers
on GSA chip. In total for only 9 of 287 (3%) patients’ samples we could arrive at the diagnosis (Table-S12
). This could be due to low representation of clinical variants for the referred clinical diagnosis and or
low abundance of Indian specific mutations on GSA chip. For clinical genetic application, GSA could have
further application for common pathogenic variants identified from our overall cohort (Table-2 )

DISCUSSION

In this study, we cataloged and estimated the mutational burden of known pathogenic or clinically relevant
variants in different Indian populations. Our study showcases its applicability by evaluating the mutational
load in rare and complex disorders in Indian populations. As an elaborated example, we have analysed
frequency spectrum of mutations in cystic fibrosis and different classes of Inborn errors of metabolism in
Indian context. In addition, our study provides, a comprehensive knowledge of underrepresented prevalent
and common genetic variants in hereditary cancer associated genes, monogenic diabetes and Neuro and
Neuromuscular disorders.

This study suggests that pathogenic variants with high carrier frequency are important candidates for prior-
itization in genetic testing. On the other hand, absence of frequency for ˜88% of known pathogenic variants
in Indian populations demonstrate the need of cataloging and including population specific rare pathogenic
variants in public databases as well as in commercial assays or genotype chips. Importantly, this study is
an a priori guide for conducting genetic screening studies which will benefit clinicians and researchers for
decision making as well as may aid in reducing genetic screening costs using informative / uninformative
estimates from our catalog.

This study also highlighted the fact that reliable estimates of carrier frequency are required to estimate the
real mutation load which cannot be accurately estimated from literature based cataloging as well as only
patient data.

In addition to pathogenic variants, we also evaluated the effect of those variants whose clinical significance
is uncertain in ClinVar. We used consensus of three predictive tools to ascertain their effect. Out of 5,984
such variants, there are 3,751 variants that are predicted to be detrimental. These variants are not part of
the main analysis but a list is provided in the database for the users. In addition, we also cataloged variants
that are important from pharmacogenetics perspective

(Table S8).

To benefit clinicians and researchers with this knowledge, we developed a compendium named ClinIndb
which houses frequency data of clinically relevant variants in diverse Indian populations. Cohorts included
in this study are closer representatives of IGVC populations than any world population even SAS group in
1000 genomes and GAsP. Therefore, frequency estimates from this study are anticipated to be more reliable.

8



P
os

te
d

on
A

u
th

or
ea

4
A

p
r

20
20

—
C

C
B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

60
2
48

8.
82

27
15

38
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

There were earlier efforts to create such catalogs however they have their own limitations. Indian genetic
disease database (http://www.igdd.iicb.res.in/home.htm) houses data of 6647 mutations from 52 diseases in
5760 individuals (Pradhan et al., 2010). This data was collated from literature published during 1993-2010
as well as personal communications. These individual studies might suffer from biases. Importantly, data
is collated from patients, therefore carrier frequency estimates cannot be computed. Frequency comparison
with other global populations is absent. Moreover, there has been exponential growth of clinically relevant
variants after the advent of next generation sequencing and in India, this growth is quite evident after 2010
and this database is not updated yet.

The data content of our study has direct implications for evolving rapid genetic diagnostics and in determining
clinically actionable variants in patients with suspected genetic ailments.
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Figure legends:

Figure-1 : Work flow the study and details of Genotyping, data processing and quality controls and screen
shot ClinIndb databse.

Figure 2: Diversity and relatedness of Indian populations with respect to 1000 genomes SAS and EAS super
populations. Majority of the IE and DR large populations are covered by SAS group. EAS group is distinct
from TB populations of India. Isolated AA and DR populations not covered by any of the 1000 genomes
populations. Keys outside the main figure represent different populations: Circles - IGV populations, plus
sign - SAS and EAS super populations from 1000 genomes.

Figure 3: Sufficient coverage of IE and DR large populations as well as TB cluster (by highlanders) by our
cohorts in this study with the exception of isolated groups. Keys outside the main figure represent different
populations: Filled circles - Cohorts in this study, Unfilled circles - IGV populations, plus sign -1000 genomes
SAS and EAS super populations.

Figure-4: Spectrum of Pathogenic Variants in Clindb and other genomic databases (SAS Populations)
A) Number of variants containing either “pathogenic” or “likely pathogenic” term were compared across
different SAS populations in global databases. gnomAD SAS is representative of both gnomAD and ExAc
SAS groups. B) Absolute average frequency differences of Clindb and GAsP (SAS) were compared with
1000G, ExAc and gnoMAD SAS groups
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