Energy states, oscillator strengths and polarizabilities of many
electron atoms confined by an impenetrable spherical cavity

yusuf yakar!, Bekir Cakir?, and Ayhan Ozmen?

larts and sciences faculty
2Selcuk University
3Selcuk Universitesi Fen Fakultesi

September 11, 2020

Abstract
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INTRODUCTION

In the past decade, confined quantum systems are of great interest in many branches of physics, chemistry and
engineering due to having unique properties and potential applications in microelectronic and optoelectronic
devices. When atom is enclosed in a spherical cavity with impenetrable walls, atom’s electrons are affected by
a confining potential in at least one direction. Such small structures are often referred to as zero-dimensional
structures or quantum dots , in which the charge carriers are confined in all three dimensions. Quantum dots
(QDs) have discrete energy levels, like real atoms, and they are also often called artificial atoms. (1l The energy
levels and dot sizes can be controlled by adjusting the potential barrier. Thus, the quantum confinement
effects cause drastic changes in observable properties of QDs. Technologically, QDs have many potential uses
in microelectronic and optoelectronic devices. In this respect, by employing different approaches and potential
shapes, some researchers have studied the electronic structure,>®lbinding energies, %8l optical properties, 915!
electric and magnetic field effects, 1625 and other physical properties/26-39! of single electron QDs. As well
known, it is easy to obtain analytical solutions for QDs with one electron. However, analytical solutions of
many electron QDs are more difficult, dull and complex than the single electron QDs. Researchers are used
various approach methods to overcome these problems. Recently, several studies investigating the various
properties of two electron QDs have been published. By employing the Kohn-Sham model, Aquino et al.[3!]
calculated energy states of helium atom inside impenetrable spherical box. Wilson et al.[??l performed the
ground state energies for two electron atoms confined by an impenetrable spherical cavity. Ludefial®® and
Garza et al. [3¥reported the Hartree-Fock energy results for the confined many electron atoms by utilizing
Roothaan’s approach. By using QGA and HFR method, the various excited energy states and ionization
energies of two electron QDs with and without parabolic potential are calculated by our group.5 Similarly,
for the confined helium atom, the three lowest S symmetry state energies were computed by Flores-Riveros
et al.13%l by employing perturbative and variational method. Sarsa and Sech!®”l and Safiu-Ginarte et al.[38!
studied the ground and excited energy states of the confined systems such as He, Li and Catoms by using
the variational Monte Carlo and direct variational method. In 2020, Martinez-Flores and Cabrera-Trujillo[3"!
calculated the ground and excited state energies of confined Li -like atoms in an impenetrable spherical cavity.
They implemented Slater’s X —« approach in Hartree-Fock theory to obtain the excitation energy spectrum,
and they assumed that the inner electrons do not see the outer electrons. To the best of our knowledge, there
are few theoretical studies related to the energy spectrum, orbital energy, oscillator strength, static dipole
polarizability and pressure induced by the cavity forHe™, Li, Be™, Bt and Be atoms confined by an
impenetrable spherical cavity. We have used QGA procedure and HFR method to calculate the energies and
wave functions, and the other physical parameters are performed from perturbative calculations.

THEORY

We have considered lithium/lithium-like and beryllium dots. Dots are supposed to be spherical with an
infinite potential barrier that confines all particles inside. The time-independent Schréodinger equation of
such a system is given by

HY = EV, (1)

where H is the electronic Hamiltonian operator corresponding to the sum of the kinetic energies plus the
potential energies for all the particles in the system, E and ¥ are eigenvalue and eigenfunction of the
Hamiltonian operator. The Hamiltonian operator is given by
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where m and ey are the mass of electron and dielectric constant of the cavity, Z is the impurity charge,



r;are electron’s position vectors and 7 are the mutual distance between the 7 th and j th electrons,N is
electron number (N =3.4). Here, the first sum on the right side describes the kinetic energy operators for the
electrons, the second sum represents the Coulomb potential energy for the attraction between the electrons
and impurity charge, the third one denotes the electron-electron repulsion plus exchange repulsion energy
operators. The last term Vi represents the confining potential term and its form is defined by
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where R is confinement radius (or dot radius). In three and four-electron systems, for the ground state
configurations 1s22sand 1s522s2, the total wavefunction of the system is expressed by the Slater determinant
including both space and spin variables

v ‘¢13(1)¢1s(2)¢23(3)‘ for N=3

4
‘¢18(1)¢15(2)¢25(3>¢25(4)‘ for N =4, (4)

where ¢ represents the one-electron wave functions consisting of spin and spatial components. The spatial
part of the wavefunction can be written as the linear combination of Slater type orbitals (STOs, y) as follows

¢ =Y ciex (Gro1) s ()
k=1

where o is the number of basis sets, ¢k is the expansion coefficients and (j, is the orbital exponents andk —
nilpymy denotes the quantum numbers of basis sets. STOs are preferred in the quantum mechanical analysis
of the electronic structure of confined and unconfined systems, because STOs represent more correct behavior
of the electronic wavefunctions, especially important in the regions very close to or far from the impurity.
Since the Hamiltonian in Eq.(2) does not include spin terms, the total energy is unaffected by inclusion of
spin factor in the wave functions. In the HF approximation, the total energy is a sum of one-electron and
two-electron energies. For a three and four electron system, the ground state energy is written

E={

2€15 + €25 + J1s15 + (20 — K)o, for N=3 (©)
2€15 + 2625 + Jis1s + Jas2s +2(2 — K, for N=4,

where €; denotes the orbital energies and it is given by

e1s = {
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his + Jisis + (2 — K) 5,  for N =4,
and
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in which h is one-electron energy integrals (kinetic energy plus impurity attraction energy), Ji; and Kjjshow
two-electron Coulomb and exchange energy integrals. Here, in the excited states, the valence electron in the



2s sublevel is promoted to the nla sublevel, that is 2s = nla. The integrals in Eqs.(6,7) can be expressed
over STOs as follows, in atomic units (au),:
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One- and two-electron integrals can be easily evaluated by modifying for appropriate consideration of the
boundaries the expressions of atomic systems. 0]

1
T12

In optical transitions between energy levels, the transition probability of absorption or emission of electro-
magnetic radiation is defined by oscillator strength. The oscillator strength (OS) is a dimensionless quantity
and it plays an important role in spectroscopic studies. This term determines the intensity of a specific
spectral line in atomic spectrum and also offers additional information on the fine structure.*! OS is given
by, in au ,

Fron = 2(En = Ey) [ (M), (9)

where E,, (E.,) denotes higher (lower) energy states and My, ¢ dimohe Tpavoltiov uotpl ehepevt.?”
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wnev tnenv energy is equal to the energy differenceE, — E,, the dynamic polarizability shows singularities
for any electronic state n . This is particularly important in cavities where the symmetry breaking due to
confinement leads to very close-nearly degenerate- atomic levels.!*4



The compression of an atomic system leads to an increase in kinetic energy K as a function of pressure P
. As the confinement radius R decreases, the average pressure that the cavity implements on the atomic
system is given by the virial theorem asl33:47]

K(R) = 4nR3P(R) — E(R). (13)
RESULTS AND DISCUSSION

We have calculated the ground and excited state energies and wavefunctions of lithium/lithium-like and
beryllium atoms confined at the centre of an impenetrable spherical cavity of dot radius R. To minimize the
total energy over STOs we have used the new variational method, which is a combination of QGA procedure
and HFR method. In order to maintain the orthogonality of orbital, we have used the same set of screening
parameters for all the one-electron spatial orbital with the same angular momentum and employed seven
basis sets to calculate the energy expectation value. The calculations are made considering a single Slater
determinant configuration. Therefore, the electron correlation effects being the second-order and higher
order effects are not taken into account. Our results are given in terms of au (Hartree), and these results
include terms with a fixed magnetic quantum numbersm (i.e., m = m' = 0).

In Table 1 and Table 2 show the orbital energies and total energies for the confined Lithium atom’s electronic
configurations 15?2s(2S) and 1s?2p (?P) for various dot radii. As seen in tables, both the orbital energy and
the total energy increase as the confinement radius R decreases. In Table 1, in all confinement regions, our
results are in good agreement with the results calculated by Ludena.33] However, there are small discrepancies
between the literature results obtained by Flores and Trujillo.®®! This difference is slightly increase in 1s-
orbital energy e;5. This is originated from their calculation method. They assume that the inner electrons
do not see the outer electron in the electronic configurationls?2s. It can be remarked that the confinement
radius becomes very large, all energy states approach the corresponding states of unconfined lithium atom.
For example, for the ground state, at R=10, we have obtained the results as €1, = —2.47672au,e9s =
—0.19366au and F1 429, = —7.42992au. Unconfined Lithium atom’s orbital and ground state energies aree; s =
—2.477739au, €s = —0.196321au andFE; 2o = —7.432723au. 40 Similarly, for the first excited state, in
Table 2, at R=10, we have obtained the results as €1, = —2.50153au,e2, = —0.12788au and Fi429, =
—7.37611au. The literature value of E; 2o, is—7.3865au.1*8! It is noted that all energies increase when the
spatial confinement is stronger. This is the result of the Heisenberg uncertainty principle. Similarly, for the
excited statels?2p , total energy results are better than the results obtained by Sanu-Ginarte. However,
there are slight differences between our results and the results of Martinez et al. due to the reason explained
above.

In Tables 3-5, we have illustrated the orbital energies, the ground and excited states energies for the
confinedHe ™, Bet, BTt and Be atoms. As seen from tables, when the dot radius becomes very large, the or-
bital and total energy levels approach the values of a free space atoms. For example, in Table 3, at R=10, for
15?25 and 1s%2pconfigurations of Bet dot, we have obtained the numerical values as €;, = —5.13779au,e5, =
—0.66581au,E 529, = —14.27373au ande; s = —5.15158au, €z, = —0.51796au,F; g29,= -14.12896, respectively.
The literature values for the excited state of unconfined Be' atom aree;; =-5.1383425, €5, =-0.6661462
andFE 29, = —14.277394au.1*°! We have also showed the orbital and ground state energies of Be dot in Table
3. The same situations are seen here. That is, as the dot radius increases, all energies approach the values
that are equal to the corresponding energies of Be atom. For the orbital and ground state energy for Be
dot, our results are consistent with the results of Ludena and are lower than Sanu-Ginarte. In Table 4, we
have illustrated the orbital, ground and excited state energies of BT+ dot. It is worth to note that, while
R 21.5, the speed of energy change is slowing down due to the strong attractive force. There are slight
differences between our results and the literature results. On the other hand, in table 5, for He™ dot, the
similar behaviours are obtained here. We could not compare our results with the literature data.

In Fig.l, we have plotted the ground (1s°2s,2S) and excited (1s2p, 2P) state energies of the
confinedHe™, Li, Be', BTt atoms as a function of dot radius. For each nl state, as the confinement
radius R decreases, the energies increase more quickly. It is seen that when the confinement radius is extre-



mely small (in the strong confinement region R < 1.5), the spatial confinement has a very strong influence
on the impurity energy states. In this region, when the confinement radius continuously decreases, the wa-
vefunctions of the localized states penetrates into the outside region of the quantum dot more and more.
Therefore, the energies become leger and larger. On the other hand, in this region, the degeneracy of the
energy spectrum is completely disappeared, and the energy states separate from each other. For the same
principle quantum number, as the dot radius decreases, the energy of the level with smaller [ increases
more quickly than the bigger [ level. The reason is that, most of time the confined electron in small [ level
distributes itself at the more outer part of the impurity than the electron in big I level.

In Fig.2, we display the orbital energies €1,,e2s and €g, of the confined lithium-like atoms as a function
of the confinement radius R. As it will be seen in (a), when the impurity charge Z increases, the orbital
energye;s increases as negative. The energy e;s;becomes negative while R2 2.3, R> 1.1, R 0.65 and RZ
0.5 forHe™, Li, Be' and BT, respectively. Here, the negative sign indicates that we need to give the
electron energy to move it from the confined atom. In the weak confinement region R > 2.5 , while the
spatial confinement effect on the energy €15 is very weak, this effect becomes significant in the region R <1,
in which is known as the strong confinement region. As for in (b), similarly, the orbital energiesess and eg)
increase with the decrease of confinement radius until reaching the continuum. It is seen that while going to
large dot radii, €25 (dashed line) is deeper than the €s, (solid line). As seen in (b), ez;and €3, energy states
have the crossing points, which are highlighted by circles. These crossing points (or critical cavity radius) are
at R~4.9, R~3.2 R~ 24andR ~ 2for He™, Li, Be' andB*t* dots, respectively. For the critical dot
(cavity) radii, our results are in good agreement with the results reported by Flores and Trujillo (391 which
are 3.4, 2.5 and 2.1 forLi, Be™ and B, respectively. As the confinement radius is reduced, after these
crossing points, this situation is exactly reversed, that is, €3, energy state becomes higher than ey state. It
is worth nothing that since the 2s-orbital is occupied with an electron in the initial ground state electronic
configuration, for cavity with R lower than the critical cavity radius, one would have photon emission instead
of absorption for initial electronic configuration. Thus, the excited electron from the initial s- level to the
final p- level returns to ground state by the photon emission. That is, as the dot radius decreases, if the p
-level lies energetically below the corresponding s -level, this transition occurs. This situation is mostly seen
in dipole oscillator transitions, and the oscillator strength become positive for excitations. As seen in esgand
€2p orbital energy curves, the crossing points shift toward smaller dot radii as the impurity charge Z, and in
large dot radii the difference between e, and eyyorbital energies increases with the increase of Z.

Fig.3 shows the dipole oscillator transition 1s?2s—1s?2p forLi, Be' and B** dots as a function of R. For all
dots, the oscillator curves exhibit similar behaviors. ForLi dot, in large dot radii, which is known as the weak
confinement region, as the confinement radius decreases, the OS begins to reduce as positive until R~3.2, in
which the crossing point occurs, and then it continues to decrease as negative until reaching to a negative
constant. For Li dot ,at R=10, we find a value of fo5_,0p=0.7489. The literature value of unconfinedLi atom
is 0.7488.1°01 As mentioned above, while R>3.2, while the oscillator transition fos_,2p occurs by the photon
absorption, it occurs by the photon emission after R<3.2. For Bet andB** dots, we have observed similar
behaviors. That is, the OS rapidly increases as the dot radius increases and then reaches to a limit value in
larger dot radii. At R=10, we have obtained the values of fo;_,2, =0.5337 and 0.4102 for the BeTand BT+
dots. The literature result of unconfinedBe™ atom is 0.5505.°8) Similarly, the oscillator transitions become
negative after R~2.4 and R~1.95 for Be™ and B dots, near the radii for which the crossing points occur.
While R is smaller than the crossing points, in which point ey, is lower thanes,, the oscillator transitions
become by photon emission induced by the pressure cavity. As seen on the OS curves, the impurity has a
strong effect on the oscillator transitions. The OS decreases with the increase of Z and shifts toward the
smaller dot radius. The reason is that as the impurity charge increases, electrons are strongly attracted
toward impurity. The similar results are obtained by Flores and Trujillo.[39]

In Fig.4, we have displayed the SDP of Li, Be' andB*™ dots as a function of dot radius. For 2s orbital,
the SDP has been calculated from the Kirkwood formula in (a) and the oscillator strength in (b). As seen in
(a), in large dot radii, it is worth nothing that the static polarizability of neutral Li dot is higher than the
others since the electron cloud is deformed easily by the applied field. For Li dot, the static polarizability



is very weak until R ~ 3, and more after it increases monotonically first up to R ~ 12 and then reaches
a saturation value in large dot radii. In the strong confinement region, as the dot radius is reduced, the
static polarizability decreases due to the fact that the localization causes a less polarizability of the charge
distribution. When compared the SDP of Li with the SDP ofBetand B*+, the effect of impurity charge Z
is clearly seen on the SDP curves. As the Z increases, the polarizability rapidly decreases since the charge
cloud cannot be easily deformed. In other words, the polarizability is associated with the binding energy of
the electron. When the electrons get closer to impurity, the electron’s binding energy increases, and thus
the polarizability of the system starts to reduce due to increasing the binding energy. The opposite is also
true. That is, when the binding energy of the electron is very weak, in very large dot radii, the polarizability
becomes maximum. By using Kirkwood formula, for R=15, we have obtained the polarizability values as
171.7730au, 16.9604au and 4.5015au forLi, Be™ and B** dots. The literature values for unconfined Li atom
are 164au.l®2 In (b), in which the SDP has been calculated from the oscillator formula, for neutral Li dot, as
the confinement radius reduces, the static polarizability decreases until reaching the crossing pointR = 3.2.
It is seen that static polarization changes its sign at the critical dot radius, R = 3.2. We have calculated the
SDP values as -63.54585au for R=3 and 52.80064au for R=3.5. After the critical dot radius R & 3.2, as the
confinement radius decreases, the polarizability approaches zero from negative value. Similar behaviors are
seen on Be™ dot in (b). The static polarizability of Be™ dot is smaller than that of neutralLi. The sign of
SDP in Be™ dot changes at the critical dot radius R = 2.3. When compared Li withBe™', as the impurity
charge increases, the critical dot radius at which SDP changes its sign shifts toward smaller dot radii. For
R=15, we have calculated the SDP values as 167.6403au and 27.2986au for Li and Be™ dots. The literature
values are 171.188au and 27. 3836au for unconfined Liand Be™t atoms.[?]

Fig.5 shows that the dynamic dipole polarizability for Li andBe dots as a function of photon energy at R=1,
1.5 and 2. The frequency step interval is taken as 0.0lau. Singularities (or jumps) appearing on dynamic
polarizability curves describe the frequency corresponding the energy difference in Eq.(12). As can be seen
from Eq.(12), as the photon energy hv increases, the DDP increases until singularity point, in which point
is athv = E, — E,. The presence of this pole leads to the sign inversion of the polarizability. It should
be noted that the SDP peak’s magnitude and its position which is equal to the singularity frequencies vary
continuously according to the confinement radius. When compared Li with Be™, for a fixed R, as the
impurity charge increases, the peak positons of the DDP shift toward smaller photon energy.

The numerical values of kinetic energy and pressure that the cavity exerts on the system as the dot radius
R (or cavity radius) is shrunk are presented in Table 6 and also the change of pressure and kinetic energy
is displayed in Fig.6 as a function of the cavity radius R forLi, B+t and Be dots. As seen in Table 6 and
Fig.6, in weak confinement region or large dot radii, the pressure is very weak. As the dot radius decreases,
both the pressure and the kinetic energy start to increase monotonically. In the strong confinement region,
the smaller the dot radius, the higher the pressure will be. It can be said that the pressure is associated with
the static polarizability. That is, in the strong confinement region, while the polarizability is very weak, the
pressure is large. When the cavity radius is very large, in the weak confinement region, the pressure is very
weak, but the polarizability becomes maximum. On the other hand, As the cavity radius decreases, both the
pressure and the kinetic energy increases. According to the uncertainty principle, as the electron approaches
the impurity, the uncertainty in the speed of the electron increases and so its kinetic energy increases. As a
result of this, the pressure increases. It is also worthwhile to note that, for the same R, the pressure is the
highest for Be, decreases forLi and is the lowest for BT, This is because the beryllium atom is more diffuse
in its 2s orbital according to the others, so the same cavity radius induces a high pressure. However, for
the B, owing to increasing impurity charge, the boron ion has already compacted its 2s electron, so the
same cavity radius induces a smaller pressure on the ionic system.*?) On the other hand, when compared Li
with BT, the effect of impurity charge on pressure is clearly seen here. That is, for the same confinement
radius R, the pressure of BT is lower than the pressure of Li. However, for kinetic energy, the situation is
opposite. For Be dot, our results are consistent with the literature results.38]

CONCLUSIONS



In this work, we have calculated the ground and excited state energies and the orbital energies of three and
four electron QDs such asHe™, Li, Be', B*T and Bedots. We also carried out the static and dynamic
dipole polarizability, oscillator strength and pressure induced by the cavity as a function of dot radius and
impurity charge. The results show that both dot radius and impurity charge have a great influence on total
energy, orbital energy, polarizability, oscillator strength and pressure of the system. While the polarizability
is very weak due to the strong spatial confinement in small dot radii, it increases monotonically while going
to large dot radii and then reaches a saturation value. For the ground state polarizability, the approximation
of Kirkwood in many electron dots gives good results. It is found that while the oscillator transition fos_.2p
occurs by the photon absorption until a critical dot radius, it occurs by the photon emission after the critical
dot radius. As the dot radius decreases, both the pressure and the kinetic energy increases, but polarizability
of the system decreases. To our knowledge, there are very little reports including the calculation of orbital
energies, static polarizability, oscillator strength and pressure of many electron QDs. With respect to the lack
of such studies, we believe that our study makes an important contribution to the literature. Also, theoretical
investigation of electronic and optical properties of many electron QDs will lead to a better understanding
of the properties of low dimensional structures. Such theoretical studies may have profound consequences
about practical applications of the spectroscopic studies, and the results of this study will contribute to the
research on related subjects.
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