
P
os

te
d

on
A

u
th

or
ea

21
S
ep

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

07
12

62
.2

85
64

97
7

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Spatial structure of reproductive success infers mechanisms of

ungulate invasion in Nearctic boreal landscapes.

Jason Fisher1 and Cole Burton2

1University of Victoria
2University of British Columbia

September 21, 2020

Abstract

1. Landscape change is a key driver of biodiversity declines due to habitat loss and fragmentation, but spatially shifting resources

can also facilitate range expansion and invasion. Invasive populations are reproductively successful, and landscape change may

buoy this success. 2. We show how modelling the spatial structure of reproductive success can elucidate the mechanisms of

range shifts and sustained invasions for mammalian species with attendant young. We use an example of white-tailed deer

(deer; Odocoileus virginianus) expansion in the Nearctic boreal forest, a North American phenomenon implicated in severe

declines of threatened woodland caribou (Rangifer tarandus). 3. We hypothesized that deer reproductive success is linked to

forage subsidies provided by extensive landscape change via resource extraction. We measured deer occurrence using data from

62 camera-traps in northern Alberta, Canada, over three years. We weighed support for multiple competing hypotheses about

deer reproductive success using multi-state occupancy models and generalized linear models in an AIC-based model selection

framework. 4. Spatial patterns of reproductive success were best explained by features associated with petroleum exploration

and extraction, which offer early seral vegetation resource subsidies. Effect sizes of anthropogenic features eclipsed natural

heterogeneity by two orders of magnitude. We conclude that deer populations are likely buffered from overwinter mortality by

landscape change, wherein early seral forage subsidies support high springtime reproductive success to offset or exceed winter

losses. 5. Synthesis and Applications. Modelling spatial structuring in reproductive success can become a key goal of remote

camera-based global networks, yielding ecological insights into mechanisms of invasion and range shifts to inform effective

decision-making for global biodiversity conservation.
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1. Landscape change is a key driver of biodiversity declines due to habitat loss and fragmentation, but
spatially shifting resources can also facilitate range expansion and invasion. Invasive populations are
reproductively successful, and landscape change may buoy this success.

2. We show how modelling the spatial structure of reproductive success can elucidate the mechanisms of
range shifts and sustained invasions for mammalian species with attendant young. We use an example
of white-tailed deer (deer; Odocoileus virginianus ) expansion in the Nearctic boreal forest, a North
American phenomenon implicated in severe declines of threatened woodland caribou (Rangifer tarandus
).

3. We hypothesized that deer reproductive success is linked to forage subsidies provided by extensive
landscape change via resource extraction. We measured deer occurrence using data from 62 camera-
traps in northern Alberta, Canada, over three years. We weighed support for multiple competing
hypotheses about deer reproductive success using multi-state occupancy models and generalized linear
models in an AIC-based model selection framework.

4. Spatial patterns of reproductive success were best explained by features associated with petroleum
exploration and extraction, which offer early seral vegetation resource subsidies. Effect sizes of an-
thropogenic features eclipsed natural heterogeneity by two orders of magnitude. We conclude that
deer populations are likely buffered from overwinter mortality by landscape change, wherein early seral
forage subsidies support high springtime reproductive success to offset or exceed winter losses.

5. Synthesis and Applications . Modelling spatial structuring in reproductive success can become a key
goal of remote camera-based global networks, yielding ecological insights into mechanisms of invasion
and range shifts to inform effective decision-making for global biodiversity conservation.

Key-words: fitness, invasive species, camera trapping, multistate occupancy models, reproduction, range
shifts, landscape change

Introduction

Reproduction is vital to population persistence and distribution dynamics. Reproductive success is tightly
linked to the quality and spatial distribution of available suitable habitat (Pulliam & Danielson 1991; Kurki
et al. 2000) and so anthropogenic landscape change can markedly alter a species’ spatial distribution. These
effects are typically negative, through fragmentation and habitat loss (Fahrig 1997; Fahrig 2002; Fahrig 2003)
but are positive for some species, facilitating range expansions or invasions (Ewers & Didham 2006; Didham
et al. 2007). Linking spatial variability in reproductive success with landscape change (or disturbance) is
key to understanding mechanisms of invasion and range shifts, an increasingly important endeavor under
climate change (Lawler et al. 2008; Lawler et al. 2009).

Quantifying spatial variation in reproductive success has been mostly limited to taxa with stationary offspring
such as plants (Muñoz & Arroyo 2006) and nesting birds (Rosenberg, Swindle & Anthony 2003; León-Ortega
et al. 2017). Mammals are much harder to quantify due to their large size, widespread ranges, and vagile
young. Camera trapping (Burtonet al. 2015; Steenweg et al. 2016) can bridge this data gap, generating data
on mammalian distribution and density. Many mammal species keep young at heel during early maternal
care and this state can can be likewise observed with camera traps. Applied to camera data for grizzly
bears (Fisher, Wheatley & Mackenzie 2014) and European brown bears (Burton et al.2018), we showed how
spatial variation in reproductive success can be modelled to identify landscape mechanisms affecting success.
Though further elaborated since (MacKenzieet al. 2017) the diverse opportunities of this approach have yet
to be widely realized. Here, we illustrate how camera trap data can help infer mechanisms of species invasion
and range expansion, using an example from the Nearctic boreal forest.

Boreal landscapes have been markedly changed by widespread and economically important resource extrac-
tion (Schindler & Lee 2010; Venier et al. 2014). The epicenter of change are Canada’s oil sands, the third
largest global oil deposit and a driver of global economies (Bayoumi & Mhleisen 2006). Petroleum exploration
and extraction create an altered landscape without analogs (Schneider, Dyer & Parks 2006; Pickell, Andison
& Coops 2013; Pickell et al. 2015). Landscape change affects the entire boreal forest mammal communi-
ty (Fisher & Burton 2018), but most notably manifest in woodland caribou declines (Rangifer tarandus )
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(Hervieux et al. 2013; Hebblewhite 2017). Wolf predation is a primary cause (Boutin et al. 2012), with wolf
populations bolstered by high-density invading white-tailed deer (deer; Odocoileus virginianus ) (Latham et
al. 2011; Latham et al. 2013).

White-tailed deer range expansion is a pan-continental phenomenon (Laliberte & Ripple 2004; Heffelfinger
2011) impacting entire ecosystems (Côté et al. 2004). Research on deer expansion south of the boreal has fo-
cused on population biology (DeYoung 2011), movement (Beier & McCullough 1990), and predation (Ballard
et al. 2001). Boreal deer invasion has been linked to landscape and climate change (Dawe, Bayne & Boutin
2014; Fisher & Burton 2018; Fisher et al. 2020) but the mechanisms remain unidentified. We sought to
examine whether anthropogenic landscape change is linked to spatial patterns of deer reproductive success,
as a possible mechanism of boreal forest invasion.

Deer balance energy intake from early-seral deciduous forage (Ditchkoff 2011) with metabolic demands
markedly increased by cold temperatures and deep snow, historically limiting white-tailed deer range (Parker,
Barboza & Gillingham 2009; Hewitt 2011). In the boreal, climate change has produced warmer winters
(Karl & Trenberth 2003); concurrently, landscape change has generated more abundant early-successional
vegetation (Finnegan, MacNearney & Pigeon 2018; Finnegan, Pigeon & MacNearney 2019; MacDonald et
al. 2020) that is strongly spatially linked to deer abundance and persistence (Fisher et al. 2020). Deer
mortality risk is greatest in the first year of life (Lesage et al. 2001), decreasing markedly for 1-2 year-olds
(Delgiudiceet al. 2006). Fawn growth and survival is largely based on maternal body condition, governed by
food availability (Therrien et al. 2008), so examining how spatial resource availability contributes to breeding
success within the first year helps us understand how landscape change contributes to boreal deer expansion.

We hypothesized that anthropogenic landscape change in the northern boreal forest is providing resource
subsidies that bolster reproductive success for invading white-tailed deer. If true, we predicted that anthropo-
genic features representing conversion of mature forest to early seral vegetation would explain variability in
the spatial distribution of deer reproductive success. We define reproductive success as a deer occurrence with
at least one attendant fawn in the summer months. This requires that a female achieve oestrus, breed, pro-
duce offspring, and maintain that offspring into the summer months, thus drawing close to recruitment–and
is a measure that can be consistently applied to all mammal species with attendant young at heel.

Methods

Study Area

We surveyed white-tailed deer distribution in the boreal forest of northeast Alberta, Canada (Fig. 1). The
3500 km2landscape is a mosaic of aspen (Populus tremulodies ), white spruce (Picea glauca ), black spruce
(P. mariana ), and jack pine (Pinus banksiana ) forests, interspersed with Ledum groenlandicum -dominated
muskeg. Widespread petroleum exploration and extraction features, roads (car accessible), trails (off-road
vehicle accessible), forest harvesting, and other anthropogenic features are dispersed throughout the study
area (Fig. 1).

We deployed 62 camera-trap sites (Reconyx PC900 HyperfireTM infra-red remote digital; Holmen, WI, USA)
in a constrained stratified random design (Supplementary Information), sampled continuously between No-
vember 2011- November 2014, as in Fisher and Burton (2018); Fisher et al. (2020). Following Burton et al.
(2015), we define ’site’ as the average area used by a deer (seasonally, in a 3-month window), centered on the
camera detection zone. We define ’study area’ as the ca. 3500 km2 minimum convex polygon surrounding
camera sites. Cameras were placed ca. 1m from the ground facing the wildlife trail and set to high sensitivity
with 3-s delay.

Spatial reproductive success

We identified all camera trap images containing white-tailed deer and created a monthly detection-
nondetection dataset with three states: breeding, non-breeding, or no deer detected. We discretized con-
tinuous camera sampling into monthly survey occasions. If a fawn(s) appeared in an image within the survey
month, we classified that site as ”breeding” for that survey (Fig. 2). If fawns were not detected, we classified
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the site as ”non-breeding” – which includes males and/or females that did not successfully rear a fawn into
spring and summer

Multiple approaches are used for modelling serial occurrence data generated by camera traps (Rota et al.
2009; ; Burton et al. 2015). We therefore analysed camera data using two approaches. First, we sought
to account for false absences which is a potential problem in wildlife surveys (MacKenzie 2005), including
camera-trap surveys (Burton et al.2015). Just as species may be detected imperfectly, age-sex classes may
also be detected imperfectly, when neither age nor sex is known with accuracy. In our case, ”breeding” sites
could be misclassified as ”non-breeding” if we missed photographing extant fawns at the cameras. To account
for this error, we used occupancy models (MacKenzie et al. 2002) which estimate the probability of detecting
that species if present (p ) and based on p , the probability of site occupancy (ψ ). With hierarchical multi-
state occupancy models (Nichols et al. 2007; MacKenzie et al. 2009) we estimated the probability for each
site that deer were either absent, present without breeding, or present with breeding. We also estimated the
probability that deer were detected in each of the two occupied states. Occupancy models can be considered
as simultaneous generalized linear models (GLMs) applied to the detection and occupancy submodels, with
binomial errors (logistic link).

We separated continuous camera data into month-long (30.4 day) ”secondary” survey periods
sensuMacKenzie et al. (2003). Three such surveys comprised a three-month ”primary” sampling season
within which occupancy states were assumed to be closed. We considered only the fawning season (spring,
April – June), and post-fawning (summer, July – September). We assumed non-Markovian variation in deer
site-use among months within a 3-month season primary season (MacKenzie et al. 2006). In an occupancy
framework this variation represents “detection error”, attributed mainly to movement in and out of the cam-
era detection zone (Burton et al. 2015). The full data frame for the study is thus 6 seasons, with 3 repeated
monthly surveys within each season, for a total of 18 surveys at each site with each survey comprised of deer
detection-nondetection within the month.

With this dataset, we ran several competing models, each with different assumptions about how detectability,
breeding occupancy, and non-breeding occupancy varied through time and in relation to landscape features.
We tested whether the probability of detection was either (1) constant over time, (2) varied among seasons,
or (3) varied among surveys. We likewise tested whether site occupancy of breeders and non-breeders was
either (1) constant across the study area, or (2) varied in relation to landscape features. We used hierarchical
models in the program Presence (ver. 6.2) to estimate deer occupancy (ψ), detectability (p ), and breeding
state (R), where:

ψi = probability that site i is occupied, regardless of reproductive state

Ri = conditional probability that young occurred, given that site i is occupied

ψi(breeding) = unconditional probability that sitei is occupied with breeding = ψi *Ri

p(1)it = probability that occupancy is detected for sitei , period t , given that true state = 1 (non-breeding),

p(2)it = probability that occupancy is detected for sitei , period t , given that true state = 2 (breeding),

δit = probability that evidence of successful reproduction is found, given detection of occupancy at site i ,
period t , with successful reproduction (Nichols et al. 2007).

Occupancy models provide a per-survey estimate of p , and from this we calculated the probability of false
absence (PFA) across the three surveys in each sampling season as [1-p ]3 (Longet al. 2008).

It has been argued that the variation among secondary surveys (months) due to deer movement is an
important part of the ecological signal, and not error as assumed in occupancy models (Neilson et al. 2018;
Stewart et al. 2018; Broadley et al. 2019). We therefore also treated zeros as signal, not error, and used
an alternative modelling approach–generalised linear models (GLMs)–to determine whether fawn occurrence
varied with landscape features. In this analysis each month can be considered an independent Bernoulli trial
in which adult female deer with fawns were detected (1) or not (0). We summed the number of spring months
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(April, May, June) with and without fawns across all three survey years creating a 0-9 response variable (3
spring months over 3 years). We modelled number of breeding-months as a binomial count model (GLM;
binomial errors, log link) in R ver. 3.1.1 (R Foundation for Statistical Computing 2014) against explanatory
variables from three spatial digital resource inventories (Supplementary Information Table S1).

Alberta Vegetation Inventory (AVI), a digital forest inventory dataset, provided percent cover of land cover
types within a 1-km radius around each camera site (Fisher, Anholt & Volpe 2011; Fisher et al. 2020).
Alberta Biodiversity Monitoring Institute (ABMI) 2010 Human Footprint Map Ver 1.1 provided percent of
area of polygonal anthropogenic features. ABMI’s Caribou Monitoring Unit (CMU) provided a GIS layer
derived from 2012 SPOT satellite imagery to calculate area of linear features (buffered to create polygons
from polylines) around each camera. In all models, we omitted correlated variables (r > 0.7) from multiple-
variable models (Zuur, Ieno & Elphick 2010) to prevent multicollinearity. We combined variables only
sparsely represented in the data (< 1-2% of area) into a single, combination variable (Table 1), and rescaled
each variable (mean=0, s.d.=1) to compare effect sizes.

In occupancy models, we placed covariates on ψ and R in hypothesis models or kept them constant in
null models (Supplementary Information Table S2). In GLMs we created multiple a priorimodels, each
corresponding to a hypothesis about the landscape features explaining variation in deer reproduction (Table
1). As a priorimodels may still contain uninformative parameters that should be discarded (Anderson 2007),
we created a fully reduced model using AIC-based stepwise regression (R;stepAIC package) to determine
the most parsimonious model explaining variation in deer reproduction.

For both the occupancy models and generalized linear models, we weighed the evidence in support of models
corresponding to competing hypotheses using model selection in an information-theoretic framework (Burn-
ham & Anderson 2002). Each model produces an Akaike Information Criterion (AIC) score that balances
deviance explained by the model with model complexity – the number of parameters; low AIC scores suggest
a best-supported model. We normalized AIC scores into 0-1 AIC weights, analogous to the probability that
a given model is the best supported of the candidate set (Burnham & Anderson 2002). We further validated
best-supported models using k-fold cross validation in R package boot , and calculated deviance explained
(Zuur et al. 2009).

Results

Evidence of breeding

Of 112,648 deer images captured during the survey, 12,460 images (11.1%) had evidence of young-of-the-year.
This included single fawns (92.9%), twins (7.6%) and triplets (0.6%), though these were not distinguished
in models. There was a marked drop in the distribution of successful breeding across years. Of 62 sites,
successful breeding was detected at 36 sites (58.1%) in 2012, 22 (35.5%) in 2013, and 12 (19.4%) in 2014.
Among all years pooled together, 45 of 62 sites (72.6%) had evidence of breeding in at least one year.

Multi-state deer occupancy

Reproductively successful deer – does with fawns – were estimated to be widespread across the study area
in spring 2012 (ψb = 0.89, SE = 0.14), 2013 (ψb = 0.98; SE = 0.02) and 2014 (ψb = 0.95; SE = 0.03) when
modelled without landscape covariates. The estimated probability of false absences for deer with fawns was
[?] 0.002 in all years, suggesting that we reliably detected fawns when they occurred.

Anthropogenic landscape features best explained conditional probability of fawns given occupancy by deer
(R ) in 2012 (well sites and seismic lines, cumulative AICw = 0.83), 2013 (seismic lines, AICw = 0.84) and
2014 (industrial features, forest cutblocks and total footprint, cumulative AICw = 0.81) (Supplementary
Information Table S2). Models in which breeding varied only with natural vegetation, or was invariant,
were not supported. Hence, occupancy of breeding deer differed from that of non-breeding deer, and varied
with the area of anthropogenic features across the oil sands landscape. However, multistate occupancy
models contained unresolvable “border estimates” for R (those close to 0 or 1; (MacKenzie et al. 2017)) and
exhibited problems with model convergence, necessitating a companion approach.
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Spatial patterns of reproductive success: GLMs

Months of occurrence of reproductively successful deer was positively related to anthropogenic landscape
features, as well as natural landscape features. Models with petroleum features best explained deer with
fawn occurrence, thus corroborating the multi-state occupancy models. Occurrence of deer with fawns
increased with increasing seismic line density, 3D seismic line density, pipeline density, and deciduous forest
cover; model 31 (AICw = 0.88) and 29 (AICw = 0.11) together carried 99% of the weight of evidence (Table
2; Table S3). The effect size (model β coefficients) of seismic lines on the occurrence of fawns was 100
times greater than the effect size of the best natural landcover feature: upland deciduous forests (Fig. 3).
Projected across the northeast boreal forest surrounding the study area, areas of higher probability of deer
reproduction correspond to intensive development (Fig. 4).

Discussion

As mammal distributions shift with climate change, decrease with habitat loss or capitalize upon change to
invade, understanding the features facilitating reproduction in once barrens landscapes allow us to elucidate,
and address, those mechanisms of change. Global camera-trap networks coupled with spatial distribution
models can yield these insights.

In our example widespread landscape change from energy extraction is strongly linked to white-tailed deer
reproduction where they have invaded the western Nearctic boreal forest. Deer invasion of the cold northern
latitudes is consequent to expansion from southern agricultural areas, a continental phenomenon borne from
widespread conversion of mature forest into early seral vegetation (Côté et al. 2004; Heffelfinger 2011). In
the last few decades, new advances in forest harvesting and the dramatic growth of energy exploration and
extraction have radically altered the Alberta boreal landscape (Pickell, Andison & Coops 2013; Pickell et al.
2015). The density of petroleum exploration “seismic” lines in the landscape had a 100 times greater effect
on deer breeding success than did natural deciduous forest, an important predictor of adult white-tailed deer
individual habitat selection and distribution (Darlington 2018; Fisher & Burton 2018; Fisher et al. 2020).
Although we hypothesized that forest harvesting might play a substantial role (Fisher & Wilkinson 2005),
we found no evidence to support this; and petroleum extraction features are much more widespread than
forest harvest blocks in this region (Pickell, Andison & Coops 2013; Pickell et al. 2015). We conclude that
the 1000s of kilometres of seismic lines, as well as pipelines and 3D seismic lines, spread across the western
Nearctic boreal forest play a significant role in facilitating the northward expansion of white-tailed deer.

The mechanism for the relationship between linear features and deer reproductive success is centred on
available forage. Nutrition affects ungulates’ probability of pregnancy, over-winter survival, parturition, and
neonatal survival (Parker, Barboza & Gillingham 2009; Hewitt 2011). Greater nutrition from abundant
available forage prevents metabolic stress, increasing deer survivorship and reproductive success (Hewitt
2011). However forage biomass is in itself not a good predictor of deer nutrition, as forage distribution
relative to inedible vegetation plays a significant role (Spalinger & Hobbs 1992). In this landscape, abundant
edible forage is available in linear features (Finnegan, MacNearney & Pigeon 2018; Finnegan, Pigeon &
MacNearney 2019; MacDonald et al. 2020), and may be especially important in spring during green-up,
when energetic demands of gestation are great (Pekins, Smith & Mautz 1998).

Research on deer pregnancy rates and recruitment suggests that female age and body condition affect bree-
ding success (Ozoga, Verme & Bienz 1982; Ozoga & Verme 1986; Verme 1989; DelGiudice, Lenarz & Powell
2007); body condition, in turn, is primarily a function of nutrition afforded by available browse (Hewitt
2011). Winter induces substantial metabolic costs on white-tailed deer, but pregnancy and lactation induces
markedly greater metabolic costs on females (Pekins, Smith & Mautz 1998; Therrien et al. 2008; Ditchkoff
2011). If female deer in this landscape were metabolically stressed after severe winters, female mortality,
small fawns with low survival (Ditchkoff 2011), and starvation-induced abortions (Worden 1992, in Pekins
et al. 1998) might be expected to reduce reproductive success. If the early seral vegetation abundant in
anthropogenic landscape features provides forage subsidies, then metabolic costs would be offset and repro-
ductive success enhanced. We contend our evidence here, as well as corroborating past research on adult
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deer showing positive links to anthropogenic features (Darlington 2018; Fisher & Burton 2018), strongly
infers that landscape change is enhancing breeding success and hence, facilitating and maintaining boreal
deer invasions.

Caveats

Our research focussed on a heavily developed landscape in the western Nearctic boreal forest of Alberta,
Canada. Extrapolating to other landscapes in this region should not be done without future research to
understand the range of inference. In their province-wide analysis, (Dawe, Bayne & Boutin 2014; Dawe
& Boutin 2016) concluded that deer expansion is likely facilitated in large part by climate change as the
metabolic costs of cold temperatures and especially deep snow are ameliorated by contemporary mild winters.
Evidence at landscape scales suggests climate is a contributory mechanism but abundant nutritional forage
is pivotal for deer populations (Fisher et al. 2020), and historically the northern boreal forest has been
dominated by largely inedible conifer (Fisher & Wilkinson 2005; Pickell et al. 2015). We contend forage
subsidies induced by landscape change play a large role not yet disentangled from climate change; indeed it
is likely the two act synergistically.

Applications to Ecology

In the western boreal forest, petroleum exploration features are increasing breeding success, and hence possi-
bly (given lifetime success) fitness of individuals spatially associating with them. In the apparent competition
“fulcrum” in which more deer boost wolf populations, which in turn drive declines in woodland caribou (De-
Cesare et al. 2010; Latham et al. 2011; Boutin et al. 2012), deer expansion is a substantial conservation threat.
Conservation will require landscape management to mitigate the widespread resource subsidies afforded to
deer, including active site restoration, which has been shown to be promising for mitigating white-tailed deer
use of seismic lines (Tattersall et al. 2019). Dauntingly, this restoration is required for 10,000s of kilometres
of seismic lines (Dabros, Pyper & Castilla 2018), as well as the other anthropogenic features associated
with resource extraction (Fisher & Burton 2018; Fisher et al. 2020) lending urgency to the need for rapid
application of ecological research to management decisions.

Biodiversity declines due to landscape change are a global problem (Maxwell et al. 2016) as are invasive
species (Gurevitch & Padilla 2004; Clavero & Garćıa-Berthou 2005) and anthropogenic range shifts (Lawleret
al. 2009; Chen et al.2011). Understanding the ecological mechanisms facilitating and sustaining invasions is a
key pursuit for and ecology. Global biodiversity networks can quantify variation in mammalian distribution
and density at large scales (Steenweget al. 2017) but abundance is not always a reliable metric for inference
of mechanisms (Van Horne 1983; Schlaepfer, Runge & Sherman 2002; Battin 2004). Breeding success is more
directly reflective of landscape change’s effect on mammalian fitness. These data can be garnered through
camera-trap networks and modelled with data on landscape change to aid inference about the mechanisms of
change: an intersection of fundamental ecology principles and applied ecology practice that can aid inferences
and the decisions derived from them.
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Table 1. Hypotheses about the distribution of breeding white-tailed deer across the boreal forest study area.

Description Model # Hypothesis: White-tailed deer distribution is explained by % cover (within a buffer around camera sites) of:

Global model 1 All variables
Natural landcover 2 Upland deciduous cover

3 All mixedwood cover
4 All conifer cover
5 Upland spruce
6 All deciduous + shrubs
7 Wetland
8 Upland forest
9 Lowland forest

Non-forest 10 Early seral
Forestry 11 Cutblocks
Petroleum 12 Well sites

13 3D seismic
14 Seismic lines
15 Pipelines
16 Linear features
17 Block features

Petroleum + Forestry 18 Block features incl. cutblocks
Access 19 Roads

20 Trails
21 Roads and trails

All anthropogenic 22 All anthropogenic features
Natural + forestry 23 Upland deciduous and cutblocks

24 Shrubs and cutblocks
25 Openings and cutblocks

Natural + petroleum 26 Upland deciduous and 3D seismic
27 Upland deciduous and Seismic lines
28 Upland deciduous and all anthropogenic
29 Upland deciduous and all petroleum

Natural + access 30 Upland deciduous and roads and trails
Post-hoc step-AIC model 31 Variables selected by stepwise regression
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Table 2. Model selection of generalised linear models relating probability of occurrence of white-tailed deer
with fawn(s) against natural and anthropogenic landscape features. Model numbers refer to candidate model
sets in Table 2. K = number parameters.

Model # K AIC ΔAIC AICw Cumulative AICw -2LL

Model 31 5 406.41 0 0.88 0.88 -197.66
Model 29 7 410.64 4.23 0.11 0.99 -197.26
Model 28 11 415.69 9.28 0.01 1 -194.15
Model 27 4 428.09 21.68 0 1 -209.69
Model 16 7 430.79 24.38 0 1 -207.34
Model 22 10 431.07 24.67 0 1 -203.34
Model 14 3 433.95 27.54 0 1 -213.77
Model 1 11 438.14 31.73 0 1 -205.38
Model 4 6 438.53 32.12 0 1 -212.49
Model 7 4 441.22 34.81 0 1 -216.25
Model 6 6 441.28 34.87 0 1 -213.86
Model 26 4 443.1 36.7 0 1 -217.19
Model 23 4 443.16 36.76 0 1 -217.23
Model 30 5 443.69 37.28 0 1 -216.3
Model 2 3 444.64 38.23 0 1 -219.11
Model 8 5 446.73 40.32 0 1 -217.82
Model 15 3 447.25 40.84 0 1 -220.41
Model 17 4 451.05 44.65 0 1 -221.17
Model 10 7 452.6 46.19 0 1 -218.24
Model 18 5 452.79 46.38 0 1 -220.85
Model 20 3 452.86 46.45 0 1 -223.22
Model 12 3 453.11 46.7 0 1 -223.34
Model 5 3 453.16 46.75 0 1 -223.37
Model 21 4 454.68 48.27 0 1 -222.98
Model 19 3 454.7 48.3 0 1 -224.14
Model 9 5 454.79 48.39 0 1 -221.85
Model 13 3 454.8 48.39 0 1 -224.19
Model 11 3 455.07 48.67 0 1 -224.33
Model 3 4 455.97 49.56 0 1 -223.63
Model 25 5 456.41 50 0 1 -222.66
Model 24 4 457.37 50.96 0 1 -224.33
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Fig. 1. Occurrence of white-tailed deer does with fawns at heel (inset, lower left) was surveyed at 62 camera
sites (large block dots, scaled to the 0-9 month response variable) in the boreal forest of northeast Alberta,
Canada. Anthropogenic landscape features are widespread across this landscape, including forest harvesting
cutblocks (grey polygons), well sites (square dots), seismic lines (grey), and roads and trails (dark grey and
colored lines). Lakes are in blue.

Fig. 2 . In the boreal forest of Alberta, Canada, camera-traps quantified sites with white-tailed deer fawns –

10
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characterized by their small size, and for younger animals, the presence of spots. Sites with fawns appearing
in a survey month were recorded as “breeding” for that month.

Fig. 3. Spatial variation in white-tailed deer reproductive success in the oil sands of the western Nearctic
boreal forest of Alberta, Canada was best explained by petroleum extraction features – conventional seismic
lines, 3D seismic lines, and pipelines – as well as upland deciduous forest.
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Fig. 4. The probability of white-tailed deer reproduction across Alberta’s northeast boreal forest oil sands’
region. Beta coefficients from the best-supported generalized model explaining spatial variation in fawn
occurrence were extrapolated across the region using the same spatial data from the models were derived.

Data Accessibility Statement

Data used in these analyses are made available in Supplementary Information.
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