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Abstract

Reactive transport codes are very useful elements of environmental research. They now contain multiphysics
with very complex algorithms, including flow, transport, chemical and sometimes heat transport, mechanical
and/or biological algorithms. Because of this complexity, some parts of these algorithms still have not been
sufficiently studied. Here, we present a comparison of 3 algorithms for activity correction, a specific subset of
equilibrium chemistry algorithms. We show that the most used algorithm (the inner fixed-point algorithm)
or the most rigorous algorithm (the full Newton) might not be the most efficient, and we propose the outer
fixed-point algorithm, which is more robust and faster than other algorithms.

Introduction

The problem of groundwater management has received increasing attention, and many tools have been
developed to address this issue. One of these tools, reactive transport modeling, was first limited to laboratory
experiments [1] and then extended to the comprehension of problems in various fields [2]. Reactive transport
modeling is actually a mature research field that has produced important results in many environmental
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. domains, such as water management, sea water intrusion [3], long-term nuclear waste storage [4] and heavy
metal contamination [5]. Numerous reactive transport codes are available, and some review articles [6–12]
propose an overview of them. Examining these articles, it can be seen that all these codes include one or more
activity correction models. Even though the different models of activity correction are usually well-detailed,
the algorithmic method used to compute the activity coefficients and to incorporate these calculations into
the entire chemistry algorithm is not given.

We show here that different algorithms can handle activity corrections and that they are not all equivalent. It
seems that the most used algorithm, named the inner fixed-point algorithm, leads to numerical instabilities
when handling highly-charged chemical species. We then recommend the new algorithm presented in this
work: the outer fixed-point algorithm. It is more robust, faster and less sensitive to the initial conditions.

General concepts

A general formulation of a chemical reaction leading to the formation of one of the Nc species (Ci) from the
number Nx of chosen components Xj is written as:

Instantaneous equilibrium chemistry is usually described using two fundamental concepts: mass conservation
equations and mass action laws. According to the classical formulation stated by Morel and Morgan, mass
conservation equations describe the conservation of the total concentrations of the components (Tj), and mass
action laws describe the formation of each chemical species as a combination of the Nx chosen components.

Mass conservation equations are written using the species concentrations [Ci]:

On the other hand, mass action laws are written using the species {Ci} and components {Xj} of the activities:

To ensure the closure of the system, an activity model is used. The activity coefficient (i) is less than one
and determines the species activity from its concentration.

Several activity models have been developed, all of which use the ionic strength of the solution (I):

Davis model

One of the most used activity models for reactive transport is the Davis model, where the activity coefficients
are given by:

The parameters A and B are defined by:

et

Extended Debye-Hückel model

Another activity model commonly used in reactive transport is the extended Debye-Hückel model. In this
case, the activity coefficients are computed by:

B-dot model

The purpose of the B-dot model is to give nonunit activity coefficients for neutral chemical species.

Newton algorithm

The methodology for computing chemical equilibrium is well established [13–19] and is always built on a
Newton procedure. By incorporating the Nc mass action laws into the Nx conservation equation, one can
obtain an Nx by Nx nonlinear system that must be iteratively solved. Here, we present the approach where
mass action laws are written in a logarithmic form.

We define the logarithm of the components activity as:

2
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This can be rewritten as a matrix formulation:

The mass action laws are then:

These can be rewritten by using the vector of species concentrations :

The conservation equations are:

Combining both equations, we obtain:

This nonlinear system is iteratively solved using a Newton procedure. At the nth iteration, the error is given
by:

By computing the derivative of the error versus the logarithm of the components of the activity, we obtain
the Jacobian matrix . By solving the linear system :

Then, a new value of the activity component is given by:

The procedure is repeated until the error is sufficiently small.

Possible algorithms

Historically, activity correction has been neglected when computing the Jacobian matrix. This approximation
is justified if:

1. The ionic strength is small enough so that the activity coefficients can be assumed to be equal to one
(ideal solution).

2. The changes in ionic strength are sufficiently small during one Newton iteration so that the activity
coefficients can be assumed to be constant.

According to one of these hypotheses, the Jacobian matrix can be easily computed by:

This is because:

Neglecting the derivative of the activity coefficient, one obtains:

Alternatively:

3
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Figure 1: Inner and outer fixed-point activity algorithms

Inner fixed-point activity algorithm

This algorithm is the most commonly used algorithm. At each Newton loop, the activity coefficients are
updated according to the new ionic force. From a strictly mathematical point of view, this method is then a
quasi-Newton method because the Jacobian matrix Z is an approximation of the derivative of the objective
function.

Outer fixed-point activity algorithm

Here, we propose this new algorithm. For a given set of values for the activity coefficients, the Newton pro-
cedure is iteratively run until convergence is achieved. Once convergence is reached, the activity coefficients
are updated according to the ionic strength computed at the time of convergence. This procedure is repeated
until no changes are detected in the activity coefficients. We then obtain a true Newton algorithm where
the Jacobian matrix used is truly the derivative of the objective function.

Derivative of the activity coefficients in the Jacobian matrix

One can find an approach in the PHREEQC code [15] for including the derivative of the activity coefficients
in the Jacobian matrix. By deriving the objective function, one obtains:

We then must calculate the derivative of the activity coefficients. Because the activity coefficients are strongly
dependent on the ionic strength, we write:

We then compute two parts:

1. The derivative of the activity coefficients versus the ionic strength . This component is model-dependent
and simple to compute regardless of which model is used. These elements are given for the 3 presented
models in equations to .

2. The derivative of the ionic strength versus the logarithm of the activity components.

Computation method 1: a recursive formulation

4
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. Computing the derivative of the ionic strength yields:

We obtain a recursive formulation for the derivative of the activity coefficients:

This recursive formulation can be rearranged as:

The vector contains the explicit portion of the equation. This vector differs depending on the component
used to derive the activity coefficient through the stoichiometric coefficient .

The matrix contains the coefficients of the implicit portion of the equation. This matrix is the same regardless
of the component used in the derivation.

A complete derivative of the activity coefficients is given by the following linear system:

or

Computation method 2: an explicit formulation

Computing the derivative of the ionic strength yields:

We obtain an explicit formulation for the derivative of the ionic strength:

This allows for an explicit formulation of the derivative of the activity coefficients:

Derivative of the activity coefficients versus the ionic strength : Davis model

For a Davis model, the activity coefficients are given in logarithmic form by:

Taking the derivative of this equation yields:

Derivative of the activity coefficients versus the ionic strength : Extended Debye Hückel model

For an extended Debye Hückel model, the activity coefficients are given in logarithmic form by:

Taking the derivative of this equation yields:

Derivative of the activity coefficients versus the ionic strength : B-dot model

For the B-dot model, the activity coefficients are given in logarithmic form by:

Taking the derivative of this equation yields:

Test cases

Testing procedure

It is well-known that the initial guess of the values of the components plays a critical role in the convergence
of the Newton methods [13, 21]. To test several initial guesses, we generate a large number (30 000) of
activity component values according to the following procedure:

where and and are given in the description of the chemical test case to handle a representative range of
concentrations.

We then obtain 30 000 realizations of the optimization procedure using the same chemical test case but
different initial guesses. To analyze this large amount of data, we construct a frequency graph of the number
of Newton iterations needed to reach convergence.

Chemical test cases

We propose 4 chemical test cases.

5
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. Test case with only activity correction

We first propose a test case without any chemical reactions. Any nonlinearity is only due to activity correction.
The chemical system is composed of chloride ions, calcium ions, aluminum ions and thin ions. We neglect
water dissociation and all chemical reactions. The details and equilibrium solutions are given in appendix 1.

Table 1: Chemical table for the test case with only activity correction.

Cl- Ca2+ Al3+ Sn4+ K

Cl- 1 0 0 0 1
Ca2+ 0 1 0 0 1
Al3+ 0 0 1 0 1
Sn4+ 0 0 0 1 1
TOTAL 9.10-5 10-5 10-5 10-5

Initial low I 5.10-7 5.10-7 5.10-7 5.10-7

Initial high I 5.10-4 5.10-4 5.10-4 5.10-4

10-9 10-9 10-9 10-9

5.10-1 5.10-1 5.10-1 5.10-1

One should note that this test case is not chemically realistic. Moreover, its numerical value comes only from
activity correction if the unknowns of the nonlinear system are the logarithms of the activity components .
Otherwise, if the unknowns are component concentrations , the problem becomes trivial and linear, and its
solution is the total concentration .

Phosphoric acid test case

This test presents reactions between phosphoric acid and salt water. It includes 4 components and 8 chemical
species. We handle only acid-base reactions: water dissociation and the 3 phosphoric acid reactions. A table
including the stoichiometric coefficients, equilibrium constants, total concentrations and equilibrium solutions
is given in appendix 2.

Gallic acid test case

This test case was proposed by Brassard and Bodurtha [20]. It includes 3 components and 17 chemical
species. It is a classical test case, and many difficulties in convergence have been reported while solving it
by using Newton or Newton-like algorithms [13, 14, 21]. A table including the stoichiometric coefficients,
equilibrium constants, total concentrations and equilibrium solutions is given in appendix 3.

Iron-chromium test case

This test case concerns the rehabilitation of chromium-contaminated industrial soil using an iron-chromium
reduction [2, 22]. Chromium (VI), which is the most toxic and mobile form of chromium, is reduced by iron
(II) to yield chromium (III), which has a much lower solubility and is less toxic [23]. This test is reported to
be a very difficult one [14, 21], so here we use some favorable testing conditions to increase the convergence
of the Newton algorithm. A table including the stoichiometric coefficients, equilibrium constants, total
concentrations and equilibrium solutions is given in appendix 4.

Results

Study of the test case with only activity correction during one resolution.

We first present two scenarios for the test case with only activity correction : one with a low ionic strength
and one with a high ionic strength. The objective is to determine the influence of the activity correction on

6
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. the Newton procedure depending on the algorithm used. For the situation with a low ionic strength, this
influence is expected to be negligible, whereas we expect a greater impact in the situation with a high ionic
strength.

For the low ionic strength situation, the initial component activities are 5.0 10-7 mol. L-1 for all components.
The ionic strength is 7.80 10-6 mol. L-1, and we obtain the species concentrations and activity values, which
are given in Table 2 . Also in Table 2 , we show the first Newton steps proposed by the fixed-point algorithms
(inner and outer) and by the full Newton algorithm.

Table 2: Initial values for the situation with a low ionic strength.

Fixed-point Full Newton

Cl- 5.02 10-7 0.997 8.41 8.41
Ca2+ 5.07 10-7 0.987 19.00 18.58
Al3+ 5.15 10-7 0.970 19.00 18.06
Sn4+ 5.27 10-7 0.948 19.00 17.34

The Jacobian matrices given by both fixed-point algorithms are the same:

The full Newton algorithm leads to the following derivative matrix of the activity coefficients:

The following Jacobian matrix is also obtained:

For the scenario with a low ionic strength, the Jacobian matrices are equivalent for the full Newton and
fixed-point algorithms, leading to similar Newton steps ().

The high ionic strength scenario starts with an initial component activities equal to 5.0 10-4 mol.L-1for all
components. The ionic strength equals 1.197 mol.L-1. The species concentrations, activity values and first
Newton steps proposed by the fixed-point algorithm (inner and outer) and full Newton algorithm are given
in Table 3 .

Table 3: Initial values for the situation with a high ionic strength.

Fixed-point Full Newton

Cl- 7.12 10-4 0.702 -0.82 -1.07
Ca2+ 2.06 10-3 0.243 -0.98 -1.78
Al3+ 1.20 10-2 4.16 10-2 -0.98 -2.75
Sn4+ 1.42 10-1 3.51 10-3 -0.98 -4.12

The Jacobian matrices given by both fixed point algorithms are the same:

The full Newton algorithm leads to the following derivative matrix of the activity coefficients:

The following Jacobian matrix is also obtained:

For the scenario with a high ionic strength, the Jacobian matrices Z are very different for the full Newton
and fixed-point algorithms, leading to very different Newton steps (). Moreover, we find an increase in
the condition number of matrix Z for the full Newton algorithm. The condition number of matrix is 21.6,
whereas it equals 1 for matrix .

The symmetry of the Jacobian matrix in equations and is specific to this test case. As shown in equation

7
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. , the Z matrix for the fixed-point algorithm is symmetric, whereas equation proves that it is usually not
symmetric for the full Newton algorithm.

Figure 2 : Evolution of || Y || versus the number of Newton iterations for the test case with only activity
correction

Comparing the three algorithms on the test case with only activity correction , one can see in Figure 2 that:

• The outer fixed-point algorithm requires the fewest Newton iterations to reach convergence, whereas
the inner algorithm requires the most iterations. The full Newton algorithm requires an intermediate
number of Newton iterations.

• For the tree algorithms, obtaining the solution at a low ionic strength requires less Newton iteration
than at a high ionic strength. This point is obvious: for this test case, activity corrections are the only
nonlinearity of the problem, and they are less important at a low ionic strength than at a high ionic
strength.

• The outer fixed-point algorithm runs 3 minimization loops for the situations with both low and high
ionic strength. The first loops converge at 10 (low) and 23 (high) iterations; the second loop converges
at 15 (low) and 29 (high) iterations. The third loop is theconfirmation loop used to check that no
changes in the ionic strength computation occur and then to confirm the convergence of the algorithm.

Frequency graphs

We plot graphs of the cumulative ratio of the resolutions that converge within a given number of Newton
iterations. According to the graph, the algorithm that reaches a cumulative frequency of 1 is said to be
robust. The algorithm that reaches a high cumulative frequency for a low number of Newton iterations is
said to be fast.

Test case with only activity correction

The test case with only activity correction is a simple chemical test case. It makes sense only for studying
the activity correction algorithms. It is solved by all the algorithms (see Table 5) within 150 Newton
iterations (Figure 3). The fastest algorithm is the outer fixed-point algorithm, regardless of the ionic strength.
Moreover, this algorithm shows a very low sensitivity to the ionic strength by resolving the low ionic strength
case within 24 or 25 iterations and the high ionic strength case within 21 iterations regardless of the initial

8
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. guess. The inner fixed-point and the full Newton algorithms are much more sensitive to the ionic strength,
with significant increases in the number of iterations required to converge in the case with a high ionic
strength. For this case, we find that the best algorithm is the outer fixed-point algorithm, and the inner
fixed-point algorithm is the worst according to the number of Newton iterations. Taking the computing time
of one Newton iteration into account (Table 4), we see that the full Newton algorithm is the slowest and the
outer fixed-point algorithm is the fastest.

Figure 3: Frequency graph for the test case with only activity correction at low and high ionic strengths.

Phosphoric acid test case

This test case is a simple chemical test, which is interesting in this context because of the PO4
3- species.

We find that all the algorithms reach 100 % resolution (Table 5) in fewer than 70 iterations. The frequency
graph shows that the full Newton algorithm usually converges within the fewest iterations and that the inner
fixed-point algorithm requires the most iterations to converge. Nevertheless, the outer fixed-point algorithm
provides very interesting results for this test case: it converges within 36 and 39 iterations regardless of the
initial guess.

9
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.

Figure 4: Frequency graph for the phosphoric acid test case

Gallic acid test case

The results for the gallic acid test case (Figure 5) confirm those of the phosphoric acid test case. The
inner fixed-point algorithm requires the most iterations to converge (approximately 150). The full Newton
algorithm usually requires fewer iterations (approximately 130) but sometimes requires many more iterations
(200); sometimes it fails to converge at all (0.05 % failure rate, see Table 5). The outer fixed-point algorithm
converges with the fewest iterations (77 iterations maximum). Moreover, this algorithm gives the sharpest
frequency graph, indicating that it is not sensitive to the initial guess.
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. Figure 5: Frequency graph for the gallic acid test case

Iron-chromium test case

The iron-chromium test case is the strongest test used here. It is reported [14, 21] to generate very high
condition numbers. The range of initial guesses is chosen with the goal of keeping this test reasonable.
Nevertheless, one can see (Figure 6) that it is very hard for the full Newton algorithm to converge, with a
91.35 % failure rate (Table 5). Notably, this full Newton algorithm sometimes results in faster resolutions
(according to the number of Newton iterations) because it is the only algorithm that sometimes converges
with fewer than 200 Newton iterations. Both the inner and outer fixed-point algorithms converge most
frequently within 230-240 iterations. The inner fixed-point algorithm reaches 80 % of its realizations after
240 iterations but needs up to 1000 iterations to complete the set and fails to converge at a rate of 1.62 %
(Table 5). The outer fixed-point algorithm requires between 226 and 233 iterations to converge regardless of
the initial point. Moreover, it always succeeds in solving this test case.

Figure 6: Frequency graph for the iron-chromium test case

Comparison of CPU times and failure ratios

As expected, the CPU times for one iteration loop increase as the number of species increases in the test
case and as the complexity of the algorithm increases (see Table 4). We show that the outer fixed-point
algorithm is the fastest and that the full Newton algorithm is the slowest. Moreover, the recursive formulation
of the full Newton algorithm is the slowest. For this reason, we strongly recommend not using the recursive
formulation, and we prefer the explicit formulation.

Table 4: CPU times for 1 loop (ms)

Outer fixed-point Inner fixed-point Full explicit Full recursive

Only I 1.76 10-6 2.18 10-6 4.70 10-6 1.74 10-4

Phosphoric acid 2.34 10-6 2.97 10-6 4.72 10-6 2.91 10-4

Gallic acid 2.03 10-6 2.68 10-6 6.30 10-6 6.23 10-4

Iron-chromium 3.04 10-4 1.15 10-5 3.59 10-5 1.29 10-3

11



P
os

te
d

on
A

u
th

or
ea

13
O

ct
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

26
24

45
.5

93
68

73
5/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. We find that the only algorithm that solves all the test cases with a 100 % success rate is the outer fixed-point
algorithm. The inner fixed-point algorithm is less robust and fails to solve the iron-chromium test 1.62 %
of the time. The weakest algorithm is the full Newton algorithm, which fails at a 0.05 % rate for gallic acid
test and at a 91.35 % rate for the iron-chromium test.

Table 5: Failure ratio after 1,000 iterations

Only-I Phosphoric acid Gallic acid Iron-Chromium

Inner 0.00 % 0.00 % 0.00 % 1.62 %
Outer 0.00 % 0.00 % 0.00 % 0.00 %
Full 0.00 % 0.00 % 0.05 % 91.35 %

Conclusion

We compared 3 algorithms based on their ability to handle activity correction in equilibrium chemistry
solvers.

The full Newton algorithm is the most integrated algorithm from a mathematical point of view. Nevertheless,
we found it to be the slowest and weakest algorithm. We suppose this algorithm increases the nonlinearity of
the chemical system by injecting activity corrections into the mass action equations and conservation laws.
It increases the condition number of the Jacobian matrix, as shown by comparing and . It has been shown
[14, 21] that a condition number that is too high leads to inaccurate steps in the Newton methods, leading to
numerical difficulties or nonconvergence. Because chemical equilibrium computation is still a highly nonlinear
problem, increasing its nonlinearity by injecting activity correction seems to be an inefficient choice.

The inner fixed-point algorithm includes an intermediate integration of activity correction into the Newton
loop. Both loops, Newton for the mass action equations and conservation laws and fixed-point for activity
correction, run together. In this way, changes induced by activity correction disturb the Newton mini-
mization. This point explains the convergence difficulties of the inner fixed-point algorithm when activity
correction becomes important.

The outer fixed-point algorithm proposes a complete separation between the Newton and activity correction
loops. In this way, nonlinearity induced by activity correction cannot disturb the Newton convergence, and
the condition number of the Jacobian matrix is lower than that obtained by the full Newton algorithm. This
leads to a more stable and robust algorithm. We found that the outer fixed-point algorithm is the fastest in
terms of CPU times for one Newton iteration, usually faster than or equivalent to the other algorithms in
terms of the number of required Newton iterations and the most robust.

According to the results presented here, we recommend the outer fixed-point algorithm. This algorithm is
the least time consuming for one Newton iteration, it usually requires the fewest number of iterations, and it
is the most robust and least sensitive to the initial guess. Moreover, its implementation with existing codes
is very simple and requires very few modifications.

Acknowledgements

The authors acknowledge the French programme NEEDS for its financial support to the project NewSolChem

Bibliography
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