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Abstract

Background Metabolic syndrome and obesity occur commonly in long-term pediatric cancer survivors and exacerbate other
chronic conditions. The intestinal microbiome is associated with metabolic syndrome and obesity in the general population,
and is perturbed during cancer therapy. We aimed to determine if long-term survivors of pediatric cancer would have reduced
bacterial microbiome diversity, and if these findings would be associated with components of the metabolic syndrome, obesity,
and chronic inflammation. Methods We performed a cross-sectional study examining the intestinal microbiome, clinical factors,
and biomarkers between 35 long-term survivors and 32 age, sex, and race matched controls. All subjects were ages 10-40, and
survivors were at least five years from the time of diagnosis. Results Survivors had decreased alpha diversity compared to
controls (Shannon index p=0.001, Simpson index p=0.032) and differently abundant bacterial taxa. Further, among survivors,
those who received radiation to the central nervous system or abdomen/pelvis had decreased alpha diversity compared to those
that did not receive radiation (Shannon and Simpson p<0.05 for both). Although, no specific component of metabolic syndrome
or cytokine was associated with measures of alpha diversity, survivors with low adiponectin-lectin ratio, elevated body mass
index, and elevated C-Reactive protein had differently abundant taxa compared to those with normal measures. Conclusions
The microbiome of cancer survivors remains less diverse than controls even many years after diagnosis, and exposure to radiation
may lead to further loss of diversity in survivors. The microbiome may be associated with metabolic syndrome and chronic

inflammation in survivors.
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Abstract
Background

Metabolic syndrome and obesity occur commonly in long-term pediatric cancer survivors and exacerbate
other chronic conditions. The intestinal microbiome is associated with metabolic syndrome and obesity



in the general population, and is perturbed during cancer therapy. We aimed to determine if long-term
survivors of pediatric cancer would have reduced bacterial microbiome diversity, and if these findings would
be associated with components of the metabolic syndrome, obesity, and chronic inflammation.

Methods

We performed a cross-sectional study examining the intestinal microbiome, clinical factors, and biomarkers
between 35 long-term survivors and 32 age, sex, and race matched controls. All subjects were ages 10-40,
and survivors were at least five years from the time of diagnosis.

Results

Survivors had decreased alpha diversity compared to controls (Shannon index p=0.001, Simpson index
p=0.032) and differently abundant bacterial taxa. Further, among survivors, those who received radiation
to the central nervous system or abdomen/pelvis had decreased alpha diversity compared to those that did
not receive radiation (Shannon and Simpson p<0.05 for both). Although, no specific component of metabolic
syndrome or cytokine was associated with measures of alpha diversity, survivors with low adiponectin-lectin
ratio, elevated body mass index, and elevated C-Reactive protein had differently abundant taxa compared
to those with normal measures.

Conclusions

The microbiome of cancer survivors remains less diverse than controls even many years after diagnosis, and
exposure to radiation may lead to further loss of diversity in survivors. The microbiome may be associated
with metabolic syndrome and chronic inflammation in survivors.

Introduction

Improvements in treatment for childhood cancer patients have led to more than 80% of patients becoming
long-term survivors [1], with more than 400,000 survivors of childhood cancer living in the United States [2].
However, among long-term survivors, the rates of chronic severe health conditions remain greatly elevated
compared to those of the general population [2-4]. Metabolic syndrome and obesity occur commonly in
long-term survivors and exacerbate other chronic health conditions [5-15]. Chronic inflammation has several
mechanistic links to obesity and metabolic syndrome [16], and long-term survivors of pediatric malignancies
show evidence of chronic inflammation [5,17,18]. How chronic inflammation is mechanistically related to
long-term side effects in survivors is still poorly understood.

The microbiome is associated with multiple aspects of pediatric oncology [19]. Active treatment for cancer
patients clearly alters the intestinal microbiome [20-22]; however, it is less clear if these changes persist many
years after treatment. In otherwise healthy neonates and young children, treatment with antibiotics leads to
long-term changes in the microbiome [23-25]. Antibiotic use in infancy is associated with an increased risk
of obesity [26], and changes in the microbiome have been associated with several components of metabolic
syndrome in the general population [27-29]. These findings have led some to propose that cancer treatment
may lead to microbiome reconstitution with pro-inflammatory organisms that increase the risk for metabolic
syndrome [8]. We hypothesized that long-term survivors of pediatric cancer and blood and marrow transplan-
tation (BMT) would have reduced bacterial microbiome diversity compared to controls, and these findings
would be associated with components of the metabolic syndrome and chronic inflammation. To test this
hypothesis, and with the potential to generate new hypotheses, we performed a single-center, cross-sectional
exploratory study examining the microbiome, clinical factors, and multiple biomarkers between long-term
survivors and age, sex, and race matched controls.

Materials and Methods
Participant Eligibility and Enrollment

Approval was obtained from the Institutional Review Board at the Cleveland Clinic. Survivors were recruited
from our comprehensive long-term clinic for survivors of pediatric and young adult cancer and stem cell



transplantation. Survivors were required to be at least five years from completion of chemotherapy or stem
cell infusion. Controls were a convenience sample recruited from members of patient’s families, clinic staff
and other healthy volunteers. Survivors and controls were required to be between the age of 10 and 40 years
at the time of enrollment, and must have refrained from using antibiotics in the preceding six months.

Data and Sample Collection

After consent or assent with parental consent was obtained from survivors and controls, participants filled
out a brief history regarding health history, diet, and exercise. Body weight, height, and blood pressure were
obtained by clinic staff. Clinical lab testing was performed as indicated for survivors. Serum, plasma, and
whole blood were drawn for later analysis for all subjects at study visit. Stool was collected at the patient’s
home or on-site at the Cleveland Clinic using an Abbexa (Houston, TX) Feces Catcher stool collection
kit, then shipped on ice to the Genomics Medicine Biorepository within 30 days. The samples were then
aliquoted and centrifuged at 13,200rpm for 15s. The supernatant was removed, and the fecal pellet was
stored at -80°C to await further processing.

Clinical Data

Clinical data from survivors were extracted from the electronic medical record. Time from diagnosis was
calculated based on the difference from day of enrollment and date of diagnosis. Cyclophosphamide equiva-
lent dose was calculated based on the method of Green, et al [30]. Total days of broad spectrum antibiotics
was determined based on the total number of days of the following intravenous agents: ampicillin/sulbactim,
aztreonam, cefepime, ceftazidime, ceftriaxone, ciprofloxacin, clindamycin, imipenem, meropenem, Metro-
nidazole, piperacillin/ tazobactam, and vancomycin, received from the time of diagnosis to completion of
therapy (or day 100 for transplantation patients).

Biomarker Laboratory Analysis

Lipid and HbA1lc measurements were obtained in a Clinical Laboratory Improvement Amendments certified
lab, if clinically indicated. If these lab tests were not clinically indicated at the time of the visit, stored samples
were then later run on a similar machine at the Cleveland Clinic Laboratory Diagnostic Core (Cobas ce6000
€601 module and ¢501 module). Additional biomarker assays were also performed at the Cleveland Clinic
Laboratory Diagnostic Core. C-Reactive protein (CRP) was measured using the Cobas ¢e6000 e601 module.
The automated Tecan EVO Liquid/Plate System was utilized for for Enzyme Linked Immunosorbant assays
(ELISA). ELISA were used to measure Adiponectin, Leptin, Tumor Necrosis Factor alpha, Interleukin-6,
and Interleukin-10 (R&D Systems, Minneapolis, MN).

DNA Extraction

Total DNA, including microbial genomic DNA, was extracted from fecal pellets using the QIAmp PowerFecal
Pro DNA Kit (Qiagen, Germantown, MD) according to the manufacturer’s protocol with minor modifications
as follows. Each pellet was resuspended in 800 ul of Solution CD1, after which samples were homogenized
with 3 runs of 30 s at 6 m/s in a FastPrep-24 5G bead beater (MP Biomedicals, Solon, OH). Following
centrifugation at 15,000 x g for 1 min, the supernatant was transferred to a clean tube and 200 ul of Solution
CD2 was added. After another centrifugation at 15,000 x g for 1 min, the supernatant was transferred to
a clean tube and mixed with 600 ul of Solution CD3. The resulting lysate was spun through an MB Spin
Column and the flow-through discarded. Columns were washed with 500 ul of Solution EA and then 500
ul of Solution C5. Following a drying step at 16,000 x g for 2 min, 50-100 ul of Solution C6 was added to
elute the DNA. Buffer-only negative controls were processed identically in parallel. DNA concentrations and
quality were determined using a NanoDrop 1000 (Thermo Scientific, Waltham, MA), and DNA was stored
at -20C until 16S library preparation.

Sequencing and Analysis

16S rRNA gene sequencing methods were adapted from the methods developed for the National Insti-
tutes of Health-Human Microbiome Project [31]. Briefly, the 16S rRNA V4 region was amplified and



sequenced on Illumina Iseq 100 platform using manufacturer’s instructions. Raw 16S amplicon sequence
(forward reads only) and metadata were demultiplexed using split_libraries_fastq.py script implemented in
QIIME1L.9.1 [32]. The demultiplexed fastq file was split into sample-specific fastq files using split_sequence_-
file_on_sample_ids.py script from Qiimel.9.1 [32]. Individual fastq files without nonbiological nucleotides
were processed using Divisive Amplicon Denoising Algorithm pipeline [33]. The output of the dada2 pi-
peline (feature table of amplicon sequence variants) was processed for alpha and beta diversity analysis
using phyloseq and microbiomeSeq (http://www.github.com/umerijaz/microbiomeSeq) packages in R [34].
Alpha diversity estimates were measured within group categories using estimate_richness function of the
phyloseq package [34]. Nonmultidimensional scaling (NMDS) was performed using Bray-Curtis dissimila-
rity matrix [35] between groups and visualized by using ggplot2 package [36]. We performed an ANOVA
among sample categories while measuring o-diversity using the plot_anova_diversity function in microbiome-
Seq package (http://www.github.com/umerijaz/microbiomeSeq). We then performed permutational multi-
variate ANOVA with 999 permutations to test the statistical significance of the non-multidimensional scaling
patterns with the ordination function of the microbiomeSeq package. Pair wise two group analysis was per-
formed using White’s non-parametric t-test [37]. We assessed the statistical significance (P<0.05) throughout
and whenever necessary adjusted P values for multiple comparisons according to the Benjamini and Hochberg
method to control false discovery rate [38], while performing multiple testing on taxa abundance according
to sample categories.

Additional Statistical Analysis

Metadata, Simpson, and Shannon Index results were exported to Prism (GraphPad Prism Software, La Jolla,
CA) for analysis. We tested categorical variables using a two-sided Fisher’s exact test. We used an inde-
pendent two-sample t-test to calculate two-tailed P-value for continuous variables. Pearson correlation was
calculated to determine relationships between measures of alpha diversity and clinical data and biomarkers.

Results
Patient Characteristics

A total of 35 long-term cancer survivors and 32 controls were recruited(Table 1) . Survivors and controls
were frequency matched for age, sex, and race (non-Hispanic White vs. other). Groups demonstrated
similar diet types, Rapid Eating Assessment for Participants (REAP-S) score, birth via caesarian section
or vaginally, and having been breastfed as an infant. The survivor cohort also underwent chart review to
determine cancer type and treatment history, anthropomorphic measurements, clinical laboratory analysis,
and additional survey questions (Table 2 ).

Composition of Bacterial Gut Microbiome

Overall, the most common taxa represented among all subjects wereBacteroides (19.1%). This was fol-
lowed by Blautia(14.3%), Faecalibacterium (7.8%), Roseburia (5.8%), Ruminococcus (5.8%), Bifidobacterium
(4.1%), Fusicatenibacter (3.8%), Subdoligranulum (3.2%),Akkermansia (3.1%), and Anaerostipes (2.8%). Dis-
tribution of major taxa was similar across survivors and controls(Figure 1) .

Comparison of Gut Microbiome between Survivors and Controls
Diversity

In order to determine if within-sample diversity (a-diversity) of each group differed, we calculated the Shan-
non and Simpson diversity indices (which takes into account both evenness and richness of communities)
of the samples from survivors and controls. Evaluation of the bacterial microbiome demonstrated reduced
alpha diversity (p<0.05) utilizing both Shannon and Simpson indices (Figure 2a).Bray-Curtis dissimilarity
index was used to determine differences in bacterial taxonomic composition between the case and control
groups (B-diversity). B-diversity comparisons (Figure 2b) between specimens from both groups showed
modest differential clustering (R?=0.26, p=0.006).

Differently Abundant Taza



After adjusting for diet quality (REAP-S score) and type (western, vegetarian, etc.) we compared relative
taxa abundance between survivors and controls (Figure 3). Eight taxa had statistically significant differen-
tial abundance (p<0.05) after adjusting for multiple comparisons (false discovery rate 0.05). Three amplicon
sequence variants (ASVs) of Bacteroides , one ASV of Lachnospiraceae , and one ASV of Holdemanella were
more common in controls, suggesting these taxa may be depleted with cancer therapies, whereas two ASVs
of Lactobacillus , and one of Facealitalea were more common in survivors.

Microbiome among Survivors

We next analyzed features of the microbiome among survivors based on previous exposures that we hy-
pothesized to cause long-term changes in the microbiome. Alpha diversity differed between the type of
disease survivors experienced (hematologic malignancies, central nervous system tumors, other solid tumors,
or bone marrow transplantation for a non-malignant condition), but smaller group sizes limited ability to
make definitive comparisons (Supplementary Figure 1). We did not observe a correlation between the
time from diagnosis to study enrollment and the Shannon index (R=0.04, p=0.80).

To measure overall chemotherapy intensity, cyclophosphamide equivalent dosing was calculated for each
survivor [30]. We did not observe a correlation between cyclophosphamide equivalent dose and Shannon
index (R=0.03, p=0.89). In contrast, we did detect several differently abundant taxa between those who
received above and below the mean cyclophosphamide equivalent dose (Supplementary Figure 2a).

We next determined the role of antibiotic intensity on the microbiome in survivors by calculating the total
days of intravenous broad spectrum antibiotics received during the treatment period. We did not observe a
correlation between total days of broad spectrum antibiotics and Shannon index (R=0.06, p=0.81). However,
we did observe several differently abundant taxa between those who received above and below the mean
antibiotic days (Supplementary Figure 2b).

We also examined the role of radiation therapy on the microbiome in the survivor cohort. Survivors who had
radiation exposure to the abdomen or pelvis were compared to those survivors who did not receive radiation
to these locations. For those that received radiation to the abdomen/pelvis, o-diversity as measured by
Shannon and Simpson indices was reduced compared to those that did not (p<0.05 for both)(Figure 4a).
Further, differently abundant taxa were seen between these two groups, with those having received radiation
to the abdomen/pelvis demonstrating a greater proportion of several Bifidobacterium ASVs whereas those
that did not receive radiation had a greater abundance of several Blautia ASVs (Figure 4c). We also
analyzed the impact of radiation exposure to the central nervous system and found that those that received
central nervous system radiation had decreased o-diversity as measured by Shannon and Simpson index
(Figure 4b).

Relationship between the Microbiome, Metabolic Syndrome, and Chronic Inflammation

Next we compared features of the microbiome and subject clinical characteristics, including components of
metabolic syndrome as well as several markers of inflammation, amongst survivors. We did not observe a
statistically significant correlation with either Shannon or Simpson Index and Hemoglobin Alc, High Density
Lipoprotein, Low Density Lipoprotein, Adiponectin- Leptin ratio, systolic blood pressure, diastolic blood
pressure, or body mass index (Supplementary Table 1). We also did not observe a significant correlation
between Shannon or Simpson index and levels of C-Reactive protein, Tumor Necrosis Factor alpha, or
Interleukin-10 (Supplementary Table 2). A modest correlation was seen between Simpson index and
levels of Interleukin-6 amongst survivors (R=-0.41, P=0.02), but no correlation was seen between Shannon
index and Interleukin-6 levels (R=-0.04, P=0.81).

We also examined differently abundant taxa in subjects based on adiposity, body mass index and inflam-
mation. Subjects with less favorable Adiponectin-Leptin ratio (<1.0) had increased abundance of multiple
Bacteroides ASVs (Supplemental Figure 3) . Survivors with differing body mass index and C-Reactive
protein levels also demonstrated differently abundant taxa after adjusting for a FDR of 0.05 (Supplemental
Figure 4, Supplemental Figure 5) .



Discussion

Overall, we found that long-term survivors of childhood cancer have decreased gut bacterial microbiome
diversity and differently abundant bacterial taxa, even years after the completion of therapy. Further, these
changes are apparent despite the finding of similar present diet practices between survivors and controls.
Additionally, radiation therapy, particularly to the abdomen and pelvis, but also cranial radiotherapy, ap-
pears to be associated with reductions in gut microbial diversity and differently abundant taxa. Interestingly,
exposures such as chemotherapy and antibiotic intensity were not directly associated with alpha diversity in
survivors, though they were associated with differentially abundant taxa. In this study, alpha diversity itself
did not appear to be associated with components of the metabolic syndrome or chronic inflammation among
childhood cancer survivors, but low prevalence of metabolic derangements in the study population may have
precluded this finding. Notably, however, among survivors with increased adiposity, elevated body mass in-
dex, and increased inflammation, differently abundant taxa were present, suggesting a potential interaction
with the microbiome.

Two previous studies in similar populations also demonstrated reduced microbial diversity in childhood
cancer survivors. Among 13 long-term Hodgkin lymphoma survivors and twin controls (8 dizygotic, 5
monozygotic), survivors had fewer operational taxonomic units in fecal samples compared to their co-twin
control [39]. A recent study of adult survivors of childhood acute lymphoblastic leukemia from Malaysia
compared survivors to healthy controls [18]. Similar to the present study, Chua, et al. recruited controls
among healthcare works, siblings, and other volunteers and were matched for sex and ethnicity, though
neither subjects nor controls were excluded for recent antibiotic use. Chua, et al. also found that survivors
had altered composition of taxa and decreased alpha diversity of bacteria compared to healthy controls, but
used anal swabs for sample acquisition.

Survivors of childhood acute lymphoblastic leukemia have been previously demonstrated to have increased
levels of inflammation compared to controls [17]. Indeed, Chua, et al. demonstrated modest associations be-
tween bacterial taxa and Interleukin-6 and C-Reactive protein, though the role of cancer history, chemother-
apy and antibiotics in these associations was unclear [18]. In the present study we were not able to detect an
association between alpha diversity and markers of chronic inflammation in survivors, but did see differences
in taxa abundance based on levels of C-Reactive protein. As opposed to the work previously performed, this
is the first study to clearly demonstrate alterations in microbiota in a heterogeneous cohort of long-term
survivors based on multiple different underlying malignancies. Additionally, although radiation has been
shown to lead to short term changes in the microbiome in oncology patients [40,41], ours is the first study
to demonstrate a relationship between radiation and microbiome diversity many years after treatment.

Our study has some limitations. First, our cohort did not have high levels of phenotypic abnormalities.
Hyperlipidemia and insulin resistance were uncommon, and most patients did not possess components of
the metabolic syndrome. This limited our ability to detect an association of the microbiome with these
late effects, and perhaps a larger or older cohort of patients may have improved that power. Further, the
associations between differently abundant taxa and phenotypes demonstrated in this study do not necessar-
ily imply causation, and mechanistic studies would be required to further characterize these relationships.
Additionally, we did not perform internal transcribed spacer sequencing in this study to detect a potential
interplay between the bacterial microbiome and the gut fungal microbiome, which has been implicated in
obesity and other diseases [42,43]. Finally, this was a single institution exploratory study, and microbiome
findings may be unique to the patients seen in our clinic or geography. Regardless, this study still defines
important relationships ripe for further exploration.

Overall, this study demonstrates that long-term survivors of childhood cancer have decreased gut bacterial
microbiome diversity and differently abundant bacterial taxa, even years after the completion of therapy.
Additionally, radiation may be particularly important in microbial diversity among this cohort. In future
experiments, we aim to further categorize the metabalome in a similar cohort of patients to better understand
if the difference found on 16S sequencing results in alterations of metabolic products in the blood-stream.
We also aim to explore potential relationships with the fungal microbiome and gain a better understanding



of mechanisms via gnotobiotic mouse experiments. Further, in order to detect associations with clinically
relevant late effects, we aim to perform a larger multicenter study using older subjects with greater prevalence
of comorbidities.
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Tables
Table 1. Cases v. Controls

Survivors (N=35) Controls (N=32) P-Value

Age at Recruitment (mean, SE) 22.2 (1.03) 24.7 (0.94) 0.08
Sex (% Female) 45.7% 53.1% 0.63
Race (% Non-Hispanic White) 74.3% 53.1% 0.08
Diet Type (% American/ Western) 77.1% 71.9% 0.78
REAP-S Score (mean, SE) 28.1 (0.78) 29.2 (0.91) 0.36
Born via Vaginal Delivery (%) 69.0% 74.1% 0.77
Breastfed as Infant (%) 66.7% 79.2% 0.36

Table 1. SE: standard error; REAP-S: Rapid Eating Assessment for Participants
Table 2 Characteristics of Cancer Survivor Cohort (N=35)

Age at Diagnosis (years; median, range)

Time Since Diagnosis (years; median, range)

Disease Type Hematologic Malignancy Central Nervous System Tumor Other Solid Tumor BMT for Non-Malignant Conc
Radiation Central Nervous System Radiation Abdomen/Pelvis Radiation

Cyclophosphamide Equivalent Dose (median, range)

Underwent BMT Allogeneic Autologous

Received Broad Spectrum Antibiotics During Therapy (%) Yes No Unavailable
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Total Days of Broad Spectrum Antibiotics (median, range) Measurement (median, range) Hemoglobin Alc Low-De

Table 2. Primary Diagnosis include: Acute Lymphoblastic Leukemia (12), Hodgkin Lymphoma (3), Medul-
loblastoma (2), Osteosarcoma (2) Non-Hodgkin Lymphoma (2) Neuroblastoma (2), Low Grade Glioma (2),
Wilms Tumor (2), Acute Myeloid Leukemia (1), Anaplastic Oligoastrocytoma (1), Ewing Sarcoma (1),
Langerhans Cell Histiocytosis (1), Mixoid Fibrous Histiocytoma (1), Rhabdomyosarcoma (1), Primitive
Neuro-Ectodermal Tumor (1), Other (1).

Figures
Figure 1. Genus-level abundance in controls and survivors

Figure 2. o- and B-diversity of bacterial communities in survivors and controls. (A) a-diversity based on
Shannon and Simpson index (B) f-diversity displayed as principal coordinate analysis based on Bray-Curtis
dissimilarity index.

Figure 3. Differential abundance analysis of survivors (orange) versus controls (pink). Listed taxa were
statistically significantly different in abundance, after adjusting for multiple comparisons.

Figure 4. (A) Alpha diversity based on having received radiotherapy to the abdomen/pelvis, and (B) by
receipt of radiotherapy to the central nervous system. (C) Differently abundant taxa based on radiation to
abdomen/ pelvis.
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