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Abstract

Maxent is commonly used species distribution modelling (SDM) program due to its better performance over other SDM

programs. But model complexity and selecting optimal models are two important concerns for Maxent users. In order to

help advance the field we built 44 sets of models by combining 11 regularization multipliers and four feature classes for 10 fish

and 28 odonate species of Bhutan with small occurrence data. We then selected optimal models using four sequential optimal

model selection approaches: two ORTEST approaches which combined threshold dependent test omission rate (OR) followed by

area under receiver operating curve for test data (AUCTEST), and two AUCDIFF approaches that combined OR followed by

difference between training AUC and AUCTEST (AUCDIFF) and then AUCTEST. We then screened for ecologically plausible

binary suitable/unsuitable model for each species among the optimal models selected by the sequential approaches or from

the remaining models using expert knowledge (EXP approach). We then compared different model features and the predicted

binary habitat of the optimal models selected by the five approaches. Models selected by ORTEST approaches matched better

with ones selected by EXP approach despite them selecting more complex models compared to AUCDIFF approaches. Further,

models selected through AUCDIFF approaches overpredicted the habitat more often than the models selected through ORTEST

approaches when compared to models chosen by EXP approach. We recommend use of ORTEST approaches for model selection

either as the first line of model screening or by their own when less restrictive thresholds are used to produce binary habitat

maps as we did here. First, this would reduce time required for expert screening of multiple models for ecologically plausible

models when many species are studied. Second, when used alone, ORTEST approaches can avoid either selecting models that

under predict or over predict the suitable habitat.

Introduction

Species distribution models (SDMs) are used increasingly in different stages of conservation decision making
(Guisan et al. 2013). Among numerous SDM methods, techniques that use presence-only occurrence data
have become more popular with readily available georeferenced presence data (for example from GBIF) and
environmental variables (Gomez et al. 2018). Among the presence only modelling methods Maxent has
become very popular (Phillips et al. 2017, Morales, Fernández, and Baca-González 2017). Maxent identifies
the suitable geographic areas for species given the set of environmental variables and known occurrence
records by applying a maximum entropy model (Phillips and Dud́ık 2008). The increased use of Maxent has
been ascribed to its better performance over other methods when used with low occurrence data (Elith et
al. 2011, Coxen, Frey, Carleton, and Collins 2017) and also for its ease of use through its graphical user
interface (GUI) (Phillips et al. 2006, Morales et al. 2017, Kass et al. 2018).

The Maxent output can be overfit or under fit to the occurrence localities which results in models that under-
predict or overpredict the suitable area respectively (Shcheglovitova and Anderson 2013). Maxent output
quality depends on model complexity (Shcheglovitova and Anderson 2013, Morales et al. 2017, Phillips 2017),
run type (Phillips 2017), bias in occurrence data (Phillips et al. 2009, Syfert, Smith, and Coomes 2013) and its
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. correction methods (Kramer-Schadt et al. 2013), background selection methods (Merow, Smith, and Silander
Jr 2013; Vollering, Halvorsen, Auestad, and Rydgren 2019), and output types (Phillips 2017, Phillips et al.
2017). Once other factors are taken into consideration, model complexity becomes the most important issue
(Syfert, Smith, and Coomes 2013). Model complexity is controlled by the types of feature class (hereafter:
‘FC’) and the value of the regularization multiplier (hereafter: ‘RM’) used (Radosavljevic and Anderson
2014, Morales et al. 2017, Phillips 2017). The current version of Maxent v 3.4.1 has linear (L), quadratic
(Q), product (P), and hinge (H) features as default FCs and threshold (T) as optional FC (Phillips et al.
2017), while default RM used is 1. Though the models builtvusing either larger or smaller RM compared
with the default, are expected to be over-complex or over-simplistic respectively (Phillips et al. 2017), it
was actually the models built using default RM and the FCs that were found to be either over-complex or
over-simplistic (Shcheglovitova and Anderson 2013, Morales et al. 2017). Therefore, it is prudent to build
multiple models using different combinations of RM values and FCs and then choose the optimal model for
use in conservation decisions (Muscarella et al. 2014, Morales et al. 2017, Phillips et al. 2017, Galante et al.
2018).

Choosing the optimal model is another key concern for all Maxent users (Warren and Seifert 2011, Shcheglo-
vitova and Anderson 2013, Muscarella et al. 2014, Radosavljevic and Anderson 2014, Galante et al. 2018).
Maxent models have been selected using two model selection approaches: (i) information criteria, specifically
Akaike information criteria corrected for small sample size (AICc) and (ii) performance in predicting with-
held data (Galante et al. 2018). Out of the two approaches AICc was more robust when species occurrence
had sampling bias, but both performed well when the bias was corrected (Galante et al. 2018). However,
there is a question on the AICc’s fit for model selection in Maxent despite its better performance (Muscarella
et al. 2014, Galante et al. 2018). Whereas, the withheld data selection approach is open to the use of mul-
tiple selection criteria (Muscarella et al. 2014) which are either used independently (e.g. Warren and Siefert
2011) or in various combinations (e.g. Shcheglovitova and Anderson 2013, Radosavljevic and Anderson 2014,
Galante et al. 2018) to select the optimal model.

The commonly used model selection criteria under the ‘withheld data’ approach include the ‘area under the
curve of the receiver operating characteristic’ plot for the training data (AUCTRAIN) and AUCTEST, the
AUCDIFF and the OR (Warren and Siefert 2011, Muscarella et al. 2014, Radosavljevic and Anderson 2014,
Galante et al. 2018). When used independently AUCTRAIN and AUCTESTcan provide model discriminatory
power. However, use of AUCTRAIN for model evaluation is criticized, with the use of AUCTEST preferred
(Radosavljevic and Anderson 2014). While, AUCDIFF and OR can evaluate overfitting (Warren and Sie-
fert 2011, Radosavljevic and Anderson 2014), they may also select over permissive models (Galante et al.
2018). Therefore, recent literature has either used a sequential combination of OR and AUCTEST (ORTEST

approach) (Galante et al. 2018) or OR, AUCDIFF and AUCTEST(AUCDIFF approach) (Radosavljevic and
Anderson 2014) but their performances have not been compared directly. Since Maxent produces multiple
ORs corresponding to multiple thresholding rules there is also a need to assess the performance of different
thresholding rules and their corresponding ORs for optimal model selection along with the use of multiple
taxonomic groups to help derive general patterns (Galante et al. 2018) if present.

In this study we developed multiple SDMs with different FC and RM combinations for two groups of
freshwater organisms with different life history traits, namely 10 fish (which complete their whole lifecycle
in water) and 28 odonate species (whose nymphal stage is aquatic but the adults are terrestrial (Bybee
et al. 2016)) recorded from Bhutan. We then selected optimal models for each species using two ORTEST

and two AUCDIFF approaches. We also selected optimal models through expert screening for ecologically
plausible models using binary suitable habitat maps (hereafter ‘EXP approach’). Though it is sensible to
tune models and then screen for ecologically plausible models in every study (Muscarella et al. 2014, Morales
et al. 2017, Phillips et al. 2017, Galante et al. 2018), this option may be either very time consuming or
outright impractical if multiple species are involved within a time bound project. Therefore, we aimed to
assess which of the sequential approaches best matched the EXP approach in selecting the optimal models,
and hence help reduce the time required for the optimal model selection. We did this by comparing (i) model
complexity and (ii) the predicted suitable habitats of the optimal models selected through the five selection

2



P
os

te
d

on
A

u
th

or
ea

16
N

ov
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

79
.9

33
80

16
3/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. approaches.

Materials and method

Species occurrence data

We collated and cleaned the occurrence data of the fish and odonate species of Bhutan (see Appendix 1 Table
S1). We then rarefied the occurrence of all the fish and odonate species with five or more occurrences to
Euclidean distance of 5km using the SDMtoolbox v2.4 (available fromhttp://sdmtoolbox.org/, Brown 2014,
Brown, Bennett and French 2017). We aimed to reduce the negative influence of the spatial autocorrelation
among occurrences on the species distribution models (Brown 2014, Brown et al. 2017, Galante et al. 2018),
but also to retain the maximum possible number of species with at least five occurrences. This resulted in
10 fish and 28 odonate species with small occurrences (n= 5 to 21) for which we built SDMs and used these
for the current study.

Environmental variables

We used 19 bioclimatic variables with 30s resolution (˜ 1km2 near the equator) that gives current clima-
te data (Fick and Hijmans, 2017 available inhttp://worldclim.org/version2 ) as the environmental variables.
Bioclimatic variables are derived from the monthly temperature and rainfall values to make them biologically
more meaningful; for example, mean annual temperature, maximum temperature of the warmest month, an-
nual precipitation and precipitation of the wettest quarter etc. (Fick and Hijmans, 2017). In addition, we also
used elevation (AsterDEM Version3 drukref03.im obtained from Watershed Management Division, Ministry
of Agriculture and Forest) as an environmental variable. We used bioclimatic variables as environmental
variables even for the fish as previous studies have found SDMs built using bioclimatic and hydrological
variables did not differ for fish (McGarvey et al. 2018). We also did not reduce bioclimatic variables since our
study is exploratory in nature, and collinearity among environmental variables was not an issue in a machine
learning environment like Maxent (Elith et al. 2011, Marco Júnior and Nóbrega 2018) though some literature
(e.g. Merow, Smith, and Silander Jr., 2013) suggests being cautious when interpreting SDMs resulting from
the use of correlated environmental variables.

Bias files

The ‘presence only’ SDMs are affected by bias sampling, to overcome this one of the common methods
employed is the use of a target group bias file to restrict background sampling area (Phillips et al. 2009;
Syfert et al. 2013; Vollering et al. 2019). We pooled all occurrence coordinates of the fish species and adult
odonate species with 2 or more occurrence coordinates to produce target group bias files for both fish and
odonate species respectively. However, we excluded Epiophlebia laidlawi from the odonate target group since
its distribution in Bhutan is known only from its larval distribution while all other odonate species are
mainly known from their adult occurrence (Appendix 1). Therefore, we developed a separate bias file for the
E. laidlawiusing all the sampling sites from Dorji (2015) along with occurrence coordinates from Brockhaus
and Hartmann (2008) and Dupchu, S (Personal communication). We used Hydrosheds (hybas as lev12 -
v1c available inwww.hydrosheds.org, Lehner and Grill, 2013) clipped to the Bhutan boundary to bound the
occurrence instead of regular sized grid cells of the environmental variables (Phillips et al. 2009; Syfert et al.
2013) to develop sampling bias grids.

Model setting

We used Maxent v 3.4.1 (Phillips, Dud́ık and Schapire) to model the species distributions. We used Maxent’s
current default output format Cloglog since it gives a better result over logistic when bias correction is used
(Phillips, 2017; Phillips et al. 2017). We used four sets of FCs resulting from the use of individual FCs
independently or in combination with other FCs, namely (i) linear (L), (ii) linear-quadratic (LQ), (iii) hinge
(H) and (iv) linear-quadratic-hinge (LQH) after Galante et al. (2018) to build models given our species had
only a small number of occurrence records (Table S1). Higher FCs were found to produce less complex (i.e.,
lesser number of parameters) and less overfitting (i.e., lower omission rates) models when occurrences were
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. small (Radosavljevic and Anderson 2014). Specifically, the hinge feature was better for species with small
occurrence values (Galante et al. 2018).

RMs with values less than default produce models which are overfit to occurrence data and are not well
generalized, while larger RMs would produce spread out and less localized models (Phillips, 2017). Though
Radosavljevic and Anderson (2014) also observed a slight peak in the model discriminatory ability around
the default RM, they found substantial reduction in overfitting when RMs of two to four times that of the
default were used. However, they also found both the model quality and the overall discriminatory power
declined when RMs were above 4 (Radosavljevic and Anderson 2014). Hence, we used conservatively 11
different RM values, namely .25, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5.

We used Maxent’s default replication method of cross-validation since it is a better replicate option with
small occurrence data. It randomly splits occurrence data into folds and uses all the folds in turn to build and
evaluate models (Phillips, 2017). We set the number of iterations for each FC-RM combination equal to the
number of occurrence (n) for each species thus making it equivalent to n-1 jackknife folds, which is a good
approach for species with small occurrence data (Warren and Seifert 2011, Shcheglovitova and Anderson
2013, Radosavljevic and Anderson 2014, Galante et al. 2018). Crossing 11 RM values and four FC sets we
built 44 sets of models for each species. Maxent generates (n+1) models including one composite (average)
model for each set of RM-FC combination.

Selecting optimal models using sequential approaches

Out of the 11 threshold dependent omission rates Maxent produces in its output we used “10th percentile
training presence test omission” (hereafter ‘percentile OR’) and “balance training omission, predicted area
and threshold values test omission” (hereafter ‘balance OR’) for the sequential model selection approaches.
We chose percentile OR (Radosavljevic and Anderson, 2014; Galante et al. 2018) over the “minimum training
presence test omission” (Shcheglovitova and Anderson, 2013; Radosavljevic and Anderson, 2014) since the
latter is more sensitive to extreme localities and over predicts when calibration localities are many (Rado-
savljevic and Anderson, 2014). We used balance OR to assess utility of a new thresholding rule and its OR in
selecting optimal model. Through different sequential combinations of the two ORs, AUCTEST and AUCDIFF

we formulated four sequential approaches. They were: (i) sequential combination of percentile OR followed
by AUCTEST (hereafter ORTEST PER), (ii) sequential combination of balance OR followed by AUCTEST

(hereafter ORTEST BAL), (iii) sequential combination of percentile OR followed by AUCDIFF and then by
AUCTEST (hereafter AUCDIFF PER), and (iv) sequential combination of balance OR followed by AUCDIFF

and then by AUCTEST (hereafter AUCDIFF BAL) approaches.

We used composite models instead of the jackknife iterations (Galante et al., 2018) for each RM-FC com-
bination to select the optimal model. However, Maxent averages all the jackknife iterations to produce the
composite model irrespective of whether some individual jackknife models have good model discrimination
(AUCTEST>.5), marginal discrimination (AUCTEST<.5) or no discrimination at all (AUCTEST=.5) (Figure
S1). When the composite models are comprised of jackknife models with no discrimination they would have
lower average ORs since Maxent assigns zero OR to the models with no discriminatory power, and thereby
favours these as optimal models. Therefore, we first sorted composite models into four hierarchical groups
beginning with (i) the composite models with all jackknife iterations with AUCTEST>.5, (ii) followed by
ones with some jackknife iteration models with AUCTEST<.5, (iii) then with some jackknife iteration models
with AUCTEST=.5 and (iv) ended with composite models with all their jackknife iteration models having
AUCTEST=.5.

Following the above hierarchical groups, we then ranked the ORs, AUCDIFF and AUCTEST of the compo-
site models. We accorded the highest rank to the models with the lowest OR since ORs higher than the
theoretically expected value indicate overfitting (Radosavljevic and Anderson 2014). Similarly, we accorded
the highest rank to the models with the lowest AUCDIFFsince less overfitting models are expected to have
lower AUCDIFF (Warren and Seifert 2011, Radosavljevic and Anderson 2014). Here, we also considered ne-
gative AUCDIFF as equal to zero, the lowest AUCDIFF for model selection (Muscarella et al. 2014), though
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. we used raw values for general analysis. For the AUCTEST we accorded the highest rank to the models
with the highest AUCTEST since higher AUCTESTmeans better model performance or discriminatory ability
(Radosavljevic and Anderson, 2014).

Once thus ranked, we followed the steps outlined in Figure 1. We chose the composite model or subset of
composite models with the highest OR rank (corresponding to Step 1 of Figure 1). Since we used OR as the
first criteria to select the optimal models if only a single composite model had the highest OR rank (i.e.,
the lowest ORs among the models) we considered it the optimal model for both ORTEST and AUCDIFF

approaches (Figure 1). If Step 1 resulted in a subset of composite models we chose either a composite model
or subset of models with the highest AUCTEST rank for the two ORTEST approaches (corresponding to Step
2b, Figure 1) (Shcheglovitova and Anderson 2013, Galante et al. 2018). Whereas, for AUCDIFF approaches
we chose the model or models with the best ranked AUCDIFF (corresponding to Step 2a, Figure 1) followed
by Step 2b (Radosavljevic and Anderson, 2014) depending on the outcome of Step 2a (Figure 1). After Step
2b, depending on the outcome, we followed Steps 3 to 5 for both the ORTEST and AUCDIFF approaches
(Figure 1). In Step 3 we chose the models with the lowest average number of parameters since models
with lower numbers of parameters are considered less complex and better models (Galante et al. 2018). We
derived the average number of parameters for each candidate composite optimal model by dividing the sum
of the number of parameters with non-zero lambda coefficients for each individual model extracted from the
LAMBDA text file (Galante et al. 2018) by the number of iterations used for building SDM since Maxent
does not provide directly the average number of parameters in the result for the composite models unlike it
does for the threshold values and ORs. Further, when multiple optimal models had equal average number of
parameters, we then chose models with the lower average lambda coefficients obtained by dividing the sum
of the absolute value of lambda coefficients by the total number of parameters. However, for some species
multiple optimal models with same RM values but different FCs had equal average numbers of parameters
as well as the average absolute lambda coefficients. In such cases we used the composite models with simpler
FC as the final optimal model since lower FCs are considered better for species with smaller occurrence in
Maxent (Shcheglovitova and Anderson 2013).

Selecting optimal models using expert approach

We visually screened and compared which of the suitable/unsuitable binary maps produced from the optimal
models selected using the four sequential approaches were ecologically plausible. If none of the optimal models
selected through the four sequential approaches resulted in ecologically plausible binary maps we then moved
to the next best choice and continued to screen till we arrived at the best possible ecologically plausible map
using expert knowledge (Galante et al. 2018). We qualitatively assessed ecological plausibility by considering
the known elevation range and the predicted suitable habitat. We also compared the predicted map with any
available literature, such as IUCN distribution maps or authors’ field experience. However, we acknowledge
here that given the relatively high number of fish and odonate species modelled, compounded by very poor
literature on the species from Bhutan, some of the chosen optimal models could be subjective. We developed
the binary maps using the “balance training omission, predicted area and threshold value Cloglog threshold”
(hereafter ‘balance threshold’) out of 11 Cloglog thresholds generated by Maxent for each model iteration.
Though lower thresholds can overpredict suitable habitat, they are better for species with few occurrence
data (Pearson et al. 2007, Radosavljevic and Anderson2014) and can also uncover potentially informative
distribution areas (Pearson et al. 2007). We also found using the 10th percentile threshold restricted the
predicted suitable habitats around occurrence points, or predicted the whole study area as unsuitable, in
some cases (See ‘Predicted Habitat’ in Result) (Pearson et al. 2007, Radosavljevic and Anderson, 2014;
Galante et al. 2018). We produced binary maps using ArcGIS10.2.2 (ESRI 2014).

Data analysis

We calculated the percentages of optimal models sharing the same RM-FC combination among all the five
model selection approaches, and between different pairs, to check for any general trend in RM-FC combination
among optimal models. We also statistically tested the correlation among the optimal models chosen by
the selection approaches for the model features, viz., ORs, AUCDIFF, AUCTEST, and average number of
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. parameters, and also the area of suitable habitat predicted. We interpreted the strength of correlation based
on Mukaka (2012). We used nonparametric Spearman’s correlation since our variables were not normally
distributed, except for few (Table S2) when we performed a preliminary analysis. We performed all the
statistical analysis in IBM SPSS Statistics 23 (IBM Corp.).

Results

Model complexity

Model setting

The most common model setting or regularization multiplier and feature class (RM-FC) combinations for
fish was 5xH (Figure 2a, Table S3), while for odonates it was 5xL (Figure 2b, Table S3). Further, greater
number of optimal models had RM-FC combinations of larger RM values and more complex feature classes
(Figure 2a-b, Table S3). For three fish and four odonates all the five selection approaches selected same
optimal models (Table 1). Whereas, ORTEST PER agreed best with EXP for fish and AUCDIFF PER and
ORTEST BALfor the odonates (Table 1; Table S3).

Omission rates

We found all selection approaches chose optimal models with percentile ORs equal to or more than theore-
tically expected 10% for both fish (Figure 3a) and odonates (Figure 3b). On the other hand, except for four
fish and 10 odonates, all had optimal models with 0 balance ORs (Figures 3a-b). Generally, there was a very
high and statistically significant correlation for the percentile ORs of the optimal models chosen by the EXP
approach to the optimal models chosen by all four sequential approaches for fish, while for the odonate there
was statistically significant but very low correlations only with ORTEST PER, AUCDIFF PER and ORDIFF BAL

(Table S4). However, for the balance OR EXP approach had statistically significant correlations only with
ORTEST PER and AUCDIFF PER for fish and with AUCDIFF PER for odonates (Table S4).

AUC Difference

AUC differences (AUCDIFF), as expected, were comparatively lower for the optimal models chosen by
AUCDIFF approaches over ORTESTapproaches for both fish and odonates (Figures 3c-d). While, the EXP
approach chose a greater number of optimal models with comparatively larger AUCDIFF over any of the four
sequential approaches for both fish and odonates (Figure 3c-d). However, there were statistically significant
correlations for AUCDIFF of the optimal models selected by the EXP approach to all the sequential selec-
tion approaches (Table S4). The highest positive correlation was found with ORTEST PER for fish and with
ORTEST BAL for odonates though correlation strength was only moderate for the latter (Table S4).

Number of parameters

The greater number of optimal models selected by the EXP approach had a greater number of parameters
among all the selection approaches for both fish and odonates (Figures 3e-f). Among the four sequential
approaches, the ORTEST approaches selected a greater number of optimal models with a greater number of
parameters over the AUCDIFF approaches (Figures 3e-f). But all approaches selected optimal models with
the number of parameters greater than the number of occurrences used for model building for at least some
species (Figures 3e-f). Optimal models chosen by the EXP approach had a statistically significant correlation
for the number of parameters only with optimal models chosen by ORTEST PER for fish (Table S4).

AUC test

A greater number of optimal models selected by the EXP approach for fish had a greater AUCTEST over
other approaches, while for the odonates the ORTEST approaches had greater number of optimal models with
greater AUCTEST followed by the EXP approach (Figures 3g-h). Overall the AUCTEST values of optimal
models chosen by all five approaches were high (Figures 3g-h) except for one fish species Schizothorax progas-
tus which had an AUCTEST value of .382 for the optimal models selected by ORTEST PER and AUCDIFF PER

approaches (Figures 3g-h). There was also a high to very high statistically significant positive correlation for
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. the AUCTEST among the optimal models chosen by all the approaches (Table S4) suggesting all five selection
approaches may select equally the optimal models with good discriminatory power.

Predicted habitat

The EXP approach selected the maximum number of optimal models with comparatively smaller predicted
habitat area among all the approaches; this was expected as the expert approach tried to avoid over pre-
diction while selecting the optimal models (Figure 4a-b). In comparison, AUCDIFF approaches predicted a
comparatively larger suitable habitat area for a greater number of both fish and odonate species over the
ORTEST approaches (Figure 4a-b). Most often suitable habitats were over predicted by AUCDIFFapproaches
and also for some species by ORTESTapproaches when compared to the area predicted by the EXP approach
(Figure 4a-b). For instance, AUCDIFF PER and AUCDIFF BAL predicted habitat area above 38,000 km2 for
four of the odonate species and for one fish species by AUCDIFF BAL (Figure 4a-b).

The choice of threshold used to derive binary suitable habitat maps from the optimal models chosen may
explain some of the variation in the area of habitat predicted. Though we did not assess for the effect
of thresholds used on the habitat areas predicted we present the binary maps derived using percentile
and balance thresholds for four species with varying occurrence records used for the model building as
an example (Figure 5). In general, we observed the restrictive ‘percentile threshold’ seemed to restrict the
predicted suitable habitat around occurrence data used for model building, while the less restrictive ‘balance
threshold’ seemed to overpredict the habitat for most of the optimal models selected by sequential approaches
(Figure 5).

However, there were statistically significant correlations between the areas of the optimal models chosen by
the EXP approach, with optimal models chosen by all four sequential approaches (Table S4). Comparative-
ly, the strongest correlation was with ORTEST PER and ORTEST BAL for fish and with ORTEST PER and
AUCDIFF PER for odonates, though correlation strength differed with very high correlations for the former
and moderate for the latter (Table S4).

Discussion

Our study compared for the first time the model complexity and predicted suitable habitat of the optimal
models selected by ORTEST and AUCDIFF approaches using two omission rates derived from both restrictive
and less restrictive thresholds. We also used the less restrictive threshold to derive predicted suitable habitats
and to assess for their ecological plausibility. Further, we used two taxonomic groups of freshwater species
with different life history traits. The focus of this study, Bhutan, is also interesting as freshwater species
distributions are poorly documented (National Biodiversity Centre, 2014).

Model complexity

Overall, our results showed 5xH was the most common RM-FC combinations for fish which agreed well with
the earlier findings of optimal models with higher RM values combined to more complex FCs like H as better
model setting for species with small occurrence data (Shcheglovitova and Anderson 2013, Galante et al.
2018). While, for the odonates the most common RM-FC combination was 5xL which also agrees with the
need to use RM values greater than the default setting (Galante et al., 2018). However, our result also showed
other optimal models had different RM-FC combinations for both fish and odonates (Figure 2a-b). Further,
our results also showed poor agreement among the five model selection approaches with regard to RM-FC
combinations of the optimal models selected by them for both the fish and odonate. The EXP approach had
the highest agreement with ORTEST PER for fish, while for odonates the EXP approach agreed the most with
AUCDIFF PER and ORTEST BAL. When these findings are considered together, they may suggest the need for
taxon-specific model tuning, thus agreeing with the recognized need for model tuning for the specific species
in a given study (Galante et al., 2018).

Our results showed that all approaches chose models with percentile ORs equal to or greater than the
theoretically expected 10% suggesting generally overfit models (Galante et al., 2018). But other studies
have also found percentile ORs greater than 10% (see Muscarella et al. 2014, Radosavljevic and Anderson
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. 2014, Galante et al. 2018) when a small number of occurrences were used. However, the ORTEST and
EXP approaches not only chose a larger number of optimal models with larger percentile ORs over that by
AUCDIFF approaches, but they also chose models with larger AUCDIFF and a larger number of parameters for
both fish and odonates. These findings suggest the ORTEST and EXP approaches might have selected overfit
and over-parameterized optimal models (Muscarella et al. 2014, Radosavljevic and Anderson 2014, Galante et
al., 2018). However, an earlier study found over-parameterization a lesser issue than under-parameterization
(Warren and Seifert 2011).

Our use of a relaxed balance threshold to first generate binary suitable/unsuitable habitat area and then
choosing the EXP optimal model might have overcome model overfitting and under predicting for EXP
approach (Pearson et al., 2007, Radosavljevic and Anderson 2014). Whereas, models chosen solely based
on smaller percentile ORs, AUCDIFF and number of parameters may choose overly relaxed (over predic-
ting) models (Galante et al., 2019) which can be aggravated by our use of a relaxed balance threshold to
generate the binary habitat map. Therefore, though AUCDIFF approaches chose the optimal models with
small AUCDIFF and smaller number of parameters over ORTEST and EXP approaches, in our context these
optimal models are not necessarily the best. Further, optimal models chosen by AUCDIFF approaches had
comparatively lower AUCTEST values over the EXP approach followed by ORTEST approaches. Therefore,
AUCDIFF approaches might have chosen a greater number of over predicting optimal models with lower
model discriminatory power (Warren and Seifert 2011).

Predicted habitat

The EXP approach selected optimal models with generally smaller predicted habitat among all the approa-
ches given we avoided over prediction while selecting ecologically plausible models. Among the four sequential
approaches AUCDIFF approaches generally predicted a larger area as suitable habitat for both the taxonomic
groups compared to the two ORTEST approaches when the balance threshold was used. For some species the
habitat predicted was several times bigger than that predicted by the EXP approach, thus over predicting.
When the less restricted thresholds, considered robust for the species with small occurrence records (Pearson
et al. 2007, Warren and Seifert 2011), are used to develop binary suitable habitat maps, as we did here, use
of ORTEST approaches may be a better choice over AUCDIFF approaches for optimal model selection. While
the use of AUCDIFF approaches may not be useful when a restrictive threshold, like the percentile threshold
(Galante et al. 2018), is used, since optimal models selected through AUCDIFF approaches under predicted
for some species (Figure 5). Further studies may be required to confirm if there is a true relationship between
the thresholds used to derive binary suitable maps and the corresponding model selection approaches used
to select the optimal models.

Though the expert approach selected more complex models judged using RM values, ORs, AUCDIFF and
average number of parameters, the use of a less restrictive threshold value for producing binary suita-
ble habitat maps helped select ecologically plausible models (Pearson et al. 2007). We suggest the use of
ORTESTapproaches over AUCDIFF approaches as either the first line of optimal model screening or by their
own to select the final optimal models since optimal models chosen by these approaches had higher correlation
with the optimal models chosen by the EXP approach for almost all the parameters we tested. Further, though
AUCDIFF approaches selected less overfit models over ORTEST and EXP approaches, AUCDIFFapproaches
over predicted the habitat area when the balance threshold (a less restrictive threshold) was used in our case.
However, we feel there is a need for further studies using other thresholding rules available in the Maxent
result as well as including a broader range of taxonomic groups to assess the generality of our findings.

Author contributions

First author conceptualised, gathered data, did analysis and wrote first draft and final version, co-authors
provided key conceptual ideas, revised the drafts and approved the final version.

Data availability: Raster data used to derive Figure 4 will be submitted to DRYAD if the manuscript is
accepted.
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Figure legends

Figure 1. Schematic diagram of selecting optimal models. Steps with red arrows are unique to AUCDIFF

approaches while all other steps are common to all the four sequential approaches. Green boxes with “Single
model selected” are the optimal models for either ORTEST or AUCDIFF approaches. Step 2a is followed
then one will derive optimal models for AUCDIFFafter Step 2, otherwise optimal models derived will be
for ORTEST approaches. While purple box with “Single model selected” is the optimal model for only
AUCDIFFapproaches. Step 5 is the ultimate step wherein models with lower feature class is chosen as the
optimal model when multiple models have same numbers of parameters and average absolute value.

Figure 2. Regularization multiplier and feature class (RM-FC) combinations for (a) fish and (b) odonate of
the optimal models chosen by five model selection approaches.

Figure 3. Summary of different features of the optimal models selected through five optimal model selection
approaches for the fish and odonate species of Bhutan. 10 percentile training presence test omission (1)
and balance training omission, predicted area and threshold value test omission (2) for the (a) fish and (b)
odonate; AUC difference for the (c) fish and (d) odonate; average number of parameters for the (e) fish
and (f) odonate; test AUC for the (g) fish and (h) odonate species of Bhutan. Expert approach based on
ecological plausibility of binary suitable/unsuitable model (EXP), sequential approaches using 10 percentile
training presence test omission and test AUC (ORTEST PER), 10 percentile training presence test omission,
AUC difference and test AUC (AUCDIFF PER), balance training omission, predicted area and threshold value
test omission and test AUC (ORTEST BAL) and balance training omission, predicted area and threshold value
test omission, AUC difference and test AUC (AUCDIFF BAL).
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. Figure 4. Area of the predicted habitats of the optimal models selected through the five model selection
approaches for the (a) fish and (b) odonate species of Bhutan.

Figure 5. Examples of binary suitable habitat maps derived using 10 percentile training presence Cloglog
threshold (Left panel) and balance training omission, predicted area and threshold value Cloglog threshold
(Right panel) among the optimal models chosen by the Expert and the four sequential optimal model selec-
tion approaches. (a) Cyprinion semiplotum (5 occurrence; EXP, ORTEST PER, ORTEST BAL, AUCDIFF PER

and AUCDIFF BAL), (b) Neolissochilus hexagonolepis(12 occurrence; EXP, ORTEST PER); (c)Neolissochilus
hexagonolepis (12 occurrence; ORTEST BAL, AUCDIFF PER and AUCDIFF BAL); (d) Aristocypha quadrima-
culata (8 occurrence; EXP, ORTEST PER, ORTEST BAL, AUCDIFF PER and AUCDIFF BAL); (e) Diplacodes
trivialis (21 occurrence; EXP); (f) Diplacodes trivialis (21 occurrence; ORTEST PER); (g) Diplacodes trivialis
(21 occurrence; ORTEST BAL, AUCDIFF PERand AUCDIFF BAL).

Tables

Table 1. Number of optimal models with same Regularization Multiplier-Feature Class (RM-FC) combination
among all the five model selection approaches (ALL) and between pairs of the five model selection approaches
for the fish (n=10) and odonate (n=28) species of Bhutan. Expert approach based on ecological plausibility
of binary suitable/unsuitable model (Expert); sequential approaches using 10 percentile training presence
test omission and test AUC (ORTEST PER), 10 percentile training presence test omission, AUC difference and
test AUC (AUCDIFF PER), balance training omission, predicted area and threshold value test omission and
test AUC (ORTEST BAL) and balance training omission, predicted area and threshold value test omission,
AUC difference and test AUC (AUCDIFF BAL).

Selection approaches Fish Odonata

All 3 4
EXP-ORTEST PER 7 6
EXP-AUCDIFF PER 3 10
EXP-ORTEST BAL 5 10
EXP-AUCDIFF BAL 3 8
ORTEST PER-AUCDIFF PER 6 11
ORTEST PER-ORTEST BAL 6 14
ORTEST PER-AUCDIFF BAL 5 10
AUCDIFF PER-ORTEST BAL 7 12
AUCDIFF PER-AUCDIFF BAL 8 25
ORTEST BAL-AUCDIFF BAL 8 13

12



P
os

te
d

on
A

u
th

or
ea

16
N

ov
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

79
.9

33
80

16
3/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

13



P
os

te
d

on
A

u
th

or
ea

16
N

ov
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

79
.9

33
80

16
3/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

14



P
os

te
d

on
A

u
th

or
ea

16
N

ov
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

79
.9

33
80

16
3/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

15



P
os

te
d

on
A

u
th

or
ea

16
N

ov
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

79
.9

33
80

16
3/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

16



P
os

te
d

on
A

u
th

or
ea

16
N

ov
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

79
.9

33
80

16
3/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

17



P
os

te
d

on
A

u
th

or
ea

16
N

ov
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

79
.9

33
80

16
3/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

18



P
os

te
d

on
A

u
th

or
ea

16
N

ov
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

79
.9

33
80

16
3/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

19



P
os

te
d

on
A

u
th

or
ea

16
N

ov
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

79
.9

33
80

16
3/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

20



P
os

te
d

on
A

u
th

or
ea

16
N

ov
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

79
.9

33
80

16
3/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

21



P
os

te
d

on
A

u
th

or
ea

16
N

ov
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

79
.9

33
80

16
3/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

22



P
os

te
d

on
A

u
th

or
ea

16
N

ov
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

79
.9

33
80

16
3/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

23



P
os

te
d

on
A

u
th

or
ea

16
N

ov
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

79
.9

33
80

16
3/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

24



P
os

te
d

on
A

u
th

or
ea

16
N

ov
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

79
.9

33
80

16
3/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

25


