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Abstract

Aim: In recent studies, three species of bat, Hypsignathus monstrosus, Myonycteris torquata and Epomops franqueti were
identified as the most likely candidates to be reservoir for Ebolavirus. To help in epidemic preparedness and surveillance,
species distribution modeling techniques are useful for predicting where these species are likely to occur in DR Congo. Methods:
MaxEnt software was used to model the current and future distribution of the three species in DR Congo based on the occurrence
data collected from global biodiversity information facility and environmental covariates collected from Worldclim and USGS.
The future distribution were obtained based on two scenario (RCP4.5 and RCP 8.5) of the HadGEM2-CC an IPPC5 climate
projections from global climate models (GCMs). Results: The suitable habitat of H. monstrosus, M. torquata and E. franqueti
are essentially located from latitude -5° to 5° and longitude 17° to 30°. Overall, their favourable living areas are located in the
territories along the entire northern border and the entire northern part of the eastern border of the DR Congo with varying
degrees of importance depending on the territories and species. Three bioclimatic variables have shown to play major role in
their spread, the precipitation of the driest quarter, the precipitation of coldest quarter and the temperature annual range. In
the future, the suitable area of these species will be decreasing and being essentially located in the Kivu provinces. The change
in the ecological niche of these species will differ with respect to future climate scenario. Climate of RCP 8.5 has shown to
induce major decrease of their suitable habitat in DR Congo. Main conclusions: The MaxEnt model is potentially useful for
forecasting the future adaptive distribution of the three bat species under climate change, and it provides important guidance
for comprehensive management of the Ebolavirus risk.
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Abstract

Aim : In recent studies, three species of bat,Hypsignathus monstrosus, Myonycteris torquata and Epomops
franqueti were identified as the most likely candidates to be reservoir for Ebolavirus. To help in epidemic
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preparedness and surveillance, species distribution modeling techniques are useful for predicting where these
species are likely to occur in DR Congo.

Methods : MaxEnt software was used to model the current and future distribution of the three species in DR
Congo based on the occurrence data collected from global biodiversity information facility and environmental
covariates collected from Worldclim and USGS. The future distribution were obtained based on two scenario
(RCP4.5 and RCP 8.5) of the HadGEM2-CC an IPPC5 climate projections from global climate models
(GCMs).

Results : The suitable habitat of H. monstrosus, M. torquata and E. franqueti are essentially located from
latitude -5° to 5° and longitude 17° to 30°. Overall, their favourable living areas are located in the territories
along the entire northern border and the entire northern part of the eastern border of the DR Congo with
varying degrees of importance depending on the territories and species. Three bioclimatic variables have
shown to play major role in their spread, the precipitation of the driest quarter, the precipitation of coldest
quarter and the temperature annual range. In the future, the suitable area of these species will be decreasing
and being essentially located in the Kivu provinces. The change in the ecological niche of these species will
differ with respect to future climate scenario. Climate of RCP 8.5 has shown to induce major decrease of
their suitable habitat in DR Congo.

Main conclusions : The MaxEnt model is potentially useful for forecasting the future adaptive distribu-
tion of the three bat species under climate change, and it provides important guidance for comprehensive
management of the Ebolavirus risk.

Key-words : Species distribution modeling, climate change, Ebolavirus risk, Hypsignathus monstrosus,
Myonycteris torquata,

Epomops franqueti

INTRODUCTION

Humans are affected by a large number of infectious diseases. Most of these infectious diseases are zoonoses.
Most of zoonoses have mostly viral origin and are emerging and reemerging. The viral diseases of the
Filoviridae family, such Ebola, causes particularly hemorrhagic fevers. Ebola hemorrhagic fever is indeed
among the zoonotic viral disease with high mortality rate. The Ebola virus causes severe morbidity and high
mortality in humans and wildlife (Bausch and Schwarz, 2014; Fiorilloet al. , 2018).

Number of Ebola virus disease outbreaks have occurred in humans last forty years, with mortality rates
reaching values up to 90 % (Feldmann and Geisbert, 2011; Bausch and Schwarz, 2014). Most of Ebola
hemorrhagic fever outbreaks have historically occurred in Central Africa. The first outbreak of Ebola virus
in humans was registered in 1976 in Southern Sudan (Report of a WHO/International Study Team, 1978),
but likely occurred as early as 1972 in Tandala, DRC. Until 2014, DR Congo had already recorded seven
outbreaks of Ebola (Maganga et al. , 2014). There have been two other outbreaks, the latest of which is in
Beni-Butembo, which is still at the beginning of 2019. Thus, to date, the DR Congo has already recorded
nine Ebola outbreaks being hence one of the countries that have experienced the most Ebola outbreaks.

Up to now, it is not well understood the way the Ebola transmission between outbreaks is maintained
(Peterson et al. 2004). However, significant progress has been made in identifying the potential reservoirs of
Ebola viruses. Recent studies have identifiedHypsignathus monstrosus (H. Allen, 1861), Myonycteris torquata
(Dobson, 1878) and Epomops franqueti (Tomes, 1860), three bat species, as the most likely to be the reservoirs
of the Ebola viruses (Leroy et al. , 2005; Groseth et al. , 2007; Peterson et al. , 2007; Pourrut et al. , 2009;
Haymanet al. , 2010; Olival and Hayman, 2014). Leroy et al. (2007) have shown that in Africa, there is
evidence of Ebola outbreaks in humans due to exposure to bats. Based on this evidence, it can be assumed
that the distribution of Ebola viruses is limited by certain factors, including the distribution of bats such H.
monstrosus, M. torquata andE. franqueti (Nyakarahuka et al. , 2017).

It is believed that climate change will affect future distribution of bats reservoirs of Ebola virus. A number of
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studies have reported the impact of climate change on Ebola outbreaks in Africa and the migratory patterns
of bats (Newson et al. , 2009). Indeed, migratory species are particularly likely to be affected by climate
change at some point in their life cycles, and there is already compelling evidence for impacts on a wide range
of birds, marine mammals, fish, sea turtles, squid, bats, terrestrial mammals and insects (Robinson et al. ,
2009). Reduced precipitation, increasing temperatures and desertification have caused a large number of fruit
bats to migrate from their ecological niches in the equatorial rain forest to other areas where environmental
conditions are more favorable for survival (Omolekeet al. , 2016).

Actually, the world is facing climate change and this has been for decades. The effects that climate change is
having on wildlife populations are of increasing interest to ecologists (Adams and Hayes, 2008). The survival
of species and integrity of terrestrial ecosystems are threatened by the climate change. To adapt to climate
change, a thorough knowledge of its impact on plant and animal species is of crucial importance (Fandohan
et al. , 2013). Recent research increasingly shows that climate change will significantly affect biodiversity and
species distribution. With the most recent research, one of the hypotheses put forward is that in Africa, 25
to 42 % of plant and animal species could be threatened and could thus lose up to 90 % of their geographical
distribution areas by 2085 if global warming exceeds 1.5 to 2.5 degrees Celsius (Busby et al. , 2012). Elithet
al. (2010) and Guisan and Thuiller (2005) have enumerated modeling tools among which species distribution
models. The utilization of species distribution models is spreading out (Mart́ınez-Meyer et al. , 2004; Papeş
and Gaubert, 2007; Tsoar et al. , 2007; Jenningset al. , 2013). Species distribution models are numerical
tools that provide potential distribution, aid in conservation planning and their project future behaviour
in response to environment changes (Peterson, 2003, 2006; Thorn et al. , 2009; Barve et al. , 2011). The
main objective of mapping spatial distribution of vectors and reservoirs of diseases is to manage diseases
impacts by providing geographic information that enables decision-makers to make evidence-based decisions
(Benedict et al. , 2007; Lindsay et al. , 2010) or the planning and targeting of surveillance and interventions
(Dicko et al. , 2014). An additional motivation of the wide use of species distribution models techniques
comes from the high impacts of diseases on humans, animal and plant and the fact that environmental
drivers play a major role in their emergence (Chaveset al. , 2008; Jones et al. , 2008; Pautasso et al. , 2010).
During last decade, modeling techniques have been developed to model ecological distribution. Maximum
entropy (MaxEnt) approaches have recently been introduced and used by many research work and have
shown to be very successful tool (Peterson et al. , 2007; Elith et al. , 2010). Several studies comparing
species distribution modeling techniques indicated that MaxEnt modeling (Phillips et al. , 2006) performed
as well or better than the other techniques (Elith et al. , 2006, 2011; Hernández et al. , 2006; Phillips et al.
, 2006; Phillips and Dud́ık, 2008; Baldwin, 2009). As such, considering the new features integrated in the
new release of MaxEnt program (Phillips, 2017), it should be a very useful and accurate tool for delineating
species distributions.

Modelling H. monstrosus, M. torquata and E. franquetispecies distribution using MaxEnt modelling tech-
nique could essentially improve our understanding of the spatial distribution of current and future risk of
increased or decreased distribution of these species.

In order to better understand the nature of Ebola viruses risk, this study aims to define areas of DR Congo
where zoonotic transmission of Ebola viruses can occur, currently and in the future. Thus, by studying the
spatial distribution of H. monstrosus , M. torquata andE. franqueti , potential reservoirs of the Ebolavirus,
this study seeks to identify their current and future favorable and suitable areas in DR Congo. This study
illustrates the climate change risk assessment of the spatial distribution of these species according to the
climate scenario in 2050 (2041 - 2060) and 2070 (2061 - 2080), and to seek attention of their future favourable
habitats in DR Congo.

MATERIALS AND METHODS

Occurrence records

In this study, due to the lack of sufficient occurrence data of DR Congo, we used occurrence data from the
entire African continent to build the model and make the prediction only in DR Congo. The geographical
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coordinates (longitude and latitude) of H. monstrosus, M. torquata and E. franqueti were collected online
from the GBIF database (http://www.gbif.org). All occurrence records were checked for accuracy in ArcGIS
prior to use. The data were quality controlled in order to eliminate or remove suspicious or duplicate records
(Lobo et al. , 2008; Warton and Shepherd, 2010; Stigall, 2012). A total of 123 observation points of H.
monstrosus , 79 M. torquata and 201 E. franqueti in Africa continent were used for the modelling. In DR
Congo, only 10 occurrence records of E. franqueti , 9 of H. monstrosus and 7 ofM. torquata were found. It
was not possible to model the distribution of these species in DR Congo using only these data, since they
were insufficient. This is why we came up with the idea of using data from all of Africa’s occurrence records
to build the models and do prediction only on the extent of DR Congo. The map representing the points of
occurrence is illustrated in Figure 1.

Environmental variables

In this study, we used elevation data together with bioclimatic data. Elevation data (Digital Elevation Mo-
del) was obtained from USGS database (https://earthexplorer.usgs.gov) and the current and future climate
data were collected from WorldClim database (http://www.worldclim.org) and used to build the species
distribution model in order to find the suitable areas for H. monstrosus, M. torquata and E. franqueti . Bio-
climatic data collected from the WorldClim database are obtained from interpolations of monthly averages of
precipitation and temperature taking into account climate data collected over long periods of time (Fick and
Hijmans, 2017). The 19 bioclimatic variables (bio1; Mean Annual Temperature, bio2: Mean Diurnal Range,
bio3: Isothermality, bio4: Temperature Seasonality, bio5: Maximum Temperature of Warmest Month, bio6:
Min Temperature of Coldest Month, bio7: Annual Temperature Range, bio8: Mean Temperature of Wettest
Quarter, bio9: Mean Temperature of Driest Quarter, bio10: Mean Temperature of Warmest Quarter, bio11:
Mean Temperature of Coldest Quarter, bio12: Annual Precipitation, bio13: Precipitation of Wettest Month,
bio14: Precipitation of Driest Month, bio15: Precipitation Seasonality, bio16: Precipitation of Wettest Quar-
ter, bio17: Precipitation of Driest Quarter, bio18: Precipitation of Warmest Quarter and bio19: Precipitation
of Coldest Quarter) have a high biological significance, are widely used to explain the adaptation of species
to environmental factors and have been widely used in modelling species distribution. In the Worldclim
database, the current period represents interpolations from monthly average precipitation and temperature
data collected from 1950 to 2000. All environmental variables were in raster format with a 2.5-arc minute
resolution ([?] 4.5 km2). The 20 environmental variables (19 bioclimatic variables and Elevation) were sub-
ject to the correlation test using the R software (R Development Core Team, 2018). Consequently, Pearson
correlation coefficients belonging to the interval ]-0.8,0.8[ (|r| < 0.8) with only a subset of variable were
included in order to eliminate the problem of collinearity in environmental predicators (Elith et al. , 2010).

We used eleven environmental variables in this model prediction. This was after assessing for collinearity
in the model and removing all the collinear variables. The result from the correlation analysis identified
eleven bioclimatic variables and elevation as contributing to the environmental variation across the study
area: Precipitation of Driest Quarter (bio17), Annual Temperature Range (bio7), Elevation, Mean Diurnal
Range (bio2), Precipitation Seasonality (bio15), Precipitation of Warmest Quarter (bio18), Precipitation
of Wettest Quarter (bio16), Mean Temperature of Wettest Quarter (bio8), Mean Temperature of Warmest
Quarter bio10), Min Temperature of Coldest Month (bio6), Precipitation of Coldest Quarter (bio19) and
Mean Temperature of Driest Quarter (bio9).

To determine what the distribution of these species might be in the future and thus assess the potential
impacts of climate change on their distribution, we used the model built from current data to make the
prediction using bioclimatic future prediction data obtained using the future HadGEM-CC projection model.
The impacts of climate change strategies on greenhouse gas emissions are considered more in the RCPs
scenarios, and the projection of future climate change is more scientifically described. RCP4.5 (medium
greenhouse gas emission scenario) and RCP8.5 (maximum greenhouse gas emission scenario) for the near
future: 2050 (2041 - 2060) and the middle century: 2070 (2061 - 2080) were selected for the future model
prediction of H. monstrosus , M. torquata and E. franqueti distribution in DR Congo.

Distribution modeling
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We used MaxEnt software (Phillips et al. , 2006, 2017) to build model and predict suitable habitat distribu-
tion of H. monstrosus, M. torquata and E. franqueti in DR Congo. We used Presence-only data to model the
suitable habitat of the three species. The MaxEnt model was built as a function of environmental variables,
and it is consistently among the highest performing species distribution models (SDMs) (Bradie and Leung,
2017). Response curves indicate the relationships between climatic variables, and the predicted probability
of the presence of each species was determined by MaxEnt. The percent contribution and permutation
importance of environmental variables were calculated, and jackknife procedures were executed in MaxEnt.
These analysis methods are all useful to measure the importance of the environmental variables. MaxEnt
estimates the probability a species will be present based on presence records and randomly generates back-
ground points by finding the maximum entropy distribution. An estimate of habitat suitability for a species
was exported from MaxEnt, and its range generally varied from 0 (lowest) to 1 (highest). For each species
we ran 100 submodels each trained to a randomly selected bootstrap of the occurrence dataset. Prediction
map form each submodel has been generated in order to calculate the mean prediction and standard devi-
ation of each pixel for each species. Model predictions were imported into a geographic information system
(GIS), and maps were generated using ArcMap 10.6. Five arbitrary categories of habitat suitability for the
three species of bats were defined as not suitable habitat (0.00 - 0.05), slightly suitable habitat (0.05 - 0.25),
moderately suitable habitat (0.25 - 0.50), suitable habitat (0.50 - 0.75) and highly suitable habitat (0.75 -
1.00) based on predicted habitat suitability.

In this study, the ROC curve method was utilized to assess the model’s explanatory power (Peterson et al.
, 2007). The AUC (area under roc curve) is an effective threshold-independent index that can evaluate a
model’s ability to discriminate presence from absence (or background). For reducing the bias of estimation,
jackknife method has been used. This method can estimate parameters and adjust the deviation without
assumptions of distribution probability. In SDM, the jackknife method was used to analyze the effects of
environmental variables on model results to choose dominant factors. The specific process involves:

1. Calculating the training gain for the model with only variable. Higher training gain indicates that the
variable has high prediction power and contributes greatly to species distribution;

2. Calculating the training gain for the model without a specific variable and analyzing the correlation
between the removed variable and the omission error. If the removal of an environmental variable leads
to a significant increase in the omission error, it indicates that the variable has a significant effect on
the model’s prediction;

3. Calculating the training gain for the model with all variables.

RESULTS

Model performance and contributions of variables

In this study, from the ROC curves, AUC values were used to evaluate the performance of the MaxEnt
models. Many studies showed that an AUC of high values led to better results that significantly differed
from the random predictions. The accuracy of prediction of H. monstrosus, M. torquata and E. franqueti
during the current period was found to be excellent (Mean AUC [?] 0.96, Figure 2) according to the identified
evaluation criteria.

Among the environmental variables, the Precipitation of the driest quarter (43.1% - 64.3 %) played major
role in the spread of H. monstrosus, M. torquata and E. franqueti (Table 1 and Figure 3). In addition,
the Temperature Annual Range played also a major role in the spread of E. franqueti (12.7 %) and H.
monstrosus(14.6 %) while the Precipitation of Coldest Quarter has also showed to play also a major role in
the spread of M. torquata (36.4%) andH. monstrosus (10.4 %).

Tableau 1: Estimates of contribution and permutation importance of environmental variables in MaxEnt
modeling

Variables Code E. franqueti E. franqueti H. monstrosus H. monstrosus M. torquata M. torquata

PC PI PC PI PC PI
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Variables Code E. franqueti E. franqueti H. monstrosus H. monstrosus M. torquata M. torquata

Mean Diurnal Range data_wc_bio02 4.4 2 9.2 1.8 2.5 0.7
Minimum Temperature of Coldest Month data_wc_bio06 1.3 3.3 2.8 2.4 1.3 1.5
Temperature Annual Range data_wc_bio07 12.7 35.1 14.6 69.1 2.6 12.5
Mean Temperature of Wettest Quarter data_wc_bio08 1.8 23 0.0 0.4 0.3 1.4
Mean Temperature of Driest Quarter data_wc_bio09 0.6 2.9 0.1 1.2 0.2 2.7
Mean Temperature of Warmest Quarter data_wc_bio10 1.7 1.3 1 4.8 1 5.9
Precipitation Seasonality data_wc_bio15 3.1 7.2 0.9 1.6 2.8 7.3
Precipitation of Wettest Quarter data_wc_bio16 2 1.6 1.8 1.9 5.3 15.3
Precipitation of Driest Quarter data_wc_bio17 64.3 10.1 47.8 6.8 43.1 34.1
Precipitation of Warmest Quarter data_wc_bio18 2.3 5.8 9.7 7.4 3.8 7.4
Precipitation of Coldest Quarter data_wc_bio19 1.3 5.3 10.4 1.5 36.4 9.9
Elevation data_elevation 4.5 2.4 1.6 1.1 0.7 1.2

PC : Percent contribution ; PI : Permutation importance

Response of variables to suitability

Response curves indicated the relationships between environmental variables and the predicted probability
of the presence of H. monstrosus, M. torquata and E. franqueti . As stated above, the spread of E. franqueti
has showed to be mostly influenced by the precipitation of the driest quarter and the temperature annual
range. For this species, the occurrence probability is high if the temperature annual range is less than
8°C. The occurrence probability becomes almost zero from an temperature annual range of 20°C while E.
franquetihas shown to prefer area where the precipitation of driest quarter goes from 100 mm to 300 mm. H.
monstrosus has also shown to have ecological preferences that are close to those of E. franquetibut has shown,
furthermore, to be influenced by Precipitation of coldest quarter. The occurrence probability has shown to
be high in area where precipitation of coldest quarter is greater than 200. M. torquatahas shown to be
influenced the most by the Precipitation of Driest Quarter and the Precipitation of Coldest Quarter. For this
species, the increase of the Precipitation of Driest quarter and the precipitation of coldest quarter increase
the probability of occurrence. The most suitable area for M. torquata are the ones where Precipitation of
the driest quarter is greater than 140 mm and Precipitation of the coldest quarter is greater than 900 mm
(see Figure 4).

Predicting the current distribution of E. franqueti, H. monstrosus and M. torquata in DR
Congo

The result showed that the area from latitude -5° to 5° and from longitude 17° to 30° are the primary
potential suitable region ofE. franqueti, H. monstrosus and M. torquata in DR Congo (see Figure 5). Current
distribution models show that the most favourable areas for E. franqueti are located in the territories of
Faradje, Aru, Mahagi, Djugu, Irumu, Beni, Lubero, Walikale, Rutshuru, Masisi, Kalehe, Kabare, Idjwi and
Walungu. The areas favourable toH. monstrosus are the same as those of E. franqueti , in addition to which
the areas located in the territories of Ango, Bambesa, Polo, Niangara, Watsa, Mambasa, and Punia must be
added. Unlike these two species, M. torquata seems to find comfort in the territories located in the far north
of the DR Congo, particularly in the territories of Zongo, Bosobolo, Gemena, Businga, Mobayi-Mbongo,
Yakoma, Bondo, Ango, Bambesa, Niangara, Dungu, Faradje, Aru and Djugu. A small area favourable to
M. torquata is also located in North Kivu province, specifically in the territories of Walikale, Rutshuru and
Masisi. Overall, the ecological niche of these three species is the Eastern and Northeastern regions of DR
Congo.

Predicting the future distribution of E. franqueti,H. monstrosus and M. torquata in DR Congo

2050s distribution

6
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Under future climate scenario RCP 4.5 and RCP 8.5 (Figure 6), the suitable area of the three species will
be decreasing showing that their distribution will be strongly affected. These figures show that, even in both
2050s climate scenarios the suitable of the three species will decrease, the climate of RCP 8.5 will affect
the most the distribution of the three species. In this scenario, the suitable area will decrease more than in
the climate scenario of RCP 4.5. Overall, highly suitable area will be concentrated in the Kivu provinces.
Overall, the areas favourable to these three bat species will be located in the territories of Mahagi, Djugu,
Rutshuru, Masisi, Punia, Shabunda, Kelehe, Kabare, Idjwi, Walungu, Mwenga and Uvira.

2070s distribution

As stated above for the 2050s distribution of H. monstrosus ,M. torquata and E. franqueti , in all considered
future climate scenario, their suitable area will decrease severally. In 2070s, the high suitable area of H.
monstrosus , M. torquata andE. franqueti will be essentially located in the Kivu provinces in DR Congo
(see Figure 7). With the RCP 4.5 scenario, in general, the favourable areas for these three species will
be located mainly in the territories of Mahagi, Djugu, Beni, Lubero, Rutshuru, Walikale, Masisi, Kalehe,
Idjwi, Kabare, Walungu, Mwenga and Uvira. However, these areas will be greatly reduced with the RCP
8.5 scenario whereby areas favourable to these species are mainly located in the territories of Beni, Lubero,
Walikale, Rutshuru, Kalehe, Idjwi, Kabare, Walungu, Mwenga and Uvira.

DISCUSSION

Current distribution of bat species

According to Peterson et al . (2004), african Ebola virus reservoirs would be distributed principally in
evergreen broadleaf forest (rainforest) and the main focus of the geographic distribution of the reservoirs
would be in the Congo Basin. this is all the more true since our results prove that the distribution areas
of the three bat species in DR Congo correspond roughly to the areas covered by Tropical and subtropical
moist broadleaf forests. With the results obtained in this study it is clear that the current ecological niche
of the three bat species under study is the entire part from the centre to the north of DR Congo. The most
favourable environments for these species are mainly the eastern and northeastern parts, border areas with
southern Sudan and Uganda, two countries that have already recorded cases of Ebola hemorrhagic fever
epidemics. Bats are hypothesized to be reservoirs for filoviruses among which Ebola virus. They have been
identified as an important driver of outbreaks of filovirus diseases (Fiorillo et al. , 2018). Nyakarahuka et al.
(2017) found that their distribution tends to correlate with that of filovirus predicted niches. Clearly, with
the results of this work, the populations that appear to be most at risk are those in the areas listed above.
This would be all the more true since almost all cases of Ebola in the human population in DR Congo have
been recorded in these areas (from the centre to the north of DR Congo). Pigott et al. (2014) found that
the vast majority of people living in suitable area of the three bat species live in rural areas and populations
of DR Congo are among those the most at risk of experiencing Ebola outbreak. In addition, almost all
outbreaks of Ebola in the human population have been recorded in rural areas.

Implications of the future distributions of bat species on the Ebolavirus disease risk

In this study, we found that in the future, the areas favourable to the distribution of these species will decrease
considerably in terms of available surface areas. The models of future distribution of these three bat species
show that the favourable environments for these species will be mainly located in the former Kivu province
and the current Ituri province. These regions represent the part of the DR Congo located in the Albertine
Rift. Nyakarahuka et al. (2017) suggested the Albertine Rift of East Africa to remain under heightened
surveillance especially now that oil exploration will be taking place bringing an invasion of virgin lands by
humans and interaction of wildlife and humans. Based on our findings, we do agree with them because in DR
Congo bats will find in the future their more suitable habitat in area located in the said rift. They noted also
that in this region, several other national parks as well as several forest reserves all of which harbor various
species of bats and other possible reservoirs of filoviruses. The eating habits and socioeconomic status of the
populations are determinant in the emergence of Ebola viruses. Increasing human encroachment and certain
cultural practices sometimes linked with poverty, such as bushmeat hunting, result in increasing exposure
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of humans to animals which may harbour diseases including Ebola (Daszaket al. , 2000; Wolfe et al. , 2005,
2007). Indeed, bushmeat represents a natural reserve that is exploited in the absence of financial means for
purchasing animal proteins. Bushmeat is considered a daily food source in rural areas. The major challenge
for accessing protein sources is of economic nature. The inaccessibility of domestic animal flesh also renders
the bushmeat consumption particularly important to households because it is free and they can have all the
parts of the animal (Dindé et al. , 2017). Because previous outbreaks in Central Africa have been linked
to reports of bushmeat consumptions and deaths of wildlife (Leroy et al. , 2004), many hypotheses have
been put forward to suggest wildlife such as bats, primates, and antelopes as possible sources of infection
(Osterholmet al. , 2015; Nyakarahuka et al. , 2017).

Insights on variables contributions

Variable contribution assessment showed that precipitation variables played the most important role in the
distribution models. Indeed, in this study, the Precipitation of the driest quarter (43.1% - 64.3 %) played
major role in the spread of H. monstrosus, M. torquata andE. franqueti (Table1 and Figure 3). In addition, the
Temperature Annual Range played also a major role in the spread of E. franqueti (12.7 %) and H. monstrosus
(14.6 %) while the Precipitation of Coldest Quarter has also showed to play also a major role in the spread
of M. torquata (36.4%) and H. monstrosus (10.4 %). The importance of precipitation and moderate to high
temperature was highlighted by (Peterson et al. , 2004) when they modeled filovirus distribution in Africa.
Rainfall is important for the obvious reason that it provides water which is very important for bats survival
(Adams and Hayes, 2008; Russo et al. , 2012). Rainfall also provides for the development of fruiting trees that
provide roosting areas for bats as well as food for fruit bats. Because the risk of dehydration is the greatest
physiological threat to life on land, drinking water is a fundamental resource for all terrestrial animals (Knut,
1997). Due to their peculiar morphology and physiology, bats often face the risk of dehydration. Much water
is lost through their body surface, especially via the respiratory system and the extensive surfaces of wing
membranes (Chew and White, 1960; Thomas and Cloutier, 1992). The importance of water availability has
been emphasized in studies addressing the impact of climate change on bats (Adams and Hayes, 2008) as
well as in those modelling bat distribution patterns (Rainho et al. , 2010). In addition, DR Congo is endowed
with many water bodies and several rainforests; this could be why the areas favourable to the distribution
of bats cover a very large part of the country.

Uncertainties related to the models

The models we obtained have shown to be accurate. The Area Under the Curve (AUC) proportion was high,
about 0.96. Therefore, the models are considered to perform better than random. Accurate predictive models
are of particular importance for effective and adaptive management and conservation, ecological research
and prediction. Thus, predictive accuracy is an important feature that is sought in species distribution
modeling (Jarnevich et al. , 2015). Although these models have shown to be accurate, certain reasons may
prevent complete reliance on their predictions. Variation in the output of SDMs may arise due to errors
and uncertainties related to the SDMs themselves, characteristics of species life histories and future climate
models (Beaumont et al. , 2008).

There is a debate criticizing the prediction results of these models. What is really modeled, the fundamental
niche or the realized niche? There is ongoing debate in the ecological literature regarding exactly what these
distributions represent (Warren and Seifert, 2011; McInerny and Etienne, 2013; Warren et al. , 2013). The
lack of consensus on how distribution modelling relates to niche concepts is probably caused not only by
inconsistency of niche definitions, but also the variability in data, methods and scale across studies (Araújo
and Guisan, 2006; Soberón, 2007). Some studies have suggested that, if the realized niche is the subset of
abiotic environmental space to which a species is restricted by biotic interactions (Hutchinson, 1957), then, by
definition, known occurrence points used to generate distribution models represent the realized niche (Phillips
et al. , 2006). Fundamental or environmental niches are only considered to be approximated by distribution
models when occurrence data are drawn from a broad geographical extent (relative to the total range of the
species in question) (Phillips et al. , 2006). Other studies caution against such generalizations (Elith and
Leathwick, 2009), arguing that the different niches quantified using observed occurrences of species reflect
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an unknown conjunction of the environmental niches of the species, the biotic interactions they experience
and the habitats available to species and colonized by them (Soberón, 2007).

There are uncertainties that would result from biases in the data used to develop the models. Indeed, the
uncertainty associated with ecological data is great challenge in species distribution modeling. It must be
accounted for if results are to be appropriately interpreted or if they are the basis of a decision-making
process (Elith et al. , 2002; Barry and Elith, 2006). Several factors can affect the precision of SDMs among
which we can find factors such as spatial autocorrelation, data sampling bias, varying detection probabilities
(between species and observers), non-representative data prevalence, mismatched scales data misregistration
or the failure to incorporate critical habitat variables in the models that damage severally the quality of
data to be used in modeling (Pearce et al. , 2001; Boyce et al. , 2002; Kadmonet al. , 2003; Gu and Swihart,
2004; Barry and Elith, 2006; Johnson and Gillingham, 2008; Osborne and Leitão, 2009). In addition, the
ecological characteristics of the species to be modeled can also have an effect on its SDMs’ precision (Mc-
Pherson and Jetz, 2007; Franklin et al. , 2009). Imperfect detection can, for instance, mislead inference about
drivers and extent of species distributions, quantifications of diversity and conclusions about environmental
changes (Guillera-Arroita, 2017). This is a major weakness of these models because most surveys of natural
populations, including opportunistic surveys that produce presence only observations, are prone to imperfect
detection (Yoccoz et al. , 2001; Chen et al. , 2013). Furthermore, Dorazio (2012) and Lahoz-Monfort et al.
(2014) have shown that failure to account for imperfect detectability in models of Presence-only data induces
bias in estimates of SDMs. Observed counts of abundance are biased when individuals are imperfectly detec-
ted and this lead to biased occurrence probabilities and stated occupancy (Royleet al. , 2005). In spite of this,
some researchers have recommended ignoring this challenge (Johnson and Gillingham, 2008; Banks-Leite et
al. , 2014; Stephens et al. , 2015). Hence, there is no consensus about the importance of accounting for this
sort of measurement error in SDMs (Guélat and Kéry, 2018).

Another limitation of SDMs is that they do not correct for sampling bias. Unrepresentative presence only
locations of the region of interest induce biased SDMs’ estimates (Phillips et al. , 2009; Yackulicet al. ,
2013). Accounting for the effects of geographical sampling bias in the acquisition of data can be critical
to the accuracy of SDMs made using presence only data (Phillips et al. , 2009). Most of surveys of natural
populations, including opportunistic surveys that produce presence only data are prone to sampling bias. For
instance, if survey locations are selected based on their accessibility or convenience induce bias in datasets.
Most of time, presence only data are collected based on accessibility of sampled locations. Thus, samples
are located near urban settlements, rivers and roads instead of being collected systematically or randomly.
Hence, their sample localities are not representative of the real range of environmental conditions in which
the species of interest occurs (Reddy and Dávalos, 2003; Kadmonet al. , 2004). Such geographical sampling
bias is a characteristic of most specimen locality data available from open access data portals (Hortal et al.
, 2008). Failure to correct for geographical sampling bias can result in a SDMs that reflects sampling effort
rather than the true distribution of a species (Phillips et al. , 2009).

Species occurrence data suffer from the disadvantage of containing the problem of spatial auto-correlation. We
cannot afford to ignore this bias in the modeling of species distribution. Species distribution models implicitly
assume that the geographical data points for species records are independent and the environmental layers
used as hypothetical predictive variables and associated to the geographical records of species also show
problems of spatial auto-correlation (Segurado et al. , 2006; Cruz-Cárdenas et al. , 2014). The spatial auto-
correlation caused by colonized sites tending to cluster around initial invasion foci inflate not only model
accuracy, but also the estimated explanatory power of environmental predictors (particularly when these are
distally related to the requirements of the focal species) and underestimate uncertainty in model parameters
(Dormann, 2007). Disregard and not avoid spatial auto-correlation has consequences such as incurring in
biased model and hence inflate type I errors (Dormann, 2007; Cruz-Cárdenas et al. , 2014). Therefore, where
biological or population processes induce substantial auto-correlation in the species distribution, and this is
not modeled, model predictions will be inaccurate.

Another source of uncertainty in the future model is related to the climate model used. Climate models
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are currently the best tools we have for simulating future climate scenarios. However, variation within and
among alternate climate models poses problems for end users trying to identify optimal models from which
to obtain simulations (Martinez-Meyer, 2005; Perkins et al. , 2007). To date there is no clear guidance on
how to select the most appropriate simulations for a given application (Beaumont et al. , 2008). Species
distribution models have been very criticized for their weaknesses in predicting climate change impact on
the geographic species dispersion. Among these weaknesses, we can cite: uncertainties related to the models
used, difficulties in ecological interactions setting, individual idiosyncratic responses of the species to clima-
te change, limitations of species-specific dissemination, plasticity of physiological limits and disseminating
agents responses (Fandohan et al. , 2013).

CONCLUSION

Although the models used and their predictions are highly criticized, they nevertheless shed light on the
management of current and future risks of Ebola epidemics by mapping the areas where most attention and
prevention measures should be focused. Species distribution models are useful tools for, among other things,
informing the conservation management of wildlife and their habitats under a rapidly changing climate.
They can provide decision makers with information about the likely degree of change in a species climatic
domain and geographic distribution. The MaxEnt model is potentially useful for forecasting the future
adaptive distribution of the three bat species under climate change, and it provides important guidance for
comprehensive management of the Ebolavirus risk. The results obtained in this study showed that climate
change will significantly reduce the areas favourable to the distribution of these three species, reducing the
risk they represent in the emergence of the Ebola epidemic. However, since not all reservoirs of the Ebolavirus
are yet well identified and the other components of the emergence of the Ebola epidemic have not been taken
into account in this study, it will not be possible to say that the effects of climate change will reduce the
risk associated with Ebola. But it is still possible that this may be the case. It is therefore necessary for
future work to take into account these components to assess the effects of climate change on the risk of Ebola
occurrence in DR Congo.
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The data used in this study were downloaded from open access data bases www.gbif.org. The doi’s of
the downloads used in this study are Epomops franqueti download https://doi.org/10.15468/dl.gngooy
; Myonycteris torquatadownload https://doi.org/10.15468/dl.yclrwy ; Hypsignathus monstrosus download
https://doi.org/10.15468/dl.xmmhnk.

REFERENCES

Adams, R. A. and Hayes, M. A. (2008) ‘Water availability and successful lactation by bats as related to
climate change in arid regions of western North America’, Journal of Animal Ecology , 77(6), pp. 1115–
1121. doi: 10.1111/j.1365-2656.2008.01447.x.

Araujo, M. B. and Guisan, A. (2006) ‘Five (or so) challenges for species distribution modelling’, Journal of
Biogeography , 33(10), pp. 1677–1688. doi: 10.1111/j.1365-2699.2006.01584.x.

Baldwin, R. A. (2009) ‘Use of maximum entropy modeling in wildlife research’, Entropy , 11(4), pp. 854–866.
doi: 10.3390/e11040854.

Banks-Leite, C. et al. (2014) ‘Assessing the utility of statistical adjustments for imperfect detection in
tropical conservation science’, Journal of Applied Ecology , pp. 849–859. doi: 10.1111/1365-2664.12272.

Barry, S. and Elith, J. (2006) ‘Error and uncertainty in habitat models’, Journal of Applied Ecology , 43(3),
pp. 413–423. doi: 10.1111/j.1365-2664.2006.01136.x.

Barve, N. et al. (2011) ‘The crucial role of the accessible area in ecological niche modeling and species
distribution modeling’,Ecological Modelling , 222(11), pp. 1810–1819. doi: 10.1016/j.ecolmodel.2011.02.011.

Bausch, D. G. and Schwarz, L. (2014) ‘Outbreak of Ebola Virus Disease in Guinea: Where Ecology Meets
Economy’, PLoS Neglected Tropical Diseases , 8(7), p. e3056. doi: 10.1371/journal.pntd.0003056.

Beaumont, L. J., Hughes, L. and Pitman, A. J. (2008) ‘Why is the choice of future climate scenarios for
species distribution modelling important?’, Ecology Letters , 11(11), pp. 1135–1146. doi: 10.1111/j.1461-
0248.2008.01231.x.

Benedict, M. Q. et al. (2007) ‘Spread of The Tiger: Global Risk of Invasion by The Mosquito Aedes
albopictus’, Vector-Borne and Zoonotic Diseases , 7(1), pp. 76–85. doi: 10.1089/vbz.2006.0562.

Boyce, M. S. et al. (2002) ‘Evaluating resource selection functions’, Ecological Modelling , 157(2–3), pp.
281–300. doi: 10.1016/S0304-3800(02)00200-4.

Bradie, J. and Leung, B. (2017) ‘A quantitative synthesis of the importance of variables used in MaxEnt
species distribution models’,Journal of Biogeography , 44(6), pp. 1344–1361. doi: 10.1111/jbi.12894.

Busby, J. W. et al. (2012) ‘Locating Climate Insecurity: Where Are the Most Vulnerable Places in Africa?’,
in Scheffran, J. et al. (eds) Climate Change, Human Security and Violent Conflict: Challenges for Societal
Stability . Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 463–511. doi: 10.1007/978-3-642-28626-1_23.

Chaves, J. et al. (2008) ‘Land management impacts on runoff sources in small Amazon watersheds’, Hydro-
logical Processes , 22(12), pp. 1766–1775. doi: 10.1002/hyp.6803.

Chen, G. et al. (2013) ‘Imperfect detection is the rule rather than the exception in plant distribution studies’,
Journal of Ecology , 101(1), pp. 183–191. doi: 10.1111/1365-2745.12021.

Chew, R. M. and White, H. E. (1960) ‘Evaporative water losses of the pallid bat’, Journal of Mammalogy ,
41(4), pp. 452–458. doi: 10.2307/1377532.

Cruz-Cardenas, G. et al. (2014) ‘Potential species distribution modeling and the use of principal com-
ponent analysis as predictor variables.’, Revista Mexicana de Biodiversidad , 85(1), pp. 189–199. doi:
10.7550/rmb.36723.

11



P
os

te
d

on
A

ut
ho

re
a

20
N

ov
20

20
|T

he
co

py
ri

gh
t

ho
ld

er
is

th
e

au
th

or
/f

un
de

r.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

us
e

w
it

ho
ut

pe
rm

is
si

on
.

|h
tt

ps
:/

/d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

81
.1

64
82

27
7/

v2
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

Daszak, P., Cunningham, A. A. and Hyatt, A. D. (2000) ‘Emerging infectious diseases of wildlife - Threats
to biodiversity and human health’, Science , 287(5452), pp. 443–449. doi: 10.1126/science.287.5452.443.

Dicko, A. H. et al. (2014) ‘Using species distribution models to optimize vector control in the framework of
the tsetse eradication campaign in Senegal’, Proceedings of the National Academy of Sciences of the United
States of America , 111(28), pp. 10149–10154. doi: 10.1073/pnas.1407773111.

Dinde, A. O. et al. (2017) ‘Response to the Ebola-related bushmeat consumption ban in rural Cote d’Ivoire’,
Agriculture and Food Security , 6(28), pp. 1–9. doi: 10.1186/s40066-017-0105-9.

Dorazio, R. M. (2012) ‘Predicting the Geographic Distribution of a Species from Presence-Only Data Subject
to Detection Errors’,Biometrics , 68(4), pp. 1303–1312. doi: 10.1111/j.1541-0420.2012.01779.x.

Dormann, C. F. (2007) ‘Effects of incorporating spatial autocorrelation into the analysis of species distribu-
tion data’, Global Ecology and Biogeography , 16(2), pp. 129–138. doi: 10.1111/j.1466-8238.2006.00279.x.

Elith, J. et al. (2006) ‘Novel methods improve prediction of species’ distributions from occurrence data’,
Ecography , 29(2), pp. 129–151. doi: 10.1111/j.2006.0906-7590.04596.x.

Elith, J. et al. (2011) ‘A statistical explanation of MaxEnt for ecologists’, Diversity and Distributions ,
17(1), pp. 43–57. doi: 10.1111/j.1472-4642.2010.00725.x.

Elith, J., Burgman, M. A. and Regan, H. M. (2002) ‘Mapping epistemic uncertainties and vague concepts
in predictions of species distribution’, Ecological Modelling , 157(2–3), pp. 313–329. doi: 10.1016/S0304-
3800(02)00202-8.

Elith, J., Kearney, M. and Phillips, S. (2010) ‘The art of modelling range-shifting species’, Methods in Ecology
and Evolution , 1(4), pp. 330–342. doi: 10.1111/j.2041-210X.2010.00036.x.

Elith, J. and Leathwick, J. R. (2009) ‘Species Distribution Models: Ecological Explanation and Prediction
Across Space and Time’,Annual Review of Ecology, Evolution, and Systematics , 40(1), pp. 677–697. doi:
10.1146/annurev.ecolsys.110308.120159.

Fandohan, B. et al. (2013) ‘Impact des changements climatiques sur la repartition geographique des aires
favorables a la culture et a la conservation des fruitiers sous-utilises: Cas du tamarinier au Benin’, Biotech-
nology, Agronomy and Society and Environment , 17(3), pp. 450–462. doi: 10.1179/146531207225022302.

Feldmann, H. and Geisbert, T. W. (2011) ‘Ebola haemorrhagic fever’,The Lancet , 377(9768), pp. 849–862.
doi: 10.1016/S0140-6736(10)60667-8.

Fick, S. E. and Hijmans, R. J. (2017) ‘WorldClim 2: new 1km spatial resolution climate surfaces for global
land areas’, International Journal of Climatology , 37(12), pp. 4302–4315.

Fiorillo, G., Bocchini, P. and Buceta, J. (2018) ‘A Predictive Spatial Distribution Framework for Filovirus-
Infected Bats’, Scientific Reports , 8(1), pp. 1–13. doi: 10.1038/s41598-018-26074-4.

Franklin, J. et al. (2009) ‘Effect of species rarity on the accuracy of species distribution models for reptiles and
amphibians in southern California’, Diversity and Distributions , 15(1), pp. 167–177. doi: 10.1111/j.1472-
4642.2008.00536.x.

Groseth, A., Feldmann, H. and Strong, J. E. (2007) ‘The ecology of Ebola virus’, Trends in Microbiology ,
15(9), pp. 408–416. doi: 10.1016/j.tim.2007.08.001.

Gu, W. and Swihart, R. K. (2004) ‘Absent or undetected? Effects of non-detection of species occurrence on
wildlife-habitat models’,Biological Conservation , 116(2), pp. 195–203. doi: 10.1016/S0006-3207(03)00190-3.

Guelat, J. and Kery, M. (2018) ‘Effects of spatial autocorrelation and imperfect detection on species distri-
bution models’, Methods in Ecology and Evolution , 9(6), pp. 1614–1625. doi: 10.1111/2041-210X.12983.

12



P
os

te
d

on
A

ut
ho

re
a

20
N

ov
20

20
|T

he
co

py
ri

gh
t

ho
ld

er
is

th
e

au
th

or
/f

un
de

r.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

us
e

w
it

ho
ut

pe
rm

is
si

on
.

|h
tt

ps
:/

/d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

81
.1

64
82

27
7/

v2
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

Guillera-Arroita, G. (2017) ‘Modelling of species distributions, range dynamics and communities under
imperfect detection: advances, challenges and opportunities’, Ecography , 40(2), pp. 281–295. doi:
10.1111/ecog.02445.

Guisan, A. and Thuiller, W. (2005) ‘Predicting species distribution: Offering more than simple habitat
models’, Ecology Letters , 8(9), pp. 993–1009. doi: 10.1111/j.1461-0248.2005.00792.x.

Hayman, D. T. S. et al. (2010) ‘Long-term survival of an urban fruit bat seropositive for ebola and lagos
bat viruses’, PLoS ONE , 5(8), p. e11978. doi: 10.1371/journal.pone.0011978.

Hernandez, P. A. et al. (2006) ‘The effect of sample size and species characteristics on performance of
different species distribution modeling methods’, Ecography , 29(5), pp. 773–785. doi: DOI 10.1111/j.0906-
7590.2006.04700.x.

Hortal, J. et al. (2008) ‘Historical bias in biodiversity inventories affects the observed environmental niche
of the species’,Oikos , 117(6), pp. 847–858. doi: 10.1111/j.0030-1299.2008.16434.x.

Hutchinson, G. E. (1957) ‘Concluding remarks’, Cold Spring Harbor Symposia on Quantitative Biology , 22,
pp. 415–427. doi: 10.1101/SQB.1957.022.01.039.

Jarnevich, C. S. et al. (2015) ‘Caveats for correlative species distribution modeling’, Ecological Informatics
, 29(1), pp. 6–15. doi: 10.1016/j.ecoinf.2015.06.007.

Jennings, A. P. et al. (2013) ‘Predicted distributions and conservation status of two threatened South-
east Asian small carnivores: The banded civet and Hose ’s civet’, Mammalia , 77(3), pp. 261–271. doi:
10.1515/mammalia-2012-0110.

Johnson, C. J. and Gillingham, M. P. (2008) ‘Sensitivity of species-distribution models to error, bias, and
model design: An application to resource selection functions for woodland caribou’,Ecological Modelling ,
213(2), pp. 143–155. doi: 10.1016/j.ecolmodel.2007.11.013.

Jones, K. E. et al. (2008) ‘Global trends in emerging infectious diseases’, Nature , 451, pp. 990–993. doi:
10.1038/nature06536.

Kadmon, R., Farber, O. and Danin, A. (2003) ‘A systematic analysis of factors affecting the perfor-
mance of climatic envelope models’,Ecological Applications , 13(3), pp. 853–867. doi: 10.1890/1051-
0761(2003)013[0853:ASAOFA]2.0.CO;2.

Kadmon, R., Farber, O. and Danin, A. (2004) ‘Effect of roadside bias on the accuracy of predictive maps
produced by bioclimatic models’,Ecological Applications , 14(2), pp. 401–413. doi: 10.1890/02-5364.

Knut, S.-N. (1997) Animal physiology. Adaptation and Environment . 5th ed. Cambridge University Press.

Lahoz-Monfort, J. J., Guillera-Arroita, G. and Wintle, B. A. (2014) ‘Imperfect detection impacts the per-
formance of species distribution models’, Global Ecology and Biogeography , 23(4), pp. 504–515. doi:
10.1111/geb.12138.

Leroy, E. M. et al. (2004) ‘Multiple Ebola Virus Transmission Events and Rapid Decline of Central African
Wildlife’, Science , 303(5656), pp. 387–390. doi: 10.1126/science.1092528.

Leroy, E. M. et al. (2005) ‘Fruit bats as reservoirs of Ebola virus’, Nature , 438(7068), pp. 575–576. doi:
10.1038/438575a.

Leroy, J. L. et al. (2007) ‘Current priorities in health research funding and lack of impact on the
number of child deaths per year’,American Journal of Public Health , 97(2), pp. 219–223. doi:
10.2105/AJPH.2005.083287.

Lindsay, S. W. et al. (2010) ‘Assessing the future threat from vivax malaria in the United Kingdom using
two markedly different modelling approaches’, Malaria Journal , 9(1), p. 70. doi: 10.1186/1475-2875-9-70.

13



P
os

te
d

on
A

ut
ho

re
a

20
N

ov
20

20
|T

he
co

py
ri

gh
t

ho
ld

er
is

th
e

au
th

or
/f

un
de

r.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

us
e

w
it

ho
ut

pe
rm

is
si

on
.

|h
tt

ps
:/

/d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

55
17

81
.1

64
82

27
7/

v2
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

Lobo, J. M., Jimenez-valverde, A. and Real, R. (2008) ‘AUC: A misleading measure of the performance of
predictive distribution models’,Global Ecology and Biogeography , 17(2), pp. 145–151. doi: 10.1111/j.1466-
8238.2007.00358.x.

Maganga, G. D. et al. (2014) ‘Ebola Virus Disease in the Democratic Republic of Congo’, New England
Journal of Medicine , 371(22), pp. 2083–2091. doi: 10.1056/NEJMoa1411099.

Martinez-Meyer, E. (2005) ‘Climate Change and Biodiversity: Some Considerations in Forecasting Shifts in
Species’ Potential Distributions’, Biodiversity Informatics , 2, pp. 42–55. doi: 10.17161/bi.v2i0.8.

Martinez-Meyer, E., Peterson, A. T. and Hargrove, W. W. (2004) ‘Ecological niches as stable distribu-
tional constraints on mammal species, with implications for Pleistocene extinctions and climate change
projections for biodiversity’, Global Ecology and Biogeography , 13(4), pp. 305–314. doi: 10.1111/j.1466-
822X.2004.00107.x.

McInerny, G. J. and Etienne, R. S. (2013) “ ‘Niche” or “distribution” modelling? A response to Warren’,
Trends in Ecology and Evolution , 28(4), pp. 191–192. doi: 10.1016/j.tree.2013.01.007.

McPherson, J. and Jetz, W. (2007) ‘Effects of species’ ecology on the accuracy of distribution models’,
Ecography , 30(1), pp. 135–151. doi: 10.1111/j.2006.0906-7590.04823.x.

Newson, S. E. et al. (2009) ‘Indicators of the impact of climate change on migratory species’, Endangered
Species Research , 7, pp. 101–113. doi: 10.3354/esr00162.

Nyakarahuka, L. et al. (2017) ‘Ecological Niche Modeling for Filoviruses: A Risk Map for Ebola
and Marburg Virus Disease Outbreaks in Uganda’, PLOS Currents Outbreaks , 9. doi: 10.1371/cur-
rents.outbreaks.07992a87522e1f229c7cb023270a2af1.

Olival, K. J. and Hayman, D. T. S. (2014) ‘Filoviruses in bats: Current knowledge and future directions’,
Viruses , 6(4), pp. 1759–1788. doi: 10.3390/v6041759.

Omoleke, S. A., Mohammed, I. and Saidu, Y. (2016) ‘Ebola viral disease in West Africa: A threat to
global health, economy and political stability’, Journal of Public Health in Africa , 7(1), pp. 27–40. doi:
10.4081/jphia.2016.534.

Osborne, P. E. and Leitao, P. J. (2009) ‘Effects of species and habitat positional errors on the performance
and interpretation of species distribution models’, Diversity and Distributions , 15(4), pp. 671–681. doi:
10.1111/j.1472-4642.2009.00572.x.

Osterholm, M. T., Moore, K. A. and Gostin, L. O. (2015) ‘Public health in the age of ebola in west africa’,
JAMA Internal Medicine , 175(1), pp. 7–8. doi: 10.1001/jamainternmed.2014.6235.
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FIGURE LEGENDS

Figure 1 Occurrence locations of Hypsignathus monstrosus sightings in red (123 observations in Africa of
which 9 in DR Congo), Myonycteris torquata sightings in blue (79 observations in Africa of which 7 in DR
Congo) and Epomops franqueti sightings in green (201 observations in Africa of which 10 in DR Congo)

Figure 2 Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) value under the
current period (100 runs) forEpomops franqueti (A), Hypsignathus monstrosus (B) andMyonycteris torquata
(C).

Figure 3 Jackknife test for variable importance of Hypsignathus monstrosus (A) , Myonycteris torquata
(C) and Epomops franqueti (B) . Mean Diurnal Range (bio2), Min Temperature of Coldest Month (bio6),
Annual Temperature Range (bio7), Temperature of Wettest Quarter (bio8), Mean Temperature of Driest
Quarter (bio9), Mean Mean Temperature of Warmest Quarter bio10), Precipitation Seasonality (bio15),
Precipitation of Wettest Quarter (bio16), Precipitation of Driest Quarter (bio17), Precipitation of Warmest
Quarter (bio18), Precipitation of Coldest Quarter (bio19).

Figure 4 Response curves of the variables contributing most to the prediction by the MaxEnt models for
Epomops franqueti, Hypsignathus monstrosus and Myonycteris torquata. Red indicates the mean response
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averaged over the 100 replicate MaxEnt runs, while blue indicates one standard deviation. For Epomops fran-
queti, bio7 (Annual Temperature Range) in Figure 4A had the largest percent contribution and the largest
permutation importance, followed by bio17 (Precipitation of Driest Quarter) in Figure 4B. For Hypsignathus
monstrosus, bio7 (Figure 4C) had the largest percent contribution; bio17 (Figure 4D) and bio19 (Precipita-
tion of Coldest Quarter) in Figure 4E had the largest permutation importance. For Myonycteris torquata,
bio17 (Figure 4F) and bio19 (Figure 4G) had the largest permutation importance.

Figure 5 Predicted current distribution of bats in DR Congo. The letters A, B, C, D in the maps represent
the predicted distribution ofEpomops franqueti, Hypsignathus monstrosus, Myonycteris torquataand mean
relative probability of presence respectively. Dark green indicates not suitable area (0.00 - 0.05); Light green
indicates slightly suitable area (0.05 - 0.25); Yellow indicates moderately suitable area (0.25 - 0.50); Orange
indicates suitable area (0.50 - 0.75); Red indicates highly suitable area (0.75 - 1.00).

Figure 6 Predicted distribution of bats in DR Congo in 2050 under RCP 4.5 (top) and RCP 8.5 (bottom).
The letters A, B, C, D in the maps represent the predicted distribution of Epomops franqueti, Hypsig-
nathus monstrosus, Myonycteris torquata and mean relative probability of presence respectively. Dark green
indicates not suitable area (0.00 - 0.05); Light green indicates slightly suitable area (0.05 - 0.25); Yellow
indicates moderately suitable area (0.25 - 0.50); Orange indicates suitable area (0.50 - 0.75); Red indicates
highly suitable area (0.75 - 1.00).

Figure 7 Predicted distribution of bats in DR Congo in 2070 under RCP 4.5 (top) and RCP 8.5 (bottom).
The letters A, B, C, D in the maps represent the predicted distribution of Epomops franqueti ,Hypsignathus
monstrosus , Myonycteris torquata and mean relative probability of presence respectively. Dark green in-
dicates not suitable area (0.00 - 0.05); Light green indicates slightly suitable area (0.05 - 0.25); Yellow
indicates moderately suitable area (0.25 - 0.50); Orange indicates suitable area (0.50 - 0.75); Red indicates
highly suitable area (0.75 - 1.00).
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