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the last three years but had been reclassified in august 2020. The three models yielded superior accuracy on this set compared
to the benchmarked tools. The RF based model yielded the best performance across different variant types and was used to
create VusPrize, an open source software tool for prioritization of variants of uncertain significance. We believe that our model
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ABSTRACT

The growing use of new generation sequencing technologies on genetic diagnosis has produced an exponential
increase in the number of Variants of Uncertain Significance (VUS). In this manuscript we compare three
machine learning methods to classify VUS as Pathogenic orNo pathogenic , implementing a Random Forest
(RF), a Support Vector Machine (SVM), and a Multilayer Perceptron (MLP). To train the models, we
extracted 82,463 high quality variants from ClinVar, using 9 conservation scores, the loss of function tool
and allele frequencies. For the RF and SVM models, hyperparameters were tuned using cross validation with
a grid search. The three models were tested on a set of 5,537 variants that had been classified as VUS any
time along the last three years but had been reclassified in august 2020. The three models yielded superior
accuracy on this set compared to the benchmarked tools. The RF based model yielded the best performance
across different variant types and was used to create VusPrize, an open source software tool for prioritization
of variants of uncertain significance. We believe that our model can improve the process of genetic diagnosis
on research and clinical settings.
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INTRODUCTION

Rare variants on genes involved in genetic disease produce a high toll of disability and premature death
worldwide. For example, some variants on the CFTR gene cause cystic fibrosis (Strausbaugh & Davis, 2007),
variants on the HBB gene can cause sickle cell disease (Kato et al., 2018), and variants on the LDLR gene
cause familial hypercholesterolemia (Defesche et al., 2017), all diseases with heavy burdens on health as well
as quality of life on patients and their families. Despite the low frequency of each genetic disorder, there are
around eight thousand genes where single variants can lead to genetic diseases (Amberger, Bocchini, Scott,
& Hamosh, 2020), resulting in a high total frequency of genetic diseases and affecting more than 300 million
people worldwide. One of the main concerns on genetic diseases is diagnostic delay. For rare diseases, 80%
of which have a known genetic cause, the delay until a correct diagnosis is given is on average 4.8 years
(Evans, 2018) but can be as long as 30 years (Gainotti et al., 2018), causing an additional burden of stress
for medical practitioners, patients, and their families.

The process of genetic diagnosis aims to correctly identify the genetic variant that is causing a specific
disease. This is a complex process that involves taking into account multiple data sources including, but
not limited to, gene and phenotype association, allele frequencies on a population relevant to the patient,
the inheritance pattern of the disease, functional studies related to suspected variants, and computational
predictions (Richards, et al., 2015). Until recently, the process was based on gene panels or chromosomal
arrays that included a limited number of variants known to be pathogenic and associated with particular
diseases (Fogel, Satya-Murti, & Cohen, 2016; Miller, et al., 2010). With this approach, variants that are
not included in the assay cannot be detected. In the last ten years, the introduction of high throughput
sequencing technologies (Whole Exome and Whole Genome Sequencing) have increased the yield of variants
detected in a single test, and have demonstrated superior clinical and diagnostic utility than the formerly
used first line-tests for many diseases (Clark, et al., 2018). However, due to the complexity of the process, the
higher yield of detected variants has not been coupled with a proportional increase in variant interpretation
capabilities, resulting in an explosion of variants of uncertain significance (VUS). In fact, the number of
variants classified as VUS have exponentially increased in the last few years, and the majority of clinically-
interpreted variants are currently VUS (Weile & Roth, 2018). This problem is even more prevalent among
“underrepresented minorities” compared to Caucasian populations, as there are fewer genomic and clinical
studies with patients on these populations (Walsh, et al., 2019).

Ideally, VUS are reclassified in a more informative category (pathogenic , likely pathogenic , likely benign ,
orbenign ) but achieving this goal requires ascertaining new information on the variant through experimen-
tal or population studies, which take time and consume resources. One way to prioritize VUS with a higher
probability of being pathogenic (i.e. disease-causing) for further studies is to use computational predictive
tools. Computational predictive tools are models that estimate the probability that a given variant is delete-
rious or pathogenic based on information about its evolutionary conservation, its effect on protein structure
or function (if it is a coding variant), or its effect on relevant features of the DNA sequence (v.g. splice
sites, regulatory sites, protein-DNA binding sites, among others). The most commonly used tools (Ghosh,
Oak, & Plon, 2017) yield scores ranging from 0 to 1, some of which reflect a probability value, while not
all are calibrated to reflect a true probability. Some tools such as CADD (Rentzsch,, et al., 2019) yield
phred-scores as well. Probability scores can be obtained using calibration formulas. Using these probability
scores researchers and clinicians are able to prioritize VUS with a higher probability of being pathogenic
(i.e. disease causing), and can potentially guide clinical decision-making processes for these types of variants
when additional evidence is lacking. However, currently used predictors have several shortcomings. First,
most predictors are designed for missense type variants, leaving out an important proportion of the variants
currently classified as VUS, which have different consequence data types (Figure 1). Some frameworks that
work for other variant types (v.g. MutationSVM), have separate tools for each variant type. Additionally,
tools for missense variants tend to overestimate the pathogenicity of benign variants. Finally, while other



tools perform better as classifiers of pathogenic vs. non pathogenic, the probability distributions for VUS do
not reflect the suggested thresholds of probability suggested by the ACMG for variant classification on the
four remaining categories.

Here, we present a comparison of three machine learning models (Random Forest, Support Vector Machine,
and a Five-Layer Perceptron) in a one-for-all approach, meaning that each model can correctly prioritize
variants of different consequence types. To increase their predictive power and interpretability, we merged
ACMG Benign and Likely Benign categories into a unique Benign category, and ACMG Pathogenic and Likely
Pathogenic categories into a unique Pathogenic category. To avoid circularity bias, we trained our models
using conservation scores that did not include clinical interpretation data. Additionally, we demonstrated
that including allele frequencies increases the predictive power of the models. To assess the performance of
the resulting models for prioritization of the VUS population, we benchmarked the resulting models against
currently used predictors using a set of variants that had been classified as VUS on the last three years, but
have been reclassified into the remaining categories as of august 2020 on ClinVar (Landrum, et al., 2017),
showing superior performance among different variant consequence types.

RESULTS

In order to achieve the goal to prioritize VUS with a higher probability of being pathogenic and overcome
the limitations of current predictor tools, we developed three models comparing three machine learning
approaches (Random Forest, Support Vector Machine and a Neural Network with a Five-layer multilayer
perceptron architecture). Models were trained with a set of 82,426 high quality variants from the ClinVar
database and tested with a set of variants that had been classified as VUS anytime during the last three
years, but had been reclassified with high confidence in any of the 4 informative categories (Pathogenic, Likely
pathogenic, Likely Benign, Benign). To increase the size of the training set and ease the interpretation of
results we merged the Pathogenic and Likely pathogenic categories into a unique Pathogenic category, and
the Benign and Likely Benign category into a unique Benign category.

Machine learning models to improve classification of VUS

We explored three different machine learning strategies to classify variants that are currently assigned as
variants of uncertain significance (VUS) by standard variant interpretation pipelines.

After building three models for VUS pathogenicity prediction based on a Random Forest (RF), a Support
Vector Machine (SVM), and a Five-Layer Perceptron (MLP), their performance was measured on a set of
variants previously classified as VUS but reclassified in any of the other categories in ClinVar with at least
two quality stars. This set includes 5,537 variants representative of the main variant consequence types
(Figure la), including 2,008 (36.3%) missense variants, 1,844 (33.3%) synonymous variants, 349 (6.3%)
intron variants, 475 (8.6%) splice variants, 340 (6.32%) non-coding mRNA variants, 69 (1.25%) coding
INDEL variants, 151 (2.73%) intergenic, and 290 (5.22%) of other variant types (5-prime UTR variants,
3-prime UTR variants, upstream gene variants, downstream gene variants, TF binding site variants, and
nonsense variants). As measured by the area under the curve of the Receiving Operator Characteristic
curves (AUROC), our three models outperform the best performing of the benchmarked tools (CADD, with
an AUC of 0.92), with an AUC of 0.97 for the RF and the MLP based models, and a AUC of 0.96 for the SVM
based model (Figure 1b). Additionally, the three models were trained separately including and excluding
1000 Human Genomes global allele frequencies to compare their performance on the original test set. For all
the models analyzed, including the 1IKG Global Allele Frequencies increased performance measured by the
AUC (See Supplementary Figure S1).

High performance among different variant consequence types

Most of the currently available tools, v.g. SIFT (Vaser, Adusumalli, Leng, Sikic, & Ng, 2016), PolyPhen
(Adzhuvei, et al., 2010), and Revel (Ioannidis, et al., 2016) are designed to yield scores for missense type
variants exclusively, resulting in a lower performance in the dataset as it includes diverse variant consequence
types. Only a third of the variants of this dataset are missense type, and there are significant numbers of



synonymous, non coding transcript exon, intron, and splice variants. There is a smaller number of other
consequence types as well, namely frameshift and nonsense variants. For this reason, to get a fairer repre-
sentation of the performance of the trained models against the benchmarked tools, the ROCs for the same
models were plotted for the subsets of the specific variant consequence types. On the subset of missense
variants (Supplementary Figure S2a), the AUC of the RF and the MLP (0.97) outperform the SVM (0.96).
As most tools are designed for this consequence type, there is a general superiority of the AUCs compared
with the other variant types. Revel yields an AUC of 0.96, equal to the SVM and slightly lower than the MLP
and RF. The commonly used SIFT and PolyPhen had lower AUCs than other the analyzed tool (0.81 and
0.85, respectively). M-CAP (AUROC=0.95) , MetalL.R, and MetaSVM (AUROC=0.93) yield high accuracy

on missense variants as well.

For the splice type variants (Supplementary Figure S2b), our RF yields an AUC of 0.97, the MLP an AUC
of 0.93, and the SVM an AUC of 0.90. The CADD tool yields an AUC of 0.95 outperforming our MLP
and SVM. For synonymous variants (Supplementary Figure S2¢), the AUROCSs are consistently lower. In
these variants, our three models get an AUC of 0.89, outperforming CADD (AUROC=0.57). For non-coding
mRNA variants (Supplementary Figure S2d), the AUROCSs of our models are outperformed by CADD. The
RF yielded an AUROC 0f 0.89, the SVM of 0.85, and the MLP, of 0.89, lower than CADD with an AUROC
of 0.93. For the intron type variants (Supplementary Figure S2e), the RF yields an AUROC of 0.89, the
SVM of 0.84, and the MLP of 0.83. The CADD score yielded an AUROCC of 0.76. Our models misclassify
coding INDEL variants (Supplementary Figure S2f), showing AUROCSs lower than 0.5, while CADD has an
AUROC of 0.78. In the case of intergenic variants (Supplementary Figure S2g), the three models yielded an
AUROC of 0.58, while CADD yielded an AUROC of 0.89. For other variant types (Supplementary Figure
S2h), performance is better, with AUROC=0.92 for the RF and the SVM, and AUROC=0.89 for the MLP.
In this variant type, CADD AUROC=0.95.

Improved performance through ensembling with CADD

To overcome the shortcomings of the developed models on certain variant types (namely non-coding mRNA
variants, coding INDELvariants, intergenic variants, and other types), and considering that ensemble ap-
proaches have shown increased performance (Ghosh, Oak, & Plon, 2017), we retrained the models using the
CADD score as an additional feature. Compared to other variant deleteriousness prediction tools, CADD
does not use clinical variants for its training, so using it avoids the circularity bias that would arise from using
other tools like REVEL or PolyPhen in our training and testing with a ClinVar variant population. The mo-
dels were trained in the same fashion than described above, tuning the hyperparameters with cross validation
using a grid search approach. The overall performance of the models improved, as seen on Figure 1d. The RF
and MLP based models yielded an AUROC of 0.98, and the SVM model of 0.97. As seen on Figure 1c, the
highest improvement is seen on coding INDELs and intergenic variants, and a more modest increase in the
AUROC for splice, non coding mRNA, and other variant types. Synonymous variants experienced a decrease
in accuracy as measured by the AUROCSs. A profiling analysis showed that virtually all synonymous variants
are labelled as Benign, while virtually all Frameshift variants are labelled as Pathogenic, implying that the
models assign the benign label to all synonymous, and the pathogenic label to all frameshift variants. For
the variant consequence types analyzed, synonymous variants yield the lowest results on AUCs. Moreover,
the current classification of non-VUS synonymous variants on ClinVar (99% are classified as Bening) is not
matched by the CADD scores which predict a much higher number to be pathogenic (Supplementary Figure
S2).

As shown in figure 2a, on the subset of missense variants, the AUC of the RF (0.97) outperforms the SVM
(0.96) and the MLP (0.96), and all the benchmarked tools. For the splice type variants (Figure 2b), our
RF yielded an AUC of 0.99; the SVM, of 0.97; and the MLP, of 0.98. CADD yielded an AUC of 0.95; our
MLP an AUC of 0.96; and the ada score and AUC of 0.95. For synonymous variants (Figure 2c), the RF
yielded an AUC of 0.79. Non coding exon type variants (Figure 2d), the AUCs are slightly lower. The RF
yielded an AUC of 0.98, the SVM and the MLP, of 0.96 and 0.97, respectively, higher than CADD with 0.93.
For the intron type variants (Figure 3e), the RF yielded an area of 0.92. In all cases except coding INDEL



variants (Figure 2f), our models yield AUCs higher than CADD, and the RF based model gets the highest
performance across the assessed variant types.

Score distributions for currently used tools

The distribution of values of the retrieved features, many of which are currently used as deleterious-
ness/pathogenicity prediction scores, were plotted for Benign and Pathogenic variants, as well as for Variants
of Uncertain Significance. Figure 3 shows the distribution of values for three of the most commonly used
tools, namely SIFT, PolyPhen and Revel. Considering that the SIFT score assigns a 0 value to deleterious
variants, in contrast with the typical score value of 1 for deleterious/pathogenic variants, its histogram was
plotted using the 1-SIFT value to allow for easier comparison with the other tools. As seen on Figure 3,
1-SIFT scores have a great proportion of values [?] 1 for Benign variants, suggesting an overestimation
of deleteriousness. PolyPhen scores have values [?] 1 for benign, and values [?] 0 for pathogenic variants
as well. However, for VUS variants SIFT and PolyPhen have pronounced distributions with peaks on the
extreme values, while the Revel scores have a less markedly bimodal distribution. An ideal prediction score
for VUS variants would classify them on two clear clusters (in a similar way to PolyPhen) while avoiding
classification errors.

Distribution of the developed models on current VUS

Finally, we ran our models on a set of ClinVar variants currently classified as VUS (Figure 4). The Random
Forest model predicts that approximately three quarters of the variants to be pathogenic and one quarter
benign. On the distribution of probability of pathogenicity, there is a sharp peak in values of probability of
pathogenicity close to 1, and a less marked peak in values around thirty percent. The support vector machine
model predicts that approximately two thirds of the variants to be pathogenic and one third benign. On the
distribution of probability of pathogenicity, there is a sharp peak in values of probability of pathogenicity
close to 1, and a less marked peak in values close to zero. The multilayer perceptron model predicts
approximately three quarters of the variants to be pathogenic and one quarter benign. Its distribution of
probability behaves in a similar fashion to the SVM model.

DISCUSSION

The interpretation of genomic variation data in clinical settings has been one of the biggest challenges in
achieving a successful use of next generation sequencing in medical practice. Given the relevance of this
process for current diagnosis of genetic diseases, variant interpretation is one of the most important topics in
current bioinformatics. To develop this model, we combined different machine learning techniques and scores
from widely used tools, as an effort to try to improve the accuracy of classification of Variants with Uncertain
Significance (VUS). Our models showed improved accuracy compared to current solutions analyzing data
from a large set of variants previously classified as VUS and distributed over different consequence types..

VUS raises concerns for both patients and for clinicians working on genetic diagnosis. From the patient
perspective, genetic testing can yield or confirm a diagnosis, inform the probability of developing a disease
for the patient or relatives, and, if the variant is actionable, offer a possibility of treatment. Thus, the
uncertainty created by VUS on genetic testing can lead to a variety of emotional responses in patients. Some
of the most reported answers to a VUS result are stress and distress, both on patients and on their relatives.
Additionally, VUS results are more difficult to understand as patients tend to have a more deterministic
view of genetics, and in many scenarios tend to misinterpret VUS results as more similar to a negative result
(Clift, et al., 2019). Moreover, due to the variability of patient medical and psychosocial contexts, there is no
consensus on clinical best practices to handle VUS results. Some propose to withhold them from patients,
so clinicians and labs have to deal with them on a case-by-case basis focusing on pre and post diagnosis
counseling to minimize potential harm (Hoffman-Andrews, 2017).

From the clinician point of view, a VUS result raises concerns on how to counsel the affected patient and their
family, and how it might change the clinical management. The ACMG guidelines state that a VUS should
not be used as part of clinical decision making. Therefore, it is advised that, whenever feasible, the clinician



should pursue additional efforts to classify the variant. Additional monitoring and tracing of the patient
might be needed if the variant is reclassified (Hoffman-Andrews, 2017). In any case, these efforts involve
important time and monetary investments: they can be directed at the patient and family level (i.e. testing
for the variant on parents and other relatives) or, if the laboratory has research facilities, functional studies
to validate the variant consequence. Other approaches include the work by Sun, et al. (2020), which aims to
tackle this problem by proactively creating comprehensive maps of cell-based assays for the missense variants
of specific genes, or the work by Walsh, et al. (2019), which compares variant frequency between patient
cohorts and reference population cohorts. However, so far these approaches are available for a number of
selected genes and diseases. Thus, in resource limited settings VUS prioritization is a paramount need and
our tools can help us select VUS with the highest probability of being pathogenic with a high accuracy.

As demonstrated by Liu, Wu, Li, & Boerwinle, et al. (2016), combining information of several predictive
scores increases the predictive accuracy of missense variant classification. Here, we show that combining
the information of high accuracy conservation-based variant deleteriousness tools like CADD, SIFT, and
Eigen (Ionita-Laza, McCallum, Xu, & Buxbaum, 2016) yields improved accuracy across a variety of variant
types including missense , splice , intron ,intergenic , and synonymous . However, synonymous variants
obtained the less accurate results with both our models and CADD (Figure 3). Recent work suggests that
synonymous variants might be more deleterious than would be predicted from current clinical significance
annotations (Zeng & Bromberg, 2020). We believe that additional research might be needed to ascertain
the true pathogenic potential of these class of variants.

METHODS
Selection of variants for model training and testing

From ClinVar, we selected 82,463 variants which had at least two quality stars (i.e. assertion criteria
available, multiple submitters, and no conflicts in the interpretation) and were not classified as VUS in
the ClinVar database, version 08/03/2020. We sampled the ClinVar database versions from 06/15/2017,
12/03/2017, 06/03/2018, 12/02/2018, 06/03/2019, 12/06/2019, to look for variants that were classified as
VUS on those dates, but had been reclassified on any of the four remaining categories (pathogenic , likely
pathogenic , likely benign , or benign ) and were included on the group of 82,463 variants, finding 5,537
variants that were reserved for further benchmarking as the ez-VUS set. To increase predictive power by
including more variants for training, and ease the interpretability of the results, Bening and Likely Benign
variants were merged into a unique Benign label, and Pathogenic and Likely Pathogenic variants were merged
into a uniquePathogenic label.

Variant feature selection

To assess possible attributes for model training, we used 24 variant features, including splice site predictors,
conservation scores, deleteriousness/pathogenicity scores, allele frequency, and consequence type, from the
Ensembl Variant Effect Predictor (McLaren, et al., 2016; Zerbino, et al., 2018) ). Features with high
Pearson correlation were depurated. Additionally, features with values coming from models trained with
clinical significance data were discarded to avoid circularity biases on our model estimation phase. First,
the features used for training were: ada score, codon degeneracy score, integrated fitness conservation score,
BLOSUMG62 score, Eigen score, phyloP score, Gerp score, SIFT score, the Loss of Function tool score, the
allele frequencies from the 1000 human genomes project global dataset, and the variant consequence type
codified as dummy binary variables. Clinical Significance was used as the label for training, and codified
using! for pathogenic, and 0 for benign . To correct for class unbalance (2/3 benign vs. 1/3 pathogenic
variants) we randomly undersampled benign variants to equalize the number ofpathogenic variants. After
testing for the models performance on the ex-VUS set, models were retrained with the procedure described
before, adding the CADD phred score (retrieved from Ensembl Variant Effect Predictor) as a feature for the
variants.

Parameter tuning for different machine learning models



The dataset of 76,926 variants was split on a training and a test set with a 80:20 ratio. Using the SciKit
Learn library for Python 3, we trained a model based on a Random Forest, and a model based on a Support
Vector Machine with a RBF kernel. Hyperparameters were tuned using a grid search with cross-validation
approach optimizing the area under the ROC curves. The hyperparameters tuned on the Random Forest
were: Maximum depth, selection criteria, and number of estimators . The hyperparameters tuned on the
Support Vector Machine were C value and gamma value . Additionally, a Five-Layer Perceptron was trained
using a batch size of 50 and 25 epochs on the Keras library for Python 3 with a TensorFlow backend. A
ReLu was chosen as an activation function for the hidden layers and a Sigmoid as a function for the output
layer. To assess model performance, we plotted the area under the ROC curves and calculated the area
under the ROC curves. We compared the models trained including and excluding the 1000 human genomes
project global allele frequencies.

Finally, we further tested the resulting models on the set of 5,537ex-VUS and compared their performance
against the scores of commonly used prediction tools (retrieved from Ensemble VEP). First, we tested the
model on the whole set of variants irrespective of their consequence type. Then, to make a fairer assessment
against tools that yield scores only for specific consequence types (such asmissense type variants), we plotted
the ROC curves and calculated AUCs the same models but on the specific subpopulations of variants.
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FIGURE LEGENDS

Figure 1. a) Pie chart showing the composition of the ex-VUS set by variant consequence type. b) Receiver
Operating Characteristic (ROC) curves for our initial Random Forest, Support Vector Machine (SVM), and



Multilayer Perceptron (MLP) based models, and CADD, REVEL, and PolyPhen. Our models are drawn
with thicker lines. ¢) Bar graph showing the change in the Area Under the Curve (AAUC) for each variant
consequence type in the ex-VUS sample, comparing the models developed before and after including CADD
as a feature for model training. d) Receiver Operating Characteristic (ROC) curves for Random Forest,
Support Vector Machine (SVM), and Multilayer Perceptron (MLP) based models trained including CADD
phred score as a feature, and CADD, REVEL, and PolyPhen. Our models are shown with thicker lines.

Figure 2. Receiver Operating Characteristic (ROC) curves for the Random Forest (RF), Support Vector
Machine (SVM), and Multilayer Perceptron (MLP) models trained including CADD phred score as a feature.
Curves for our models are shown in thicker lines along with benchmarked scores for a) missense , b)splice ,
¢) synonymous , d)non-coding mRNA | e) intron , f), coding INDEL , g)intergenic , h) other variant types,
and 1) all variant consequence types.

Figure 3. Distribution of values of 1-SIFT, PolyPhen, and Revel scores for Benign AND Pathogenic variants,
and variants of Uncertain Significance. For the Variants of Uncertain Significance, the thresholds for each
of the ACMG categories are displayed.

Figure 4. Distribution of probability of pathogenicity values for variants currently classified as Variants
of Uncertain Significance on ClinVar for a) the Random Forest (RF) based model, b) the Support Vector
Machine (SVM) based model, and c) the Multilayer Perceptron (MLP) based model. Additionally, d) shows
a pie chart of the predictions of the RF based model for the current VUS on ClinVar.
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