Unraveling groundwater contributions to evapotranspiration in a mountain headwaters: Using eddy covariance to constrain water and energy fluxes in the East River Catchment

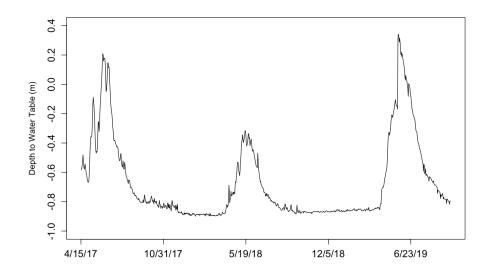
Anna Ryken¹, David Gochis², and Reed Maxwell³

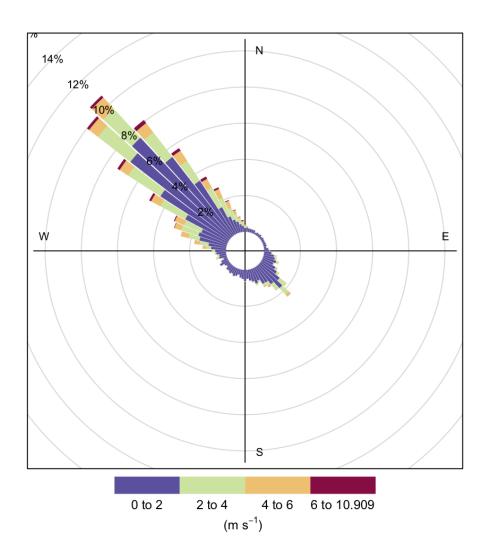
January 4, 2021

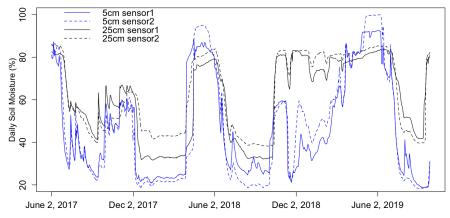
Abstract

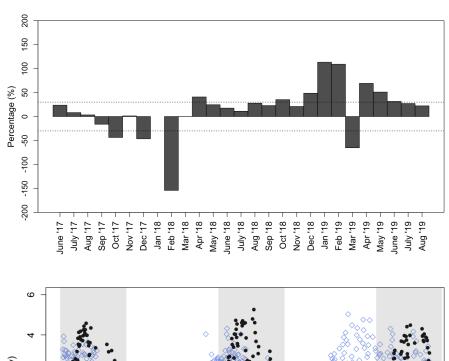
Despite the importance of headwater catchments for western United States' water supply, these regions are often poorly understood, particularly with respect to quantitative understanding of evapotranspiration (ET) fluxes. Heterogeneity of land cover, physiography, and atmospheric patterns in these high-elevation regions lead to difficulty in developing spatially-distributed characterization of ET. As the largest terrestrial water flux behind precipitation, ET represents a significant fraction of the water budget for any watershed. Likewise, groundwater is the largest available freshwater store and has been shown to play a large role in the water balance, even in headwater systems. Using an eddy covariance tower in the East River Catchment, a Colorado River headwaters basin, this study estimates water and energy fluxes in high-elevation, complex systems to better constrain ET estimates and calculate overall water and energy budgets, including losses from groundwater. The eddy covariance method is used to estimate ET from years 2017 through 2019 at a saturated, riparian end-member site. Owing to complexities in near surface atmospheric structure such as stable boundary layers over snowpack and shallow terrain driven flow from surrounding landscape features, energy flux and ET estimates were limited to the warm season when energy closure residuals from the eddycovariance system were reliably less than 30 %, a threshold commonly used in eddy covariance energy flux estimation. The resulting ET estimations are useful for constraining water budget estimates at this energy-limited site, which uses groundwater for up to 84 % of ET in the summer months. We also compared East River ET magnitudes and seasonality to two other flux towers (Niwot Ridge, CO and Valles Caldera, NM), located in the Rocky Mountains. This data is useful for constraining ET estimates in similar end-member locations across the East River Catchment. Our results show that groundwater-fed ET is a significant component of the water balance and groundwater may supply riparian ET even during low-snow years.

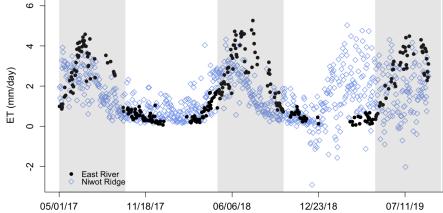
Hosted file

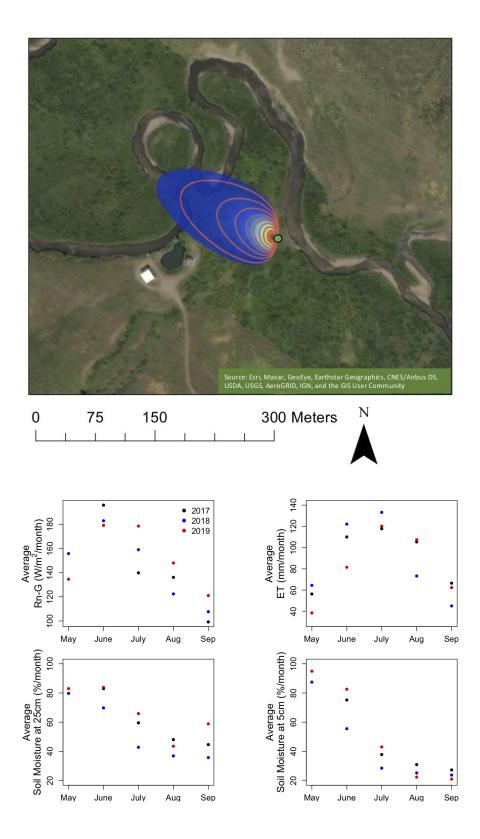

UnravelingGroundwater.pdf available at https://authorea.com/users/345910/articles/502335-unraveling-groundwater-contributions-to-evapotranspiration-in-a-mountain-headwaters-using-eddy-covariance-to-constrain-water-and-energy-fluxes-in-the-east-river-catchment

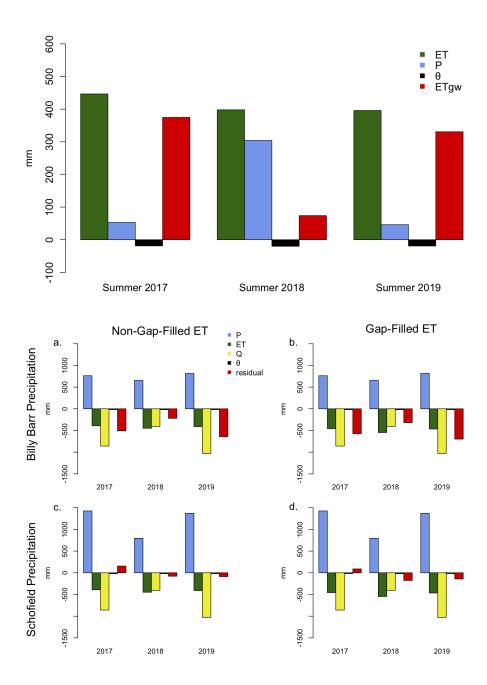

¹Colorado School of Mines


²National Center for Atmospheric Research


³Princeton University







Meteorological Variable	Sensor	Make/Model	Sampling Frequency
Wind Speed	3-dimensional sonic anemometer	Campbell Scientific IRGASON	10 Hz
Air Temperature	sonic anemometer	Campbell Scientific IRGASON	10 Hz
Barometric Pressure	sonic anemometer	Campbell Scientific IRGASON	10 Hz
Water Vapor Concentration	infra-red gas analyzer	Campbell Scientific IRGASON	10 Hz
CO ₂ Gas Concentration	infra-red gas analyzer	Campbell Scientific IRGASON	10 Hz
Incoming/Outgoing Shortwave/Longwave Radiation	ingoing/outgoing pyranometer incoming/outgoing pyrgeometer	Kipp and Zonen CNR-4	15 minutes
Soil Heat Flux	heat flux plate	Huskeflux self-calibrating soil heat flux plate	15 minutes
Soil Temperature	soil thermistor	Steven's Hydra-Probe	15 minutes
Soil Moisture	soil dielectric probe	Steven's Hydra-Probe	15 minutes
Soil Electrical Conductivity	soil electrical conductivity probe	Steven's Hydra-Probe	15 minutes
Surface Infra-red Skin Temperature	infra-red radiometer	Apogee SI-111 Infra-red radiometer	15 minutes
	data logging/control system	Campbell Scientific CR3000	

Sampling Frequency	10Hz
Sensor Orientation	315 degrees (from North)
Measurement Height	5.9 meters
Canopy Height	2 meters
Displacement Height	Diagnosed online
Roughness Length	Diagnosed online
Site Elevation	2862 meters ASL
Wind Coordinate Rotation	Planar-fit method (Wilczak, Oncley, & Stage, 2001)
Spectral Correction (low pass filter correction)	Massman (2001)
Density Corrections	WPL method (Webb, Pearman, & Leuning, 1990)

	2017	2018	2019
Latent Heat (W/m²)	105.24	92.65	95.55
Summer ET (mm)	334.48	294.49	303.69
Annual ET (mm)	457.94 [†]	547.12	465.54
Rn-G (W/m ²)	157.26	154.75	168.55
Air Temperature (K)	286.59	286.41	285.56
Dew Point Depression	11.42	12.13	12.04
Annual Precipitation (mm) from Billy Barr Station	1037.5	790.13	1115.61

	2017	2018	2019
ER Summer Evapotranspiration (mm)	334.48	294.49	303.69
VC Summer Evapotranspiration (mm)	398.47	381.44	453.63
NR Summer Evapotranspiration (mm)	230.53	218.31	151.63
ER Annual Evapotranspiration (mm/year)	457.94 [†]	547.12	465.54
VC Annual Evapotranspiration (mm/year)	731.35	849.79	855.64
NR Annual Evapotranspiration (mm/year)	320.02	464.10	499.64
ER Temperature (K)	286.59	286.41	285.56
VC Temperature (K)	289.98	290.86	290.29
NR Temperature (K)	285.42	286.39	284.25
ER Precipitation (mm, cumulative)	1037.5	790.13	1115.61
VC Precipitation (mm, cumulative)	539.56	299.51	545.69
NR Precipitation (mm, cumulative)	979.52	745.57	848.10

	2017	2018	2019
Billy Barr	-507.98	-220.05	-643.08
Billy Barr and ET Gap-filled	-574.11	-318.52	-697.87
Schofield	155.13	-79.10	-87.60
Schofield and ET Gap-filled	89.00	-177.55	-142.39