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Generating Function for nth Collatz Iteration

We can consider the generating function for the Collatz map applied to the positive integers. Define

C(n) =

{
n/2 n mod 2 = 0

3n + 1 n mod 2 = 1
(1)

and define the mth composition of the function as Cm(n), such that C0 = n and C1(n) = C(n) and
C2(n) = C(C(n)).

The generating function for positive integers is

G0(x) =
x

(1− x)2
(2)

for the first iteration we have numbers 4, 1, 10, 2, 16, 3, ...

G1(x) =
x

(1− x2)2
(4 + x + 2x2) (3)

for the second iteration giving 2, 4, 5, 1, 8, 10, 11, 2, 14, ... we have

G2(x) =
x

(1− x4)2
(2 + 4x + 5x2 + x3 + 4x4 + 2x5 + x6) (4)

the next iteration is

G3(x) =
P3(x)

(1− x8)2
(5)

in general this gives

Gn(x) =
Pn(x)

(1− x2n)2
(6)

for a polynomial of which seems to be order 2n+1 − 1 these polynomials appear to be related to the current
iteration sequence by the following relationship

Pn(x) =

(
2n∑
k=1

Cn(k)xk

)
+

2n+1−1∑
k=2n+1

(Cn(k)− 2Cn(k − 2n))xk

 (7)

which we can write as

Pn(x) =

2n+1−1∑
k=1

Cn(k)xk

− 2

2n+1−1∑
k=2n+1

Cn(k − 2n)xk

 (8)
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We could consider the Cauchy product of this and the simple series

1

(1− x2n)2
= 1 + 2x2n + 3x2·2n + 4x3·2n + · · · (9)

what does this mean? This means that for any level of iteration, we can describe the coefficient for any
number, however large, using the first few function evaluations and a composition. However the expressions
rapidly become complicated, with 2n+1 terms.

What conditions would then be required for a coefficient to be 1? For a given iteration this will depend on
the number of ways to write a target number t, as the sum of an integer in the range [1, 2n − 1] and any
of [0, 2n, 2 · 2n, 3 · 2n, · · · ], for one iteration that’s combinations in [1, 2, 3] + [0, 2, 4, 6, 8, · · · ] which can make
[1, 2, 3],[3, 4, 5],[5, 6, 7] and so on indicating there are multiple ways to make 3, 5, 7, · · · .

All of the coefficient terms are positive which is nice. The only way a coefficient can be 1 in this iteration is
if it is 1 in the polynomial, and multiplied by the 1 in the expanded series.

This means we can look at a subset of the polynomial, namely Pn(x). We can then ask, how can a coefficient
become 1 in Pn(x)? We can see that Cn(k) > 2Cn(k − 2n) for k ∈ [2n + 1, 2n+1 − 1] to keep the terms
positive and non-zero.
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