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Abstract

Sequential model-based design of experiments (MBDOE) is used to select operating conditions for new experiments in a batch-

reactor that produces bio-based poly(trimethylene) ether glycol (PO3G). These Bayesian A-optimal experiments are designed to

obtain improved estimates of the 70 fundamental-model parameter estimates, while accounting for the model structure and for

data from eight previous industrial batch-reactor runs. Settings are selected for three decision variables: reactor temperature,

initial catalyst level, and initial water concentration. If only one new experiment is conducted, it should be run at high

temperature, with relatively high concentrations of catalyst and initial water. When two new runs are conducted, one should

use an intermediate catalyst concentration. The effectiveness of the proposed MBDOE approach is tested using Monte-Carlo

simulations, revealing that the selected experiments are superior compared to new experiments selected randomly from corners

of the permissible design space.
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Abstract 

Sequential model-based design of experiments (MBDOE) is used to select operating conditions 

for new experiments in a batch-reactor that produces bio-based poly(trimethylene) ether glycol 

(PO3G).  These Bayesian A-optimal experiments are designed to obtain improved estimates of the 

70 fundamental-model parameter estimates, while accounting for the model structure and for data 

from eight previous industrial batch-reactor runs. Settings are selected for three decision variables:  

reactor temperature, initial catalyst level, and initial water concentration. If only one new 

experiment is conducted, it should be run at high temperature, with relatively high concentrations 

of catalyst and initial water.  When two new runs are conducted, one should use an intermediate 

catalyst concentration. The effectiveness of the proposed MBDOE approach is tested using Monte-

Carlo simulations, revealing that the selected experiments are superior compared to new 

experiments selected randomly from corners of the permissible design space. 
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1. Introduction 

Cerenol® is a class of bio-based poly(trimethylene) ether glycol (PO3G) that has been 

manufactured and trademarked by Dupont since 2008.1 - 3 The monomer used for producing 

Cerenol® is corn-based 1,3-propanediol derived from a glucose fermentation process (Bio-

PDO®),4 so that Cerenol® is thoroughly renewably-sourced. Cerenol® offers a variety of value-

added properties (e.g., excellent biodegradability, low toxicity, high oxidative stability, etc.), and 

is used in a wide range of applications including automotive coatings, cosmetics, elastic fibers, 

and thermoplastic elastomers.1 - 3, 5
 

Cerenol® is produced in batch, semi-continuous and continuous reactors using super-acid catalyst. 

Operating conditions such as catalyst concentration and temperature vary depending on the desired 

molecular weight and the end-use properties of the final products.3, 6 – 14 The influences of these 

conditions on product properties and production rates have been studied via several fundamental 

PO3G models.15 - 22 Mueller et al. developed first PO3G models using a reaction scheme that 

accounts for the influence of acids on polymerization of 1,3-propanediol.15, 16 Their models predict 

time-varying concentrations of monomer and water in the reactor liquid and in the vapor that 

evaporates from the reactor, but they ignore the formation and evaporation of oligomers. Values 

of kinetic parameters are not reported in their publications. Cui et al. extended Mueller’s 

mechanism to account for side reactions (e.g., formation of propanal and transetherification 

reations), and developed a series of PO3G models that account for formation and evaporation of 

linear oligomers.17 - 19 Their studies used estimability analysis techniques23, 24 to rank the kinetic 

and transport parameters in their models from most estimable to least-estimable.  Wu’s mean-

squared-error criterion 25, 26 was then used to select the parameters that are estimable from the 

available industrial data. Cui’s parameter estimation study relied on data3 obtained from four 
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batch-reactor runs conducted at 180 ̊C  with different super-acid catalyst levels.  Cui’s final PO3G 

model and parameter estimates give a reasonable fit to the industrial data. However, their predicted 

overall rate of polycondensation is too low, especially during the final stage of the batch reactor 

experiments, resulting in a poor fit to data obtained at long reaction times. 

Recently, we updated Cui’s reaction scheme by removing some negligible side reactions (i.e., a 

reaction involving saturated end-groups and a reversible reaction involving protonation of ether 

links).20 - 22 The PO3G model was then extended through multiple steps to account for: i) the 

dynamic behaviour of the overhead condenser, ii) revised assumptions about mass-transfer rates, 

iii) the inhibitory influence of water on polycondensation kinetics, iv) the generation and 

evaporation of cyclic oligomers, and v) the effects of temperature on kinetics and mass-transfer. 

Our most-recent PO3G model contains a total of 49 ordinary differential equations (ODEs) and 70 

kinetic, transport and thermodynamic parameters.22 We use industrial data set3 from eight 

experimental runs conducted at temperatures ranging from 160 to 180 ̊C  and super-acid catalyst 

levels ranging from 0.1 to 0.25 wt% to estimate parameters and assess the predictive ability of the 

model. We determined that 68 of a total of 70 parameters were estimable from the available data.  

The resulting PO3G model and parameter estimates provide a good fit to the data, but confidence 

intervals for many of the model parameters are very wide. 22 

Our PO3G modeling studies provide an enhanced understanding of the influences of process 

operating conditions on product properties and polymerization rates in Cerenol® production. 

However, because the available data are limited, we were not able to obtain accurate estimates of 

all of the kinetic, transport, and thermodynamic parameters in the models. The objective of the 

current study is to select operating conditions for a few additional experiments that would be 

helpful in achieving improved parameter estimates and more-reliable model predictions. 
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Conducting experimental runs can be expensive and time-consuming. To ensure that as much 

information as possible can be obtained from the new experiments, we use sequential model-based 

design of experiments (MBDOE) techniques.  

MBDOE takes into account the structure of the model when selecting new experimental conditions 

to minimize uncertainties in parameter estimates or model predictions. 27, 28 Sequential MDBOE 

methods are particularly useful in industrial settings because they account for available data from 

previous experiments when selecting conditions for new experiments that will also be used for 

parameter estimation.29 - 31 Common MBDOE calculations (e.g., A-, D- and E-optimal designs) 

rely on the inverse of the Fisher Information Matrix ( FIM ).32 - 34 When models are linear in the 

parameters, the FIM depends only on the experimental settings and measurement uncertainties, 

and is independent of the parameter values.35, 36 For nonlinear models, computation of the FIM 

relies on linearization of the model equations around estimated or assumed parameter values.32, 36 

– 38 As a result, the elements of the FIM depend on these parameter values.   

A complication that is often encountered during sequential MBDOE for complex models, such as 

the PO3G model in the current article, is that the FIM may be noninvertible. A noninvertible FIM 

arises when there is insufficient information in the data to estimate all of the model parameters 

uniquely.  Several approaches have been considered to overcome this problem, including 

parameter-subset-selection-based methods, where the unestimable parameters are left out of the 

MBDOE analysis.39, 40  In this way, new experiments can be designed to improve the accuracy of 

the estimable parameters. An alternative approach is to use Bayesian MBDOE methods that rely 

on modeler-supplied prior information about some or all of the model parameters.41 - 43  This 

information may be sufficient to make the augmented Bayesian FIM invertible. Shahmohammadi 

et al. recently proposed a simple Bayesian approach, which uses prior parameter information that 
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is similar to the information required for orthogonalization-based estimability ranking.41 A simple 

A-optimal-design case study, involving a kinetic model for pharmaceutical production, was used 

to show that Shahmohammadi’s approach gave superior parameter estimates compared to a 

parameter-subset-selection approach.  In current study, we use Shahmohammadi’s sequential 

Bayesian MBDOE method to select experimental conditions for several new PO3G batch-reactor 

runs.  The methodology is sequential because the proposed new runs are designed based on 

information contained in old data that have already been used for preliminary parameter 

estimation. An A-optimal design criterion is used (rather than D- or E- optimal design) because A-

optimality focuses on the accuracy of the individual parameter estimates.41 As a result, it is 

relatively easy to use Monte Carlo (MC) simulations to test and verify the effectiveness of the 

proposed methodology.41 

The remainder of this article is organized as follows. First, old kinetic data from industrial PO3G 

batch reactor experiments are described. Next, the PO3G model equations are introduced, along 

with the model parameters that require estimation.  Available prior knowledge about these 

parameters is discussed.  Next, the sequential Bayesian A-optimal design process is described and 

the resulting settings for new experiments are presented. Finally, MC simulations are used to test 

the effectiveness of the proposed approach.  

2. Background 

2.1. Kinetic Data 

Figure 1 shows the batch-reactor system used by DuPont to conduct the experimental runs that 

were previously used for model development and parameter estimation.3, 17 - 22 At the start of each 

experiment, the desired operating temperature was selected, and monomer (1,3-propanediol) was 

charged to the reactor, which is sparged with nitrogen to help remove water generated by the main 
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polycondensation reaction. Each batch reactor run starts when a specified amount of super-acid 

catalyst (triflic acid) is added to the liquid phase. Over the course of the run, monomer is consumed 

to produce oligomer and polymer chains, which accumulate in the liquid phase. N2 bubbles 

containing volatile by-products of the reactions (e.g., water, propanal, and some oligomers) travel 

through the liquid to the reactor headspace. The overhead gas flows to a condenser and liquid 

condensate is collected. During each run, samples of both the liquid in the reactor and the 

condensate entering the condensate collector are collected at various times. These samples were 

subsequently analyzed by gas chromatography and proton nuclear magnetic resonance (NMR). 

The available industrial data set consists of eight experimental runs, which were conducted at five 

different temperatures between 160 and 180 ̊C and four levels of super-acid catalyst between 0.10 

and 0.25 wt%.3 Table 1 shows the experimental settings for these eight runs. No initial water was 

used in these experiments.  Table 2 summarizes the measurements available from the 

monomer/polymer liquid phase and from the condensate during each run.  In total, 2046 data 

values were collected from the 8 experimental runs.  In the current study, A-optimal settings for 

new additional experiments will be selected, given that these 2046 prior data values are already 

available for use in parameter estimation. 
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Table 1: Xie’s experimental settings3 

Temperature 

(̊C) 
180 180 180 180 160 165 170 175 

Cat. 

Concentration 

(wt%) 

0.10 0.15 0.20 0.25 0.15 0.15 0.15 0.15 

Initial Water 

Concentration 

(wt%) 

0 0 0 0 0 0 0 0 

Table 2: Available data from Xie’s comprehensive data set3 

 Liquid phase Condensate 

Concentration of monomer (ppm by weight) ✔ ✔ 

Concentration of oligomers (ppm by weight) ✔ ✔ 

Concentration of water (wt%) ✔ ✔ 

Concentration of unsaturated ends (mmol/kg) ✔  

Total mass of condensate accumulated in the 

condensate collector (g) 
 ✔ 

 

N2 feed 

Overhead vapour 

Vapour 

Condenser 

Liquid 

Condensate collector 

Figure 1. PO3G reactor and condenser system3, 17 - 22 
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2.2. Model Equations and Model Parameters 

The PO3G model used for designing new experiments in the current article was developed based 

on the reaction mechanism in Table 3.21, 22 The mechanism includes eleven reactions, which are 

shown in two ways. The column on the left in Table 3 provides structural information for the 

molecules participating in the reactions, focusing on polymer end groups and ether links. The same 

reactions are presented in the column on the right using symbols that appear in the model 

equations. Hydroxyl ends are shown as O, ether links as E, unsaturated ends as U, secondary 

carbocation ends as Cs, water as W and propanal as AD. A linear chain with i repeat units is denoted 

as L(i). A cyclic oligomer with i repeat units is denoted as C(i). Protonated functional groups and 

protonated molecules are indicated using the subscript p. 

In Table 3, reaction (3.1) shows the equilibrium for protons exchanging between hydroxyl ends 

and water with the equilibrium constant K1. Reaction (3.2) is the main polycondensation reaction, 

in which hydroxyl ends are consumed with forward rate constant k2 (kg mmol-1 h-1). The reverse 

of reaction (3.2) is a hydrolysis reaction with rate constant k2r (kg mmol-1 h-1). Reaction (3.3) is a 

side reaction in which unsaturated ends are produced from degradation of hydroxyl ends (with rate 

constant k3 (h-1)).  In reaction (3.4) secondary carbocation end groups are produced from 

protonation of unsaturated ends with rate constant k4 (kg mmol-1 h-1). Reactions (3.5) and (3.6) 

account for formation of propanal with a lumped rate constant K5k6 (h
-1). This lumped rate constant 

is used because protonated secondary hydroxyl end Osp is treated as a short-lived intermediate that 

does not accumulate appreciably in the reacting mixture. Reaction (3.7) accounts for 

transetherification between oligomeric and polymer chains with rate constant k7 (kg mmol-1 h-1). 

Transetherification reactions determine the rate at which linear oligomers are regenerated from 

long polymer chains to replenish the oligomer molecules that evaporate from the reaction mixture. 
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Reactions (3.8) and (3.9) account for the inhibitory influence of water on polycondensation 

kinetics and equilibrium. Hydrated hydroxyl ends OH are assumed to be in equilibrium with regular 

hydroxyl ends O, with equilibrium constant KH. Polycondensation involving hydrated hydroxyl 

ends, with forward rate constant k2H and reverse rate constant k2Hr, has a slower reaction rate 

compared to the main reaction (3.2). Reactions (3.10) and (3.11) account for the formation of 

cyclic oligomers via end-biting and back-biting reactions, respectively. End-biting reactions that 

produce rings with i repeat units have forward rate constant k10, i (h-1). Similarly, back-biting 

reactions that generate rings with i repeat units have forward rate constant k11, i (h
-1). The reverse 

of reaction (3.10) is a hydrolysis reaction, which is assumed to have the same rate constant k2r as 

the reverse of the main polycondensation reaction (3.2). The reverse of reaction (3.11) is a ring-

opening polyaddition reaction, which contributes to the growth of polymer chains and is assumed 

to have the same rate constant k7 as the transetherification reaction.21, 22 
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Our most-recent PO3G model, which was developed to account for the influence of temperature 

on the reactions in Table 3, has a total of 49 ODEs and 70 kinetic, transport, and thermodynamic 

parameters.22 Table 4 shows three of the 49 ODEs.  The first is a material balance on the mass m 

(kg) of the reaction mixture, the second is a material balance on unreacted monomer L(1) in the 

reactor, and the third is a material balance on the monomer in the overhead condenser L(1)c. The 

Table 3. Mechanism for PO3G  production in batch reactor21,22 
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remaining 46 ODEs, along with a complete list of model equations and all assumptions that were 

used when developing the model, are provided in Tables S1 to S5  in the Supplementary 

Information and in a previous publication.22 Equation (4.1) describes dynamic changes in m due 

to evaporation of volatile species such as water, propanal, monomer and oligomers into nitrogen 

bubbles that pass through the liquid phase and exit into the headspace. Mass-transfer coefficients 

of these species are kW, kAD, kL(i) with i=1..5 and kC(i) with i=2..7 (in kg m-2 h-1).  The interfacial 

area Ab (m2 kg-1) of the nitrogen bubbles per unit mass of reactor liquid is calculated using a 

correlation that accounts for changes in liquid viscosity as the polymerization proceeds.20 - 22 In the 

model, all species and end-group concentrations have units of mmol per kg of liquid.  Hypothetical 

concentrations of water, propanal, monomer and oligomers that would be in equilibrium with their 

average partial pressures in the bubbles (i.e., [W]*, [AD]*, [L(i)]* and [C(i)]*), are obtained from 

temperature-dependent VLE correlations.20 - 22 Note that because the concentrations of propanal 

and oligomers in the nitrogen bubbles are assumed to be very low, and no VLE data are available 

for these species, a value of zero is used for [AD]*, [L(i)]* with i=2..5 and [C(i)]* with i=2..7. 

Uncertainty about whether the nitrogen bubbles tend to recirculate in the liquid due to stirring or 

they travel mostly upward through the liquid phase is accounted by an adjustable bubble-

backmixing parameter γ (i.e., γ=1.0 corresponds to bubbles that are well-mixed within the liquid 

and 𝛾 ≈ 0.5 corresponds to bubbles that rise without significant recirculation).   MW, MAD, ML(i) 

and MC(i) are molar masses of the corresponding species (in kg mmol-1). 

Equation (4.2) is a dynamic material balance on the monomer. The first term on the right-hand 

side accounts for consumption of monomer by polycondensation. In equation (4.2), factor f1 

accounts for the probability that a hydroxyl end in the reaction mixture is protonated. The overall 

rate constant 𝑘2
𝑊  (which depends on k2, KH and [W]) accounts for the inhibitory influence of water 
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on polycondensation kinetics. Algebraic expressions for 𝑘2
𝑊 and for the equilibrium constant 𝐾2

𝑊 

are provided in Table S3 in the Supplementary Information. The second term in equation (4.2) 

accounts for generation of monomer via hydrolysis (reverse of reaction (3.2)). The factor f2 is used 

to account for the probability of a water molecule in the reaction mixture being protonated. 

Expressions for f1, f2 and other probability factors that appear in the ODEs are provided in Table 

S3 in the Supplementary Information. The third and fourth terms in equation (4.2) account for 

consumption and regeneration of monomer via transetherification (reaction (3.7)). The fifth term 

accounts for the consumption of monomer via ring-opening reactions (reverse of reaction (3.11)). 

The sixth term accounts for generation of monomer via back-biting reactions of oligomer chains 

(reaction (3.11)). The seventh term accounts for removal of water from the liquid phase by 

evaporation. The final term accounts for the change in concentration of monomer associated with 

the reduction in total mass of the reaction mixture.   

Equation (4.3) describes the time-varying concentration of monomer in the overhead condenser, 

[L(1)c]. In the model, the condenser, which was operated at 10 ̊C and 1 atm, is treated as an 

instantaneous equilibrium flash combined with a well-mixed tank to account for the liquid 

accumulation within the condenser.  In equation (4.3), 𝐹𝑔𝑡𝑜𝑡𝐿𝑓 is the flow rate of the liquid flowing 

from the instantaneous flash into the tank, and xL(1) is the mole fraction of monomer in this liquid 

stream. The average molecular weight of this liquid is 𝑀𝐿𝑓
(kg mmol-1). Algebraic expressions for 

𝐹𝑔𝑡𝑜𝑡, Lf, xL(1), 𝑀𝐿𝑓
, and other terms that appear in the condenser model are provided in the 

Supplementary Information. In equation (4.3), the total mass of liquid that accumulates in the 

condenser, 𝑚𝐿𝑐 (kg) is assumed to be constant and is treated as a model parameter. The model 

includes additional 33 ODEs that describe time varying concentrations within the reactor (i.e., for 

water [W], propanal [AD], linear oligomers [L(i)], cyclic oligomers [C(i)] , catalyst [cat], hydroxyl 
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ends [O], unsaturated ends [U] and secondary carbocation ends [Cs], along with the zeroth and 

first moments of the total chain-length distribution for linear species).22 Additional 13 ODEs 

describe time-varying concentrations of water [Wc], propanal [AD], and volatile oligomers ([L(i)c] 

and [C(i)c]) in the condenser liquid, along with total mass of liquid that has accumulated in the 

condensate collector.22   

Table 4: Representative differential equations in the PO3G model 

𝑑𝑚

𝑑𝑡
= − 𝑚𝑘𝑊𝐴𝑏([𝑊] − 𝛾[𝑊]∗)𝑀𝑊 − 𝑚𝑘𝐴𝐷𝐴𝑏([𝐴𝐷] − 𝛾[𝐴𝐷]∗)𝑀𝐴𝐷

−  𝑚 ∑ 𝑘𝐿(𝑖)

5

𝑖=1

𝐴𝑏([𝐿(𝑖)] − 𝛾[𝐿(𝑖)]∗)𝑀𝐿(𝑖)

−  𝑚 ∑ 𝑘𝐶(𝑖)

7

𝑖=2

𝐴𝑏([𝐶(𝑖)] − 𝛾[𝐶(𝑖)]∗)𝑀𝐶(𝑖) 

(4.1) 

𝑑[𝐿(1)]

𝑑𝑡
= − 4𝑘2

𝑊𝑓1[𝐿(1)][𝑂] + 𝑘2𝑟𝑓𝐸1[𝐸]𝑓2[𝑊] − 𝑘7𝑓12[𝐿(1)][𝐸]

+
1

2
𝑘7𝑓1[𝑂]𝑓𝐸1[𝐸] − 𝑘72𝑓1[𝐿(1)] ∑ 𝑖𝐶(𝑖)

7

𝑖=2

+ ∑ 𝑘11,𝑖−12𝑓1[𝐿(𝑖)]

7

𝑖=3

− 𝑘𝐿(1)𝐴𝑏([𝐿(1)] − 𝛾[𝐿(1)]∗) −
[𝐿(1)]

𝑚

𝑑𝑚

𝑑𝑡
 

(4.2) 

𝑑[𝐿(1)𝑐]

𝑑𝑡
= (𝐹𝑔𝑡𝑜𝑡𝐿𝑓𝑥𝐿(1) − 𝐹𝑔𝑡𝑜𝑡𝐿𝑓𝑀𝐿𝑓

[𝐿(1)𝑐])
1

𝑚𝐿𝑐
 

(4.3) 

 

In total, the PO3G model has70 kinetic, transport, and thermodynamic parameters. Table 5 shows 

a list of the kinetic parameters that appear in the reaction mechanism in Table 3 (including 

activation energies and reaction enthalpies, which are used to account for the influence of 

temperature). Table 6 shows a list of the mass-transfer parameters along with their activation 

energies. Tables 5 and 6 show values of the parameter estimates obtained in our previous parameter 

estimation study using the available industrial data, along with their estimated standard deviation 
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(SD).  Estimates of the rate constants, equilibrium constants and mass-transfer coefficients shown 

in Tables 5 and 6 correspond to a reference temperature of 180 C. Also included in Table 6 are 

VLE parameters that are used to calculate [W]*,22 along with the bubble back-mixing parameter γ 

and the mass of liquid in the condenser 𝑚𝐿𝑐. Using the available data we were able to estimate 68 

out of the 70 parameters in our recent parameter estimation study.  The two parameters that could 

not be estimated and were left fixed at their initial guesses are 𝐸𝑘𝐴𝐷
 and 𝑓𝑃𝑊

185(0.02)
 (values shown in 

italic).   

Equation (1) shows the objective function that was used for parameter estimation. The first five 

terms on the right-hand side account for deviations between measured and predicted 

concentrations of monomer, linear oligomers, cyclic oligomers, water, propanal, and unsaturated 

ends in the reactor liquid. The next four terms account for deviations between measured and 

predicted concentrations of monomer, linear oligomer, cyclic oligomers, water, and propanal in 

the condensate.  The final term is related to the mass of liquid accumulated in the condensate 

collector. Measured values are denoted by subscript m. The weighting factors 𝑠𝐿 𝑝𝑝𝑚 (ppm), 𝑠𝐶 𝑝𝑝𝑚 

(ppm), 𝑠𝑊 (wt%), 𝑠𝑦 𝑈 (mmol/kg), 𝑠𝐿𝑐 𝑝𝑝𝑚 (ppm), 𝑠𝐶𝑐 𝑝𝑝𝑚 (ppm), 𝑠𝑊𝑐 (wt%), and  𝑠𝑚𝑐𝑐
 (g) account 

for uncertainties in measurements of the corresponding species. Values of these weighting factors 

are provided in Table 7. Table 8 shows initial guesses and the lower and upper bounds used during 

parameter estimation for 6 of the 70 parameters.  The lower and upper bounds for all of the 

parameters, along with their initial guesses, are provided in the Supplementary Information. As 

shown in Tables 5 and 6, only 36 parameter estimates obtained using the available data are 

significantly different from zero (values shown in bold), based on their approximate 95% 

confidence levels.  An important objective of the current study is to use a simplified Bayesian 

MBDOE method to select conditions for new experiments.  These experiments will be selected to 
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provide narrower confidence intervals for the parameters that have already been estimated and to 

estimate the two parameters that are currently unestimable.  

𝐽 =
1

𝑠𝐿 𝑝𝑝𝑚
2 ∑ ∑([𝐿(𝑖)]𝑚 − [𝐿(𝑖)])2

7

𝑖=1

+
1

𝑠𝐶 𝑝𝑝𝑚
2 ∑ ∑([𝐶(𝑖)]𝑚 − [𝐶(𝑖)])2

7

𝑖=2

+
1

𝑠𝑊
2 ∑([𝑊]𝑚 − [𝑊])2 +

1

𝑠𝐿 𝑝𝑝𝑚
2 ∑([𝐴𝐷]𝑚 − [𝐴𝐷])2

+
1

𝑠𝑦 𝑈
2 ∑([𝑈]𝑚 − [𝑈])2 +

1

𝑠𝐿𝑐 𝑝𝑝𝑚
2 ∑ ∑([𝐿(𝑖)𝑐]𝑚 − [𝐿(𝑖)𝑐])2

5

𝑖=1

+
1

𝑠𝐶𝑐 𝑝𝑝𝑚
2 ∑ ∑([𝐶(𝑖)𝑐]𝑚 − [𝐶(𝑖)𝑐])2

7

𝑖=2

+
1

𝑠𝑊𝑐
2 ∑([𝑊𝑐]𝑚 − [𝑊𝑐])2

+
1

𝑠𝐿𝑐 𝑝𝑝𝑚
2 ∑([𝐴𝐷𝑐]𝑚 − [𝐴𝐷𝑐])2  +

1

𝑠𝑚𝑐𝑐
2

∑(𝑚𝑐𝑐𝑚
− 𝑚𝑐𝑐)2  (1) 

Table 5: Kinetic parameters in PO3G model 

Parameter Units 

Estimate 

from 

previous 

study 22 

SD Parameter Units 

Estimate 

from 

previous 

study 22 

SD 

𝐾1 - 1.014 27.458 ∆𝐻𝐾1
 kJ mol-1 -79.460 32.061 

𝑘2 kg mmol-1 h-1 0.053 1.370 𝐸𝑘2
 kJ mol-1 115.340 2.666 

𝐾2 𝑎𝑝𝑝

𝐾1
 - 

0.500 1.690 ∆𝐻𝐾2 𝑎𝑝𝑝

𝐾1

 
kJ mol-1 -157.663 4.532 

𝑘3 h-1 0.933 8.274 𝐸𝑘3
 kJ mol-1 122.844 18.605 

𝑘4 kg mmol-1h-1 412.889 2593.823 𝐸𝑘4
 kJ mol-1 451.338 362.957 

𝐾5𝑘6 h-1 122.637 1.67×105 ∆𝐻𝐾5𝑘6
 kJ mol-1 189.364 1.78×105 

𝑘7 kg·mmol-1·h-1 1.222 1.714 𝐸𝑘7
 kJ mol-1 408.458 0.810 

𝐾𝐻
 mmol-1 kg 0.017 1.699 ∆𝐻𝐾𝐻

 kJ mol-1 -17.793 18.713 

𝑘10,   2 h-1 37.416 2.985 𝐸𝑘10,   2
 kJ mol-1 747.092 1.844 
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𝑓𝑘10,   3
 - 2.975 2.782 𝐸𝑘10,   3

 kJ mol-1 408.809 0.881 

𝑓𝑘10,   4
 - 2.319 3.167 𝐸𝑘10,   4

 kJ mol-1 1606.830 25.044 

𝑓𝑘10,   5
 - 1.658 4.026 𝐸𝑘10,   5

 kJ mol-1 2565.871 504.303 

𝑓𝑘10,   6
 - 1.445 4.517 𝐸𝑘10,   6

 kJ mol-1 2240.207 243.956 

𝑓𝑘10,   7
 - 1.230 5.202 𝐸𝑘10,   7

 kJ mol-1 1620.730 60.087 

𝑘11,   2 h-1 1.354 3.052 𝐸𝑘11,   2
 kJ mol-1 299.089 1.094 

𝑓𝑘11,   3
 - 3.958 2.703 𝐸𝑘11,   3

 kJ mol-1 388.655 1.521 

𝑓𝑘11,   4
 - 31.171 2.885 𝐸𝑘11,   4

 kJ mol-1 350.279 0.889 

𝑓𝑘11,   5
 - 18.533 3.083 𝐸𝑘11,   5

 kJ mol-1 346.575 0.939 

𝑓𝑘11,   6
 - 11.737 3.258 𝐸𝑘11,   6

 kJ mol-1 331.612 1.024 

𝑓𝑘11,   7
 - 6.955 3.691 𝐸𝑘11,   7

 kJ mol-1 314.906 1.226 

 

Table 6: Mass-transfer parameters and their activation energies 

Parameter Units 

Estimate 

from 

previous 

study 22 

SD Parameter Units 

Estimate 

from 

previous 

study 22 

SD 

γ - 0.207 2.278 𝑚𝐿𝑐 kg 0.020 10.506 

𝑘𝑊 kg m-2 h-1 1540.990 0.241 𝐸𝑘𝑊
 kJ mol-1 86.469 0.417 

𝑘𝐴𝐷 kg m-2 h-1 2.109×106 2.03×105 𝐸𝑘𝐴𝐷
 kJ mol-1 41.84 - 

𝑘𝐿(1) kg m-2 h-1 14.547 0.664 𝐸𝑘𝐿1
 kJ mol-1 192.280 0.324 

𝑘𝐿(2) kg m-2 h-1 1.516 1.265 𝐸𝑘𝐿2
 kJ mol-1 119.491 1.586 

𝑘𝐿(3) kg m-2 h-1 0.472 4.265 𝐸𝑘𝐿3
 kJ mol-1 131.420 5.602 

𝑘𝐿(4) kg m-2 h-1 0.379 5.404 𝐸𝑘𝐿4
 kJ mol-1 262.627 12.608 

𝑘𝐿(5) kg m-2 h-1 0.238 8.697 𝐸𝑘𝐿5
 kJ mol-1 452.796 35.580 

𝑘𝐶(2) kg m-2 h-1 138.207 2.653 𝐸𝑘𝐶2
 kJ mol-1 13.971 44.506 

𝑘𝐶(3) kg m-2 h-1 43.126 1.092 𝐸𝑘𝐶3
 kJ mol-1 90.064 1.902 

𝑘𝐶(4) kg m-2 h-1 9.301 1.124 𝐸𝑘𝐶4
 kJ mol-1 57.180 2.279 

𝑘𝐶(5) kg m-2 h-1 0.586 2.950 𝐸𝑘𝐶5
 kJ mol-1 6.506 61.627 

𝑘𝐶(6) kg m-2 h-1 0.363 5.847 𝐸𝑘𝐶6
 kJ mol-1 117.757 18.783 
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𝑃𝑊
160(0.0005) mmHg 10.007 497.204 𝑓𝑃𝑊

185(0.0005)
 

- 1.504 497.667 

𝑃𝑊
160(0.02) mmHg 1012.427 284.040 𝑓𝑃𝑊

185(0.02)
 

- 4 - 

 

Table 7. Measurement standard deviations used as weighting factors in the objective function 

Weighting factor Units Value 

𝑠𝐿 𝑝𝑝𝑚 ppm 2.80×104 

𝑠𝐶 𝑝𝑝𝑚 ppm 3.03×102 

𝑠𝑊 wt% 2.5×10-2 

𝑠𝐿𝑐 𝑝𝑝𝑚 ppm 8.45×103 

𝑠𝐶𝑐 𝑝𝑝𝑚 ppm 9.10×102 

𝑠𝑊𝑐 wt% 3.9 

𝑠𝑚𝑐𝑐
 g 73.64 

 

Table 8: Lower bounds and upper bounds of selected parameters 

Parameter Lower bound Upper bound Initial guess 

𝑘2 8×10-4 10 0.02 

𝐸𝑘2
 0 2000 200 

𝐾2 𝑎𝑝𝑝

𝐾1
 0.10 10 8.90 

∆𝐻𝐾2 𝑎𝑝𝑝

𝐾1

 
-250 0 -40 

𝑘𝐿(1) 0 22500 15.69 

𝐸𝑘𝐿1
 0 2000 40 

 

2.3. Simplified A-Optimal Bayesian MBDOE 

Recently, Shahmohamadi and McAuley developed a simplified Bayesian A-optimal objective 

function for use in sequential MBDOE: 41 
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𝐽𝐴 = trace((𝐙𝐓𝐙 + 𝐈)−1)                      (2) 

In equation (2), 𝐙 is a N × p scaled sensitivity matrix, and I is a p × p identity matrix, where N is 

the total number of data values that will be used for parameter estimation and p is the number of 

model parameters. Elements of 𝐙 are computed using: 

𝑍𝑖𝑗 =
𝜕g𝑖

𝜕𝜃𝑗
 
𝑠𝜃𝑗

𝑠𝑦𝑖

                                           (3) 

where 𝑔𝑖 is the model prediction of the ith data value and 𝜃𝑗  is the jth parameter requiring estimation.  

The scaling factor 𝑠𝜃𝑗
 is a user-supplied standard deviation that reflects the modeler’s prior 

uncertainty about the jth parameter value. The scaling factor 𝑠𝑦𝑖
 is a user-supplied standard 

deviation that reflects the uncertainty in the measurement of the ith data value. When designing 

experiments to improve the parameter estimates in the current model, partial derivatives 
𝜕g𝑖

𝜕𝜃𝑗
 were 

obtained using finite difference approximations. Each parameter was perturbed, one at a time, 

away from its initial parameter value (i.e., by 5% of its initial value). The corresponding change 

in the value of each model prediction, ∆𝑔𝑖, was determined via simulation and was used to 

calculate  
𝜕g𝑖

𝜕𝜃𝑗
≈

∆g𝑖

∆𝜃𝑗
.  In the current study, parameter estimates shown in Tables 5 and 6, which 

were obtained using industrial data in our previous study,22 were used to compute 
∆g𝑖

∆𝜃𝑗
. Scaling 

factors 𝑠𝜃𝑗
 were computed using the parameter bounds shown in Table 8 (and in the Supplementary 

Information). Prior information about each parameter was specified using a normal distribution 

whose standard deviation  𝑠𝜃𝑗
 is 1/6 of the distance between the corresponding lower and upper 

bounds.  

In equation (2), 𝐙𝐓𝐙 + 𝐈 is a simplified Bayesian Fisher information matrix, where 𝐙𝐓𝐙 

corresponds to the information contained in the data and the identity matrix reflects the modeler’s 
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prior knowledge about plausible parameter values.41 In sequential A-optimal MBDOE 

calculations, like those in the current article, the scaled sensitivity matrix contains two parts: 

 𝐙 = [
𝐙𝐨𝐥𝐝

𝐙𝐧𝐞𝐰
]                          (4) 

In equation (4), the elements of 𝐙𝐨𝐥𝐝 are computed based on experimental settings and data from 

past experiments.  This top portion of 𝐙 does not change during MBDOE calculations. The bottom 

part in 𝐙𝐧𝐞𝐰 is computed using the proposed settings for new experiments. The elements of 𝐙𝐧𝐞𝐰  

are updated when the optimizer updates its decision variables, which are proposed experimental 

settings for new reactor run(s). In the current study, 𝐙𝐨𝐥𝐝 was computed using the experimental 

conditions shown in Table 1.  It has 2046 rows, which correspond to data values in the industrial 

data set used for preliminary parameter estimation.22 The elements of 𝐙𝐧𝐞𝐰 are computed using 

the  decision variables for the proposed new run(s).  For example, when one new run is designed  

𝐙𝐧𝐞𝐰 has 580 rows, corresponding to predictions of the 580 data values that would be collected 

during the proposed new run.   When two new runs are designed simultaneously,  𝐙𝐧𝐞𝐰 has 1160 

rows.  The elements of  𝐙𝐧𝐞𝐰 are updated when the optimizer selects updated values for the 

decision variables (i.e., the reactor temperature T, the initial concentration of catalyst [Cat]0 wt%, 

and the initial concentration of water [W]0 wt%) because these decision variables influence the 

model predictions 𝑔𝑖 used to compute 𝐙𝐧𝐞𝐰. 

3. Selected Settings for New Experiments Obtained using MBDOE 

Objective function (2) was used to select operating conditions for one new experiment (and then 

for two new experiments) aimed at improving the accuracy of the parameter estimates. Figure 2 

shows the design space for the new experiments.  Notice that the ranges of permissible 

temperatures and catalyst concentrations are wider than the corresponding ranges of experimental 
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settings for the old data reported in Table 1.  For all of the experiments in Table 1, only monomer 

and catalyst were initially added to the reactor, and water was generated over time.  The proposed 

design space considers adding some water, up to 10 wt%, at the start of the new designed 

experiments. Each new experiment will have a fixed duration of 10 hours, with samples of the 

reactor liquid and condensate collected for analysis every 0.5 hours.     

 

Table 9 shows the selected optimal settings obtained using objective function (2) when either one 

new experiment or two new experiments are designed. These results suggest that if only one new 

experiment can be performed, it should be conducted using the highest possible temperature and a 

high catalyst level, with an initial water concentration near the upper bound. This result makes 

sense because no data have previously been collected from runs such a high temperature and high 

catalyst concentration (see Table 1).  Furthermore, it makes sense that water is added to the reaction 

mixture because one of the problems encountered when estimating the model parameters from the 

old data is that several VLE parameters for water were difficult to estimate due to relatively low 

water concentrations in all of the runs.22 Data collected from an experiment conducted with added 

185 

0.30 

0.05 

[C
at

] 0
 (

w
t%

)  

T (̊C) 

160 

Figure 2. Design space for new experiment(s) 
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initial water should be helpful in estimating some or all of the water VLE parameters and for 

estimating kinetic parameters for reactions that involve water.  Table 9 also shows that, if two new 

experiments can be performed, both should be conducted at high temperatures with a high initial 

water concentration.  One of the two experiments should use a high catalyst concentration and the 

other should use a moderate catalyst concentration.  To reduce the chances of identifying local 

minima, the optimization was repeated several times, using different corners of the design space 

as initial guesses. We confirmed the optimality of the results in Table 9 (and the suitability of 

numerical tolerances used for the fmincon optimizer in MATLAB) by plotting the value of JA in 

equation (2) vs. each of the decision variables, with the other decision variables held constant at 

their converged values.  These plots (Figures S1 and S2 in the Supplementary Information) confirm 

that the results reported in Table 9 are indeed minima.   

Table 9: Selected operating conditions for new experiments 

No. of new 

experiments 
Temperature (C̊) 

Catalyst 

Concentration 

(wt% on dry basis) 

Water Concentration 

(wt%) 

1 Experiment 185.0 0.28 9.10 

2 Experiments 
183.5 0.18    10.00 

185.0 0.26 9.75 

 

If new experimental conditions were selected in different ways (i.e., using the proposed MBDOE 

approach and a more conventional approach based on the experimenter’s judgment), it would be 

difficult to use the resulting experiments to assess which settings resulted in the most improvement 

to the parameter estimates.  The reasons for this difficulty are:  i) if the new experiments are only 

performed once, then which experiment(s) provide better results depends somewhat on luck due 

to the different random measurement errors encountered in different experiments, and ii) the 
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underlying true values of the parameters would still be unknown.  To overcome these issues a MC 

simulation study has been conducted and is described below.  

4. Using MC Simulations to Test the Effectiveness of the Proposed MBDOE Method 

In this section, the effectiveness of the proposed A-optimal Bayesian MBDOE method is assessed 

using MC simulations. Synthetic data were generated for the PO3G batch-reactor system shown 

in Figure 1, using the PO3G model equations described in section 2.2. Parameter values estimated 

from industrial data (shown in Tables 5 and 6) were used as true parameter values 𝜽𝒕𝒓𝒖𝒆.  The 

standard deviations in Table 7 were used as true standard deviations for normally-distributed 

measurement noise included in the synthetic data.  

In the current study, eight sets of synthetic old data were generated using the experimental settings 

in Table 1. For each synthetic old data set, a corresponding set of parameter estimates 𝜽̂𝒐𝒍𝒅 was 

obtained using objective function (1). Lower and upper bounds shown in Table S6 of the 

Supplementary Information were used during parameter estimation. For each set of synthetic old 

data, the parameters were ranked from most-estimable to least-estimable, and Wu’s MSE criterion 

was used to determine which parameters are estimable, following the same process as in our PO3G 

parameter-estimation studies.17 - 22  The resulting eight sets of 𝜽̂𝒐𝒍𝒅 values are reported in Table S7 

in the Supplementary Information. A sum of squared deviations for each set of 𝜽̂𝒐𝒍𝒅 values was 

calculated using: 

𝑆𝑆𝐷𝜃         = ∑ (
𝜃𝑗 − 𝜃𝑗

𝑡𝑟𝑢𝑒

𝑠𝜃𝑗

)

270

𝑗=1

              (5)  

where the scaling factor 𝑠𝜃𝑗
 was set at 1/6 of the distance between the lower and upper bound for 

each of the 70 model parameters.  Part a) of Figure 3 shows a plot of the resulting SSDθ values for 
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the eight sets of 𝜽̂𝒐𝒍𝒅.  The scatter in the results arises due to the different random-number 

sequences used when generating the 8 old data sets.   

Next, each set of simulated old data (and the corresponding parameter estimates) was used to 

design one new experimental run using the proposed sequential Bayesian A-optimal MBDOE 

approach. Objective function (2) was used to select settings for T, [Cat]0 wt%, and [W]0 wt% for a 

new experiment, as was done using the industrial data in section 3. The resulting eight sets of 

selected settings are reported in Table S8 in the Supplementary Information. As expected, the 

resulting experimental settings are similar to, but not exactly the same as, settings in Table 9 

obtained using the real data. The highest possible temperature was selected for all eight proposed 

experiments. A high catalyst level and a high initial water concentration were also selected for 

most of the eight proposed experiments. These eight sets of experimental settings were then used 

to generate new synthetic data. Data from each new synthetic run was then combined with the 

corresponding synthetic old data so that parameters could be re-estimated. The resulting eight sets 

of parameter estimates 𝜽̂𝒏𝒆𝒘 are reported in Table S9 of the Supplementary Information. The SSDθ 

values for these eight sets of  𝜽̂𝒏𝒆𝒘 were calculated using equation (5) and are shown in part b) of 

Figure 3. These results reveal that using additional data from one new designed experiment 

resulted in parameter estimates that are noticeably closer to the true parameter values than when 

only the synthetic old data was available for parameter estimation.  Results in part c) of Figure 3 

summarize the improvement in the parameter estimates when two new experiments are designed 

and simulated based on the eight old synthetic data sets.  As expected, the synthetic data from two 

new experiments resulted in superior parameter values compared with data from only one new 

synthetic experiment.  
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Results in parts d) and e) of Figure 3 are shown to compare the effectiveness of the proposed 

MBDOE approach with what might happen if an experimentalist selected new settings randomly 

from among the corners of the design space shown in Figure 2.   Eight sets of synthetic corner data 

were generated using the eight corner settings and were combined with the eight sets of synthetic 

old data.  To generate part e) of Figure 3, two randomly-selected corner data sets were combined 

with each set of synthetic old data. When performing these random assignments, we ensured that 

each synthetic old data set was paired with two distinct corners and that each corner was paired 

with two different old data sets. As shown in parts d) and e) of Figure 3, using data from one or 

two corner experiments improved the accuracy of the parameter estimates compared to when only 

old data was used for parameter estimation (part a)). However, the results in parts d) and e) are 

considerably worse than the corresponding results in parts b) and c), indicating the that proposed 

MBDOE methodology is superior to selecting random corners of the design space for new 

experiments for this case study.   
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We were interested to find out which parameter estimates benefitted most from the new designed 

experiments.  Table 10 shows a list of the nine parameters whose estimates were improved the 

most (by more than 90%) by using additional data from one new MBDOE experiment.  The root-

mean-squared-error (RMSE) value for each of the parameters (based on all eight synthetic data 

sets) was calculated using: 

𝑅𝑀𝑆𝐸𝑗 =
√

∑ (
𝜃𝑗 − 𝜃𝑗

𝑡𝑟𝑢𝑒

𝑠𝜃𝑗

)
𝑘

8
𝑘=1

8
                 (6) 

As shown in Table 10, improvements in these MBDOE parameter estimates are considerably better 

than those obtained using additional random corner runs. As expected, estimates of most 

parameters were improved more when data from two MBDOE runs was used compared to when 

only one MBDOE run was used to re-estimate the parameters. When all 70 parameters are 

Figure 3. SSDθ for parameter estimates obtained using a) old settings alone, b) old 

settings plus 1 MBDOE experiment, c) old settings plus 2 MBDOE experiments, d) 

old settings plus 1 corner experiment, and e) old settings plus 2 corner experiments. 
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considered, the average improvement in the RMSE resulting from one MBDOE experiment is 

49.6%, whereas the average improvement resulting from one corner-point experiment is only 

25.2%. 

Table 10. Percentage improvement in RMSE for the most-improved parameter estimates 

Parameter 

∆RMSE (%) 

MBDOE Corner 

1 run  2 runs 1 run 2 runs 

𝑘𝐶(5) 93.0 94.7 5.9 93.3 

𝐸𝑘10,   4
 96.7 96.7 61.1 89.5 

𝐸𝑘10,   5
 97.6 99.2 41.3 87.2 

𝐸𝑘10,   6
 96.4 98.1 66.9 81.8 

𝐸𝑘10,   7
 94.2 92.9 50.1 94.1 

𝐸𝑘11,   6
 90.5 94.2 90.1 92.0 

𝐸𝑘11,   7
 91.4 93.5 87.4 91.9 

𝑃𝑊
160(0.0005) 96.0 99.2 41.1 94.9 

𝑃𝑊
160(0.02) 98.0 99.3 0.7 7.3 

 

Figure 4 shows the number of parameter estimates that are significantly different from zero at the 

95% confidence level for all old and new sets of synthetic parameter estimates. A repeated value 

is indicated by a symbol with a dot. As shown in Figure 4, the number of significant parameter 

estimates increased considerably when additional data from one MBDOE run were used to aid 

parameter estimation. This number increased even further when data from two MBDOE 

experiments were used. Using additional data from one and two corner experiments also helped to 

increase the number of parameter estimates that are significantly different from zero, but the 

MBDOE results are better on average.  
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5. Conclusions 

In this study, a simplified sequential A-optimal MBDOE method is used to design new 

experimental runs for a PO3G batch-reactor system, using a fundamental PO3G model and 

industrial data. Operating conditions selected for each new run include: reactor temperature, initial 

catalyst level, and initial concentration of water.  The permissible ranges of these experimental 

settings are wider than those used in previous industrial experiments.  A Bayesian objective 

function is used to account for prior knowledge about physically-realistic parameter values, 

thereby overcoming problems with a singular Fisher Information Matrix, which would need to be 

inverted using traditional MBDOE methods. 

Figure 4. Number of significant parameter estimates at the 95% confidence level 

when parameter estimates were obtained using a) old settings alone, b) old settings 

plus 1 MBDOE experiment, c) old settings plus 2 MBDOE experiments, d) old 

settings plus 1 corner experiment, and e) old settings plus 2 corner experiments. 
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The MBDOE results indicate that, if one new experimental run can be performed, it should be 

conducted at the highest permissible temperature (i.e., 185 ̊C), with a high level of catalyst (i.e., 

0.28 wt%) and a high-water concentration (i.e., 9.10 wt%). If two new experiments can be 

performed, both experiments should be conducted at high temperatures (i.e., 183.5 ̊C, 185 ̊C), with 

high initial water concentrations (i.e., 10.00 wt%, 9.75 wt%), and both moderate and high catalyst 

concentrations (i.e., 0.18 wt%, 0.26 wt%).  

Monte-Carlo simulations are used to compare the effectiveness of the proposed MBDOE method 

with and alternative more-traditional approach where the modeler selects corner points (at random) 

from the permissible design space. Eight sets of synthetic old data are generated using the 

experimental settings corresponding to the industrial data, resulting in eight sets of synthetic old 

parameter estimates. The proposed MBDOE approach is then used to design one new experiment 

for each set of the synthetic old data and then two new experiments based on the synthetic old data. 

The resulting designed experiments are then simulated and used along with corresponding 

synthetic old data to re-estimate the parameters. A performance measure (the scaled sum-of-

squared-deviations between the true parameter values and their estimates) is used to confirm that 

the new parameter estimates are considerably more accurate compared than those obtained using 

the synthetic old data alone. We show that the number of parameter estimates that are significantly 

different from zero (at the 95% confidence level) increases when additional MBDOE runs are used 

for parameter estimation. As expected, the parameter estimation results improve when additional 

data from two MBDOE experimental runs is avalailable, compared with the situation when only 

one new MBDOE run is performed.  

Also in this MC study, results obtained using the MBDOE approach are compared with those 

obtained when new experimental runs are randomly selected from among the corners of the 
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permissible design space. Additional data from randomly-selected corner experiments also 

improves the parameter estimates, as expected, but the simulation results confirm that experiments 

designed using MBDOE are superior. For example, the parameter estimates obtained using one 

new MBDOE experiment are 24.4% closer, on average, to their true values than parameter 

estimates obtained using one new corner-point experiment. 
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