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Abstract

The goal of CASP experiments is to monitor the progress in the protein structure prediction field. During the 14th CASP edition
we aimed to test our capabilities of predicting structures of protein complexes. Our protocol for modeling protein assemblies
included both template-based modeling and free docking. Structural templates were identified using sensitive sequence-based
searches. If sequence-based searches failed, we performed structure-based template searches using selected CASP server models.
In the absence of reliable templates we applied free docking starting from monomers generated by CASP servers. We evaluated
and ranked models of protein complexes using an improved version of protein structure quality assessment method, VoroMQA,
taking into account both interaction interface and global structure scores. If reliable templates could be identified, generally
accurate models of protein assemblies were generated with the exception of an antibody-antigen interaction. The success of
free docking mainly depended on the accuracy of initial subunit models and on the scoring of docking solutions. To put our
overall results in perspective, we analyzed our performance in the context of other CASP groups. Although the subunits in
our assembly models often were not of the top quality, these models had, overall, the best predicted interfaces according to
several protein-protein interface accuracy measures. Since we did not use co-evolution-based prediction of inter-chain contacts,
we attribute our relative success in predicting interfaces primarily to the emphasis on the interaction interface when modeling
and scoring.

Introduction

In recent years the progress in there-dimensional (3D) protein structure prediction was impressive1. Applica-
tion of deep learning-based methods now allows modeling of structures for most of the individual proteins2–4.
However, the majority of proteins do not function in isolation. They usually perform their functions by in-
teracting with other proteins and assembling into stable or transient protein complexes. Therefore, if we
wish to have a detailed understanding of how proteins function, the knowledge of the structures of individual
proteins is not sufficient. We need to know the structures of corresponding protein complexes.

The number of possible binary protein-protein interactions is much higher than the number of proteins en-
coded in genomes, and only a small part of these interactions have already been discovered experimentally5, 6.
Similarly, the number of different structural types of protein complexes is predicted to be much higher than
the number of protein folds7, 8. Therefore, the structural modeling of protein-protein interactions represents
a more complex problem than the prediction of structures for individual proteins.

Currently, two main methods are available to model the structures of protein complexes. Template-based
modeling is based on the observation that homologous proteins often interact in the same way9. Thus a
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known structure of a protein complex can serve as a template for modeling homologous protein complexes.
If there are no templates, protein-protein docking methods can be used5. Docking methods aim to find how
proteins interact with each other starting from known structures of individual subunits that can be either
solved experimentally or obtained by computational modeling.

The field of protein structure prediction is monitored in the Critical Assessment of Structure Prediction
(CASP) experiments that explore every aspect of protein structure modeling1. The Critical Assessment
of PRedicted Interactions (CAPRI) experiments are devoted to the prediction of the structures for diverse
protein complexes10. Both CASP and CAPRI are based on blind testing. The participants are given the
sequences of proteins, for which structures are solved experimentally but not published (termed “targets”),
and then they are asked to provide structural models. Subsequent comparison of models with the experimen-
tal structures enables establishing the current state-of-the-art in the field and also objective comparison of
different methods. In recent years, CASP and CAPRI experiments are collaborating in the area of structural
modeling of protein complexes11, 12, and a category dedicated to assessment of multimeric proteins has been
established in CASP as well13, 14.

We participated in recent CASP and CAPRI experiments, aiming to test our abilities to predict structures
of protein complexes using template-based modeling and free docking15–17. Our results demonstrated that
there is room for improvement in both of the methods. In template-based modeling, the identification of
templates can be enhanced. In docking, the assessment and selection of correct interfaces from thousands of
diverse docking models is probably the most important problem. It is also interesting to see how the progress
in protein structure prediction influences modeling of protein complexes. At present, it is often possible to
generate sufficiently accurate models of individual proteins, but does this help to predict the protein-protein
interaction interfaces?

To explore these questions in detail, we participated in the CASP14 experiment, where our group (“Venclo-
vas”) performed relatively well, particularly in the interaction interface prediction. In this article we describe
our modeling methods and analyze our results in detail aiming to understand what went right, what went
wrong and why.

Methods

Modeling outline

The outline of our modeling workflow in CASP14 (Figure 1) was largely the same as in CASP1317, but
with several improvements. During the initial step, for every target we attempted to identify multimeric
templates for comparative (homology) modeling using sequence- and structure-based search methods. If
the identified templates were not reliable, we used template-based docking. Coiled-coil protein structures
were predicted using a custom designed procedure. If no templates could be identified, we switched to free
docking. In the case of large multisubunit targets, we combined all the methods, employing comparative
modeling approach for the parts of the complex for which templates were available followed by docking of
the resulting subcomplexes to obtain the full assembly.

Comparative modeling

The outline of multimeric comparative modeling pipeline is provided in Supplementary Figure S1. Starting
with target sequences, we first searched for potential templates using PPI3D18 and HHpred19, 20 web servers.
If this step failed to identify reliable templates, we additionally employed structure-based searches. In this
case, selected monomeric CASP server models corresponding to the subunits of a target protein complex
were used as queries for PDB searches using the DALI server21. The aim was to identify multimeric PDB
assemblies that could potentially serve as multimeric templates. Once templates were identified using either
sequence- or structure-based searches, structural models for the whole protein complex were generated by
MODELLER22 and its plugin AltMod23 using the multi-chain modeling function.
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Template-based docking

Some targets produced only low-reliability HHpred or DALI results, yet we observed that the identified
proteins had similar functional annotations as the CASP targets. If the alignment of CASP server models
to these multimeric structures using TM-align24 seemed plausible, we simply aligned CASP server models
to different chains of the templates and then relaxed the resulting models to remove structural clashes using
the same methods as in the case of free docking.

Coiled-coil modeling

Several targets were predicted to be coiled-coils using MultiCoil225 and similar sequence analysis tools
provided in MPI Bioinformatics Toolkit19. Such targets were modeled using a custom designed procedure:
structure models were automatically generated by MODELLER/AltMod using the same manually selected
coiled-coil template and all possible target-template alignments followed by model selection.

Free docking

When no templates could be found for protein complexes, free docking of top 5 selected monomeric CASP
server models was done by Hex26 for hetero-complexes and Sam27for homomultimers (Supplementary Figure
S2). The resulting models were ranked using global and interaction interface VoroMQA scores as described
below. Next, top 100-500 models were relaxed by a very short molecular dynamics simulation using OpenMM
software28, Amber99SB force field and GBSA-OBC solvation model29, 30. The relaxed models were subse-
quently re-ranked using the same scoring procedure and clustered according to the interface CAD-score31, 32
values aiming to select a diverse set of models.

Hybrid modeling

For some large target protein complexes structural templates were available only for some of the subunits
or domains. In these cases, a hybrid modeling strategy was used, that is, part of the complex was modeled
using comparative modeling whereas remaining subunits were docked to it either by template-based docking
using TM-align24 or by free docking. In addition to that, a mixture of free docking and template-based
models was submitted for several smaller targets that had templates only from structure-based search.

Model selection

For model selection we used both global structure scores and interaction interface scores. This approach was
described previously15, 17 and implemented in the VoroMQA web server33, but for CASP14 we introduced
some modifications. These included VoroMQA-dark, a new method for global structure evaluation (see be-
low), and an improved tournament-based ranking algorithm (see Supplementary information for details).
When ranking models based on their pairwise comparisons, the algorithm puts more emphasis on the inter-
action interface pseudo-energy and less emphasis on the global structure score. This is achieved by using
a tolerance value when comparing global VoroMQA-dark scores. If the difference between global scores is
small, the interface scoring becomes the only decisive factor.

In addition to fully automated scoring methods, models were also evaluated according to constraints obtained
from the literature or from the CASP contact prediction servers, if such data were available. All models
were visually inspected before submission and manual ranking adjustments were introduced, if necessary.

VoroMQA-dark method for model quality assessment

VoroMQA-dark is a new model quality assessment method based on the previously published VoroMQA34

method (which will be referred to as VoroMQA-light). VoroMQA-dark uses a neural network (NN) trained to
predict local (per-residue) CAD-score31values. The global structure score is computed by averaging the pre-
dicted local scores. The NN input vector for each residue is computed from the Voronoi tessellation-based con-
tact areas and the corresponding contact potential values from VoroMQA-light. See Supplementary informa-
tion for more details on VoroMQA-dark. The VoroMQA-dark standalone software is included in the extension

3
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of the Voronota35 package freely available from https://kliment-olechnovic.github.io/voronota/expansion_-
js/.

Results

Overview of the results

To analyze our performance in CASP14 we used several accuracy measures designed to evaluate various
features of multimeric models. For the overall model evaluation we used QS-score, a distance-based measure
of interface accuracy36. To make qualitative model accuracy assignments we converted QS-score values
to CAPRI-like accuracy categories37. Four other scores were used to assess the interface and the overall
structure accuracy. Interface Contact Similarity (ICS or F1-score) and Interface Patch Similarity (IPS or
Jaccard coefficient) were used to assess contact and interface patch prediction, respectively13. Oligomeric
lDDT and TM-score were used to assess overall structure accuracy. LDDT is an all-atom superposition-free
score38, whereas TM-score is based on the rigid body superposition of Cα atoms39, 40. In addition to the
above scores reported by the Prediction Center, we also used CAD-score31, 32 to evaluate the accuracy of
both structure and interface accuracy.

The summary of our modeling results based on QS-score is presented in Table 1, whereas the detailed
accuracy evaluation of our best models is provided in Supplementary Table S1. As can be seen in Table
1, for 11 targets we identified multimeric templates and used comparative modeling, producing medium or
high-accuracy models for 8 of them. In the absence of reliable target-template sequence-structure alignments,
we applied template-based docking using TM-align. This approach resulted in models of medium accuracy
for 2 targets. Hybrid approaches utilizing both comparative modeling and docking steps were used for 9
targets with relative success. The results of free docking were ranging from completely incorrect to medium
accuracy models. The custom modeling procedure that we used for coiled-coils did not produce any reliable
models.

Modeling results in the context of other CASP14 groups and automated model selection

The results, presented in Table 1 and Supplementary Table S1, do not tell much about our relative success.
To investigate our performance in the CASP14 context, we compared our results (group “Venclovas”) with
those of three other top performing groups for models designated as first (model 1). We also included our
automatic scoring method (“VoroMQA-select-new”) as a virtual group, allowing it to make selections from
all CASP14 multimeric models (produced by both automatic servers and human groups). By doing this we
aimed to test the effectiveness of our automatic model scoring method in the best possible scenario. For the
performance comparison, we used the sum of z-scores of two interface accuracy measures (ICS and IPS) and
two global structure accuracy measures (lDDT and TM-score) (Figure 2).

The comparison revealed that different features of our models were predicted with different level of success.
According to the accuracy of intersubunit interfaces (ICS and IPS) we achieved the best results. In particular,
we were successful in predicting interface patches (IPS), whereas the prediction of specific residue-residue
contacts (ICS) was somewhat less successful. On the other hand, the global structure accuracy of our models
is not so great compared to other top performing groups. This is especially visible if we consider lDDT,
an all-atom score, largely reflecting the accuracy of individual subunits. Interestingly, our automatic model
selection method showed relatively strong performance, taking the third position by any of the four scores.
Although this method performed worse than our human group on both interface accuracy measures and
TM-score, the results according to all-atom accuracy (lDDT) were quite a bit better.

To look at different features in more detail, we examined per-target z-scores. Z-score values were accumulated
progressively for targets ordered by the best ICS achieved by any group, which can be interpreted as an
estimate of the target difficulty. Figure 3 shows the resulting plots for the models designated as first (model
1). In addition to the data for the same top groups and ”VoroMQA-select-new”, the plots also include the
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data for the best models provided by any predictor group. The latter curve may be considered as a reference
by representing the upper limit of what could have been achieved in CASP14.

Interestingly, the per-target analysis (Fig. 3) revealed that the relative success of different groups was
dependent not only on the evaluation measure as seen in Fig. 2, but also on the prediction targets. According
to the interface prediction accuracy, our group dominated for most of the targets (Fig. 3A,B). On the other
hand, if we consider the global accuracy of models the picture is different. According to TM-score (Fig.
3D) our models are below the state-of-the-art for about half of targets, whereas according to lDDT (Fig.
3C) this is true for nearly all the targets. To see whether our models as assessed by lDDT were indeed
significantly inferior to those of other top groups, we examined the cumulative raw values (Supplementary
Figure S3). Surprisingly, it turned out that the absolute differences between the groups, especially if evaluated
using lDDT (Fig. S3F), are relatively small. This indicates that in most cases subunit structures were of
comparable accuracy and that relatively large z-score differences resulted from small structural improvements.
The same analysis performed with the CAD-score-based analogs of ICS, IPS and lDDT scores led to similar
conclusions (Supplementary Figure S4).

In addition to individual scores, we analyzed their combinations reflecting either the interface prediction
accuracy or the accuracy of both the interface and the global structure. We performed this analysis both for
models designated as first (Fig. S5) and for the best-of-five models (Fig. S6). The analysis of these combi-
nations has further corroborated above observations on our relative success in the interface prediction and
on target-dependent group performance. Interestingly, in the analysis of best-of-five models our automatic
selection method (VoroMQA-select-new) was the best according to the interface accuracy (Fig S6A,C) and
close to the top according to the combined accuracy (Fig S6B,D). Although having access to all the models
VoroMQA-select-new had an important advantage over other groups, the results suggest that this automatic
selection procedure is quite robust.

Template-based modeling

As the structures of protein complexes are often evolutionary conserved9, template-based modeling is cur-
rently the most reliable method to model them. Straightforward multimeric comparative modeling resulted
in medium to high accuracy models for 8 of 11 CASP14 targets. Template-based docking also resulted
in medium accuracy models for two targets. Thus, if reliable templates were available the template-based
approach worked well for both homomers and heteromers.

Identifying the correct template having the same oligomeric state is the key to successful modeling of protein
complexes15–17, 36. Ambiguous oligomeric state of templates may be the reason why we failed to model
T1034, for which we used templates having different oligomeric states.

In CASP14 we had additional examples demonstrating the limitations of template-based modeling for protein
complexes. One such example, H1036, represents a trimeric viral protein bound to an antibody. Our models
were based on homologous trimer structures bound to antibodies. This resulted in good models of homotrimer
interfaces, but the antibody was bound to a completely different epitope (Fig. S7). This incorrectly predicted
interface is not surprising bearing in mind the nature of antibody-antigen interactions. The binding site in
the antibody (paratope) is formed by hypervariable loop regions, and the antigen binding site (epitope) can
be anywhere on the protein surface41.

Our results for T1099 show another limitation of template-based approach for protein complexes. This target
is a large viral capsid, yet modeling its structure can be reduced to a problem of predicting a homotetramer
(T1099v0) having two different interaction interfaces (T1099v1 and T1099v2). Our models contained high-
accuracy interface 2, yet the interface 1 was incorrect (Fig. S8). The reason of this failure was the large
insertion in the target interface, compared to the template structures.

Hybrid modeling of large targets

When modeling a large protein complex templates might be available just for some parts of it. During
CASP14 this was the case for heteromeric targets H1060 and H1097. For both of these targets more accurate
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models were generated for those parts that had templates.

H1060 was a viral protein complex containing 27 subunits (5 homomeric rings bound to each other,
A6B3C12D6, Fig. 4). We found templates for all the rings, and generated models of medium accuracy
for all of them using either comparative modeling or template-based docking methods. Next, we tried to
do template-based docking of the ring models to each other using another viral template, but for such a
large complex the docking was complicated. As a result, the accuracy of hetero-complex (H1060v1) model
is lower.

Similar situation was observed with hetero-pentamer H1097, where we tried to dock the domains of the 5th

subunit to a homology model of a hetero-tetramer albeit with limited success (Supplementary Table S2).

Free docking

Our free docking results show similar trends as in previous CASP and CAPRI experiments (Fig. 5, Supple-
mentary Table S3)17. First, the IPS values are sometimes much higher than ICS. This indicates that the
residues mediating protein-protein binding are predicted better than the mutual subunit orientation defining
the exact contacts at the interaction interface. Another observation is that the accuracy of subunits matters
a lot when docking modeled protein structures. We did not produce any acceptable accuracy models when
we were starting from subunit structures of lower accuracy (lDDT < 0.4 or TM-score < 0.5). It is also
important to note that the opposite is not necessarily true. Accurate models of individual subunits do not
guarantee accurate docking models.

The most successful docking results were obtained for H1081v0, T1083 (Fig. 6) and T1084. Interestingly, in
the cases of T1083 and T1084 the free docking models were better than the template-based models, but the
reasons for this are not clear. H1081 was a large target, where two decameric rings had to be docked, and
for that we developed a custom procedure. The homology models of decameric rings were aligned on the
axis perpendicular to the ring plane and then pushed to each other (using 1 Å steps) and rotated around the
axis (using 2 degrees steps), saving every distinct arrangement. Afterwards all obtained models were relaxed,
scored and ranked. This custom “two-ring docking” procedure resulted in surprisingly good models.

The modeling of other docking targets was less successful (Fig. 7) illustrating common problems related
to the monomer model accuracy and scoring. For example, in the monomer structure of T1054 which we
used for docking, the position of N-terminal helix is not compatible with the dimeric structure. The helix
is too well packed against the subunit structure, occupying the place of a helix from another subunit in
the dimer (Fig. 7A, B). Therefore, it was impossible to obtain a correct docking model starting from such
a monomer. Interestingly, when during the post-CASP analysis we repeated the docking experiment using
the same monomer model, but without the N-terminal helix, the docking was highly successful (Fig. 7C).
Of note, the structure and the oligomeric state of this protein are dynamic. It exists as a monomer, a dimer
or a decamer in solution, and the dimer observed in the crystal might represent an intermediate state in
decamerization42.

In our best model for heterodimeric target H1065 one of the subunits is rotated ˜180 degrees compared to
the experimental structure (Fig. 7E). Again, the interface patch is identified correctly while the interface
contacts and subunit orientation are different. Both monomer models are fairly accurate (lDDT > 0.65,
CAD-score > 0.7, TM-score > 0.8), therefore, their accuracy probably is not the reason of incorrect docking
(Fig 7D). However, scoring is really problematic for H1065: both the global and the interface VoroMQA
scores of the experimental structure and the model are highly similar (global scores: 0.70 vs. 0.68, interface
energy: -354 vs. -388 for target and model, respectively). In other words, had the experimental structure
been present together with all the models it would not necessarily have been selected.
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. Discussion

During CASP14 our group used well known methodologies for structural modeling of protein complexes:
template-based modeling and rigid body docking. We did not use any deep learning-based inter-chain con-
tacts prediction or refinement using extensive molecular dynamics simulations. Our main aim was accurate
prediction of protein-protein interfaces, even if this meant lower global accuracy of models. As the interface
accuracy of our models was the best among CASP14 groups predicting protein assemblies (Fig. 2, Fig. 3A,B),
it appears that we have coped with this task quite successfully. Probably the main reasons for the successful
modeling were (1) effective multimeric template identification by sequence and structure-based methods,
(2) model selection procedure, involving improved VoroMQA scoring with more emphasis on the interaction
interface, and (3) short molecular dynamics simulations aimed at removing unrealistic geometry and clashes
in docking models.

Unlike the interaction interface accuracy, the global accuracy of our models was not the highest (Fig. 2, Fig.
3C,D). This is particularly evident from the close to average values of lDDT, the score that considers all
atoms. Most of these lower scores came from template-based models generated using MODELLER/AltMod.
When we used CASP server models for docking, lDDT scores were typically higher. This suggests that had
we used more advanced modeling techniques43, our template-based models might have been of higher global
accuracy.

The template-based modeling remains the most accurate method to predict the structures of protein com-
plexes, but the limiting factor for this approach is the detection of structural templates. Typically templates
are identified by sequence-based search methods such as BLAST, PSI-BLAST44 or HHpred20. In CASP14,
aiming to expand the set of available templates, we additionally employed structure-based searches. The
efficiency of structure-based approach has been greatly increased by the recent advances in protein struc-
ture prediction3, 4. The availability of more accurate models for monomers may be the reason why our
structure-based template searches successfully complemented sequence-based searches in CASP14, but less
so in CASP1317. It is possible that the structure-based template identification for protein complexes may
play even a more prominent role in the future.

The template-based modeling of protein complexes represents a more complex problem than the homology
modeling of individual proteins. Unlike for monomeric proteins, the modeling of complexes has to deal with
additional complications such as the presence of alternative interaction interfaces and differences in stoichio-
metry of homologous protein complexes15–17, 36. In CASP14, the modeling of evolutionary non-conserved
antibody-antigen interactions was yet another example of a more complex problem. In other cases such as
host-pathogen interactions that do not always emerge from long coexistence of species, it might also be hard
to apply either template-based or co-evolution-based modeling methods.

When there are no templates and other constraints are lacking, free docking is the only feasible approach
to predict the structures of protein complexes. Our CASP14 results support previous observations that
docking may be successful only when subunits are sufficiently accurate11, 17. Thus, recent breakthrough
in protein structure prediction might help not only to detect templates for multimeric structures through
structure-based searches, but also to expand the applicability of protein docking. However, even if fairly
accurate structures of monomers are available, the docking is much better in predicting protein-protein
binding sites45, 46 than the exact mutual arrangement and interface contacts. This has been observed by us
both in previous studies17 and in CASP14.

CASP14 results showed that our docking workflow still has a lot of room for improvement. With more
time and more computational resources devoted for every target, some improvements could be made even
while staying in the realm of rigid body docking and keeping our current, admittedly imperfect scoring
function: (1) using more different input monomers, and generating even more monomers by modeling domain
motions and by remodeling flexible loops and tails; (2) ensuring that the docking software always perform a
sufficiently exhaustive sampling of conformations; (3) producing structural variations of each docking solution
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using molecular dynamics or other sampling techniques. These enhancements would allow to explore the
conformational space more thoroughly, possibly leading to better results47.

Despite limitations of our CASP14 modeling protocol, our strong performance suggests that the prediction
of inter-chain contacts using co-evolution and deep learning methods still has little impact on modeling of
protein-protein interactions. Why is that? Apparently, there are multiple reasons why inter-chain contact
prediction is harder than intra-chain. For example, contact prediction for heteromeric protein complexes
requires generating joined multiple sequence alignments. The interacting proteins in the alignment are in-
ferred by genomic distances or by phylogeny48, 49, as well as selected using automated sequence comparison
procedures50. However, this significantly reduces the number of sequences in the alignment and does not
guarantee correct pairing of proteins. The alignment joining problem is not present for homo-multimers, yet
in this case the problem is to distinguish intra-subunit from inter-subunit contacts49. So far this problem
has been solved by including the monomer structures into the prediction pipeline51.

In addition to the issues related to obtaining and analyzing the multiple sequence alignments, training of
supervised learning-based methods for contact prediction using the structures of protein complexes may be
limited by the availability of experimental structural data. The number of possible protein complexes is
believed to outnumber the number of possible protein folds7, 8, and it is not clear whether known structures
represent a significant part of all interaction types8, 52. Moreover, there are examples of protein-protein inter-
actions such as antibody-antigen or host-pathogen protein interactions, for which principles of co-evolution
are hardly applicable.

To conclude, the progress in monomeric protein structure prediction has not yet translated into similar
breakthrough in structural modeling of protein complexes. A number of issues of both technical and funda-
mental nature have to be solved to make a leap in producing reliable structural models of protein interactions,
and it will be exciting to see what developments will occur in this research area in the nearest future.
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Tables

Table 1. Summary of our CASP14 assembly modeling results

Modeling strategy Number of targets Accuracy category of our best model Accuracy category of our best model Accuracy category of our best model Accuracy category of our best model

High (QS-score [?] 0.7) Medium (0.3 [?] QS-score < 0.7) Low (0.1 [?] QS-score < 0.3) Incorrect (QS-score < 0.1)
Comparative modeling 11 1 7 0 3
Template-based docking 2 0 2 0 0
Hybrid 9 1 3 5 0
Free docking 5 0 1 2 2
Coiled-coil modeling 2 0 0 1 1
Total 29 2 13 8 6

Figure legends

Figure 1 . Summary of modeling workflow in CASP14.

Figure 2 . Comparison of results of our group (“Venclovas”) and our automated model selection method
(“VoroMQA-select-new”) with other top performing CASP14 groups.
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Figure 3 . Cumulative z-score values of the models designated as first, targets were ordered by the maximum
achieved ICS score.

Figure 4 . Modeling of H1060. In the images of subcomplexes v1-v5 the target structure is shown in gray
and the model structure is colored.
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Figure 5 . Dependence of the predicted interface accuracy on the subunit accuracy in our free docking
models having the largest ICS or IPS scores.

Figure 6 . Successful docking models for H1081 and T1083.
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Figure 7 . Free docking results for T1054 and H1065; A, a monomer model of T1054 has additional folded
helix in the N-terminus (blue, encircled); B, a dimer model (interface CAD-score 0, binding site CAD-score
0.34), in which the N-terminal helix (encircled) occupies the place of another subunit; C, a dimer model
(interface CAD-score 0.33, binding site CAD-score 0.58), in which a monomer without N-terminus was used
for docking; D, monomer models of H1065; E, interface patch is predicted better than the interface contacts
for H1065 because subunit 2 (red) is rotated ˜180 degrees in the best model of H1065. Target structures are
grey, model structures are colored in all images.
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