
P
os

te
d

on
A

ut
ho

re
a

12
M

ay
20

21
|T

he
co

py
ri

gh
t

ho
ld

er
is

th
e

au
th

or
/f

un
de

r.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

us
e

w
it

ho
ut

pe
rm

is
si

on
.

|h
tt

ps
:/

/d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

08
36

22
.2

15
92

76
8/

v1
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

Constraint-based modeling and machine learning applications for
analysis and optimization of fermentation parameters

Mohammad Karim Khaleghi1, Iman Shahidi Pour Savizi1, Nathan Lewis2, and Seyed
Abbas Shojaosadati1

1Tarbiat Modares University
2University of California, San Diego

May 12, 2021

Abstract

Recent noteworthy advances in the development of high-performing microbial and mammalian strains have enabled the sustain-
able production of bio-economically valuable substances such as bio-compounds, biofuels, and biopharmaceuticals. However,
to obtain an industrially viable mass-production scheme, much time and effort are required. The robust and rational design of
fermentation processes requires analysis and optimization of different extracellular conditions and medium components, which
have a massive effect on growth and productivity. In this regard, knowledge- and data-driven modeling methods have received
much attention. Constraint-based modeling (CBM) is a knowledge-driven mathematical approach that has been widely used
in fermentation analysis and optimization due to its capabilities of predicting the cellular phenotype from genotype through
high-throughput means. On the other hand, machine learning (ML) is a data-driven statistical method that identifies the data
patterns within sophisticated biological systems and processes, where there is inadequate knowledge to represent underlying
mechanisms. Furthermore, ML models are becoming a viable complement to constraint-based models in a reciprocal manner
when one is used as a pre-step of another. As a result, more predictable models are produced. This review highlights the appli-
cations of CBM and ML independently and the combination of these two approaches for analyzing and optimizing fermentation
parameters.

1. Introduction

Fermentation technology is enjoying a significant moment, due to the potential of metabolic engineering,
systems biology, and synthetic biology [1]. Various economically important compounds such as different
chemicals, fuels, and biopharmaceuticals can be obtained through fermentation processes. With the purpose
of commercialization of any fermentation-based product, the amount of obtained product should meet the
market demand [2]. Therefore, optimization of the fermentation parameters (e.g., temperature, pH, medium
composition, feeding strategies, etc.) is a critical factor that has an important role in bioprocess overall yield
and productivity. Furthermore, fermentation optimization can reduce the overall cost of bioprocess through
its impact on downstream processes and purification [3].

Various strategies have been implemented to find the optimal values of fermentation parameters so far.
Modeling has always been one of the most popular methods due to its ability to replace expensive laboratory
experiments, or at least diminish the amount of them. In this approach, according to the specified algorithms,
the output is calculated as a function of given inputs [4]. For instance, the inputs can be media composition,
temperature, pH, etc., then the appropriate values of these parameters are optimized to make the desired
output. Generally, three types of models are implemented to the problems: purely mechanistic/knowledge-
driven, merely data-driven, or a combination of the two [5]. Each of these approaches has its own advantages
and disadvantages. For example, data-driven models are black-box models, which do not provide adequate
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information on the underlying mechanism [6]. Nevertheless, large datasets may be not incorporated into
a model framework smoothly. On the other hand, hypothesis/mechanistic-driven approaches use basic
knowledge to extract deeper information from datasets and provide valuable information on the underlying
mechanism. Nonetheless, the construction of these models is challenging due to the rapid growth of data.
However, in order to construct the most powerful model, it is crucial for the researcher to understand the
strengths and weaknesses of these approaches. Moreover, the hybridization of these two approaches might
be the most powerful model [7].

Fermentation parameters have a significant effect on cellular metabolism, thus productivity. So, mechanistic
analysis of the interaction between environmental conditions and metabolic pathways leads us to fine-tune
fermentation parameters in a comprehensive way [8]. There are several mechanistic models for simulating
metabolism in the field of systems biology [9]. Among them, constraint-based modeling (CBM) of metabolism
is one of the most common approaches [10]. These models are built from a genome-scale metabolic network
reconstruction to predict metabolic flux values through optimization techniques such as flux balance analysis
(FBA) [11, 12]. To date, genome-scale metabolic models (GEMs) for diverse eukaryotic and prokaryotic or-
ganisms and cells have been reconstructed [13] and applied in biotechnology and human health [14, 15]. Such
models have been extensively utilized for qualitative mapping of cellular metabolism, predicting metabolic
functions, and guiding metabolic engineering designs and bioprocess optimizations toward the desired phe-
notype [16].

In parallel, machine learning (ML) is a purely data-driven approach with the creation and evolution of algo-
rithms that identify patterns and makes hypothesis or models based on learning from existing data [17, 18].
Because of the rapid increase in omics datasets, many researchers prefer to use machine learning indepen-
dently to interpret systems biology and metabolic engineering datasets. For instance, genome annotation,
host strain selection, pathway discovery, metabolic pathway reconstruction, metabolic flux optimization,
multi-omic data integration, and protein modeling can be obtained through machine learning methods [3,
19]. Besides, due to the availability of the large amounts of fermentation parameter values from empirical
studies, machine learning algorithms can be implemented directly to this multivariate system to fine-tune
the fermentation conditions [20, 21].

Although the applications of each of the two methods separately are constantly increasing, the unique
capabilities of each have led to the integration of models with more prediction power and accuracy. Recently,
comprehensive reviews of the integration of machine learning algorithms and mechanistic models have been
published, indicating a promising outlook for this field of knowledge [22-26]. However, it is worthwhile
to review the capabilities of these two methods individually or in combination for fermentation parameter
optimization. The basic idea here is that machine learning is a powerful computational tool for analyzing
omics data individually or inferring multi-omic relationships. Moreover, as a result of CBM, an additional
layer of omics data called fluxomics is created, which can be analyzed by machine learning methods separately
or by integrating with other omics data [26].

In the present review, first, we highlight the latest efforts in the literature that utilize CBM as a mechanistic
approach for fermentation optimization. Next, we introduce ML as a data-driven method and highlight its
recent applications in tuning the fermentation parameters. Finally, we present the studies in which CBM
and ML combined to improve the model accuracy for analyzing fermentation conditions.

2. Constraint-based modeling: A mechanistic-driven approach

Cell phenotype depends on various interlaced mechanisms such as metabolism and transcriptional regulation.
Kinetic and constraint-based modeling are two main mechanistic approaches in analyzing the principles
governing an organism’s metabolism and growth [27]. Kinetic models help to understand the dynamic
behavior of biological systems. In this approach, the relationship between metabolites is expressed through
kinetic laws represented as the ordinary differential equations (ODE) [28]. However, kinetic modeling requires
costly and time-consuming efforts to determine sophisticated kinetic parameters (e.g., enzymatic constants
and metabolite concentrations). Therefore, the application of this method is limited to small-scale metabolic
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models for only extremely well-studied organisms [29]. However, the advances on this method are increasing
and significant efforts have been made to build genome-scale kinetic models [30].

Constraint-based modeling (CBM) can overcome the limitations of the kinetic models by reducing the need
for complex kinetic parameters. Therefore, this approach has been extensively used for understanding
the behavior of genome-wide systems [31]. The main goal of CBM is to build models with high prediction
accuracy to analyze the genome-scale networks and shed light on relationships between genotype, phenotype,
and environmental conditions [32, 33]. In this section, we first summarize the main concepts of CBM and
next, we present recent applications of this method in optimizing the fermentation processes.

2.1 An overview of CBM main concepts

Biological systems such as cellular metabolism are constrained by physiochemical laws, genetics, and the
extracellular environment [34]. The most fundamental constraints of metabolism are the mass balance equa-
tions for each intracellular metabolite generated from biochemical reaction stoichiometry. Genome-scale
network reconstructions are created from all known metabolic reactions within the system of interest. Fur-
thermore, they are improved by additional information, such as gene-protein-reaction (GPR) associations
[35]. A valuable manual protocol describes how to generate a high-quality genome-scale metabolic recon-
struction from genome sequencing data and how to curate the model with empirical information [12]. A
genome-scale network reconstruction can be transformed into a mathematical format. The mathematical
representation of such reconstructed networks and implementing further details such as GPR associations is
called the genome-scale metabolic model (GEM). This enables the quantitative and qualitative analysis of
the GEMs via computational approaches such as constraint-based modeling [36].

Metabolic flux analysis (MFA) and Flux balance analysis (FBA) are two main CBM methods that aim to
determine the reaction fluxes (fluxomics) within the metabolic network (Figure 1 ). These methods use a
stoichiometric matrix (S) with the size of m * n to calculate the metabolic flux distribution. In the S matrix,
each row represents a metabolite (m), and each column represents a metabolic reaction (n). Therefore,
under the steady-state condition, the mass balance equation will be as follows: S. v=0. The v vector
contains metabolic fluxes, some of which are known and some unknown. MFA is a data-driven method
that determines reaction fluxes through experimental measurements. While MFA is useful in small-scale
networks, FBA is a beneficial tool for analyzing large-scale networks such as the genome-scale metabolic
network [37]. FBA is an optimization method that searches a solution space and maximizes one or more
objective functions such as maximum growth rate and metabolite production via a linear programming
approach [11]. FBA calculates the single optimal flux distribution or multiple optimal flux distributions in
the GEM, which represents the ‘state’ of the metabolic network that relates to the physiological function
generated from the network [38]. However, mass balance constraints alone cannot constitute a unique solution
space. Therefore, multiple optimal solutions (i.e., flux vectors) to the problem are obtained. So, additional
constraints such as flux capacity, thermodynamic feasibility, gene expression, etc., are imposed to shrink the
solution space [39]. Moreover, MFA can combine with FBA to determine internal metabolic fluxes to increase
the prediction power [40]. Besides, other forms of FBA and MFA, such as dynamic FBA and MFA, can be
used based on the aim of the research [41, 42]. In addition to FBA and MFA, other CBM approaches can
be used to rational strain designs and increase product yield. These FBA-based methods aim to determine
gene deletion/addition targets, up/down regulations, data integration, and suggest appropriate strategies to
increase productivity [43]. These computational methods also can be used in fermentation optimization. For
example, up- and down-regulation targets have been used to identify enzyme activators and inhibitors for
enhancing the production bound in a regulatory-defined medium (RDM) [44]. COBRA toolbox in MATLAB
and COBRApy in python are two platforms for implementing FBA and other related algorithms to GEMs
[45, 46].

Another efficient approach to increase the predictive power of the CBM models is the integration of omics
data with GEMs. Omics data can be used both to narrow the solution space in the FBA and as a tool to
evaluate and validate the model prediction [6]. As a result of integrating omics data with GEMs, context-
specific models are created that provide the basis for studying metabolism under different conditions [47, 48].
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. Assuming that the system is steady-state, substrate concentrations, time, and various kinetic parameters are
not taken into account to calculate the metabolic fluxes. Therefore, the predictive accuracy of the CBMs
is less than the calculated fluxes resulting from solving ODEs in the kinetic models. As the solution space
becomes tighter, the FBA solutions approach the kinetic model solution. Thus, the integration of omics
data can overcome the limitations of the CBM over the kinetic models. However, data integration remains
a major challenge, and existing methods do not perform at the expected level [49].

2.2 Instances of CBM applications in fermentation optimization

The culture medium is one of the most significant factors affecting cell growth and productivity in bio-based
products [4, 50, 51]. Optimization of culture medium and development of proper feeding strategies has always
been a critical factor in bioprocess development [2, 52]. Since medium components, nutritional supplements,
and culture additives directly affect cellular metabolism [53], CBM can be a suitable approach to analyze the
effect of medium components on cell growth and productivity. CBM-based methods have been extensively
used to analyze and optimize the culture medium and develop appropriate feeding strategies to overproduce
a wide range of products such as recombinant proteins [54-58], biofuels [59-61], lipids [62, 63], chemicals
[64-66], and foods [36]. For a more detailed example, Swayambhu et al. used FBA and its derivatives to
identify gene deletion/overexpression targets and culture medium components to enhance the production
of siderophore compounds in recombinant Escherichia coli . First, they used minimization of metabolic
adjustment (MoMA) and OptForce algorithms to identify the gene deletion and overexpression targets,
respectively. Then, they combined the FBA with Plackett Burman (PB) in silico to identify the amino acids
and carbon sources that had a major impact on productivity. Also, it was observed that by changing the
rate of nutrient uptake, the priorities of some candidates for gene deletion or overexpression have changed
[67]. Fouladiha et al. used a genome-scale metabolic model of the Chinese hamster ovary (CHO) to design
feeding strategies to increase the production of a monoclonal antibody. In this study, CBM has been used as
pre-step of the design of experiment (DoE) methods to decrease the number of variables and experiments.
First, they set the objective function to maximize antibody production and used flux variability scanning
based on enforced objective flux (FVSEOF) algorithm to detect reactions whose boundaries had changed.
Fifteen exchange reactions were identified related to various media supplements, including three vitamins,
seven amino acids, and five other metabolites. PB was then applied to screen for these 15 metabolites,
of which threonine and arachidonic acid were identified as the most effective supplements for the culture
medium. A more than two-fold increase in protein production was observed through this strategy [68]. In
another study, Sarkandy et al. developed a stoichiometric model to predict the most efficient amino acids for
enhancing the production of interleukin-2 in fed-batch culture of recombinant Escherichia coli . The results
showed that the mixture of leucine, aspartic acid, and glycine improves protein productivity by almost
two-fold [69]. Recently, Shahidi et al. have comprehensively reviewed the applications of systems biology
approaches, including CBM, in chemically defined media formulations for the overproduction of recombinant
proteins [70]. FBA has also been used to investigate the effect of glucose, glycerol, and glucose-glycerol dual
mixtures on the internal carbon flux distribution in simultaneous ethanol and butanol production [71].

Fermentation conditions also can directly affect the cellular metabolism toward the growth and productivity.
Therefore, CBM methods are a convenient and low-cost approach to optimize fermentation conditions. For
example, Calic et al. used the MFA method to investigate the effect of pH on the intracellular metabolic
network of Bacillus licheniformis , a β-lactamase-producing bacterium. In this study, the values of metabolic
fluxes related to cell growth, by-products, and desired product production at pH = 6.5, 7, 7.5 were studied.
The results show that in the period of cell growth, the by-product fluxes have the highest value at pH
= 7 and the lowest value at pH = 7.5, while the change in pH in this period does not have a significant
effect on the production of β-lactamase. On the other hand, it has been observed that in the stationary
phase and the product formation period, the flux value of the desired product is maximum, and the flux
values of by-products are minimum at pH = 7. Finally, this article proposes a pH operation strategy to
improve β-lactamase production as follows: First, the initial pH should be set to pH = 7.5 and allowed
to decrease to pH = 7 during fermentation, and then kept constant at this value [8]. In another study,
Ivarsson et al. manipulated lactate consumption and production by pH alteration during mammalian cell
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. cultivation. They used FBA to see how pH changes affect lactate metabolism. The results show that by
lowering the pH from the standard pH = 7.2 to pH = 6.8, lactate consumption increases, the cell becomes
more energy-efficient, and antibody production increases. Moreover, they found that gluconeogenic enzymes
regulated the TCA cycle at undesirable pH levels [72]. FBA method constrained by experimentally measured
extracellular fluxes has been developed by Sou et al. to investigate the effect of mild hypothermia conditions
on antibody glycosylation in the late exponential of a CHO cell. Flux distribution values showed that during
the stationary phase at 32 °C, more energy and metabolites are expended to increase cell productivity,
which limits most of the resources necessary for antibody glycosylation [73]. The overall overview of CBM
applications for fermentation parameters highlighted in this review is presented in Table 1 .

3. Machine learning: A data-driven approach

Fermentation is a multivariate system in which any number of involved parameters can influence the process
outcome [24]. As outlined in the previous section, mechanistic models (e.g., CBM in this review) can lead to
fine-tuning some fermentation parameters such as medium composition. Nevertheless, we cannot investigate
the effect of all fermentation parameters on productivity through mechanistic approaches. On the other
hand, strictly experimental trial-and-error methods are time-intensive and commonly high-priced. Despite
the difficulties of such traditional techniques, the large amount of data generated from worthwhile previously
fermentation studies provide an appropriate space for data-driven modeling approaches to find the optimal
sets of fermentation parameters. Moreover, a rational analysis of large and complex datasets generated from
experiments, measurements, and simulations can significantly contribute to an in-depth understanding of
the system of interest [74].

Machine learning (ML) is a data-driven approach that uses statistics and probability science to analyze
a dataset and discover the hidden relationships between existing data to justify a phenomenon and build
a predictive model based on the patterns it learned. In the past, researchers did not distinguish between
ML and artificial intelligence (AI), but nowadays, ML is recognized as a subfield of AI [75]. Actually, AI
is the industry of developing tools and techniques for ML, while ML uses these tools in various fields such
as engineering and science [76]. In the ML process, a problem is first defined on a dataset. Then, a set of
preprocessing operations is performed on the dataset based on the defined problem. In the next step, the
ML model is created by a user-defined estimator. Finally, the model is validated and evaluated by standard
techniques. Figure 2 shows the general scheme of the machine learning workflow.

3.1 ML process

3.1.1 Dataset preparation

The first step in any machine learning process is to define the desired dataset. These datasets are sometimes
called big data [77]. Volume, velocity, variety, veracity, variability, value, and visualization are seven common
traits of big data. Therefore, contrary to popular belief, big data is any dataset with at least one of these
seven traits, and high-volume datasets are not always required for ML models [78]. However, the greater
the amount of appropriate data provided, the more accurate the model built [79]. Each dataset consists of
rows and columns, which rows are called samples, and each column can represent a feature or a target value.
Features are also called dimensions.Figure 3 shows an overview of a dataset. Each dataset may contain
unknown or outlier values for a variety of reasons, such as high-volume data. Therefore, to prevent modeling
errors, it is necessary to perform a primary dataset inspection and identify unusual or missing values. Various
machine learning algorithms for missing data imputation and outlier detection have been proposed so far [80].
Input data can be divided into labeled or unlabeled data. While there are one or more target values in labeled
data, unlabeled data have no target values. For example, in a labeled dataset, fermentation parameters are
features, and productivity is the target value. In these datasets, usually, the aim is to find the relationship
between the data and make predictions on new data [77]. In unlabeled datasets, the goal is finding hidden
relationships, clustering, or detecting outliers.

3.1.2 Preprocessing

5
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. The preprocessing operation must be performed based on the defined problem on the dataset. In this step,
using statistical methods, the input data is prepared in such a form that it is desirable for the estimator in the
modeling stage [81]. Data transformation is one of the most common preprocessing operations. Various tools
and techniques can be implemented for data transformation based on the size, complexity, and structure
of the dataset. For instance, data standardization is a transformation method in which the data of each
column are transmitted in a specified range (usually between zero and one) [82]. Dimensionality reduction is
another beneficial preprocessing method in which data is transferred from a high-dimension space to a low-
dimension one preserving some key properties of the original dataset. Principal component analysis (PCA) is
the most widely used dimensionality reduction approach that increases data interpretability by constructing
new uncorrelated variables summarizing maximize variance [83]. Another prominent preprocessing operation
is feature selection which tremendously affects the performance of the ML model. Feature selection is a
method that manually or automatically selects only a subset of features that are aligned with the target
value in the problem [84].

3.1.3 Modeling

By preparing data in an appropriate format, one can create a model for analyzing and making accurate pre-
dictions. First, the original dataset should be divided into training and test sets by specific methods. In the
modeling step, the training dataset enters an algorithm, and the algorithm uses statistical and mathematical
tools, which are called estimators, to learn and develop predictions. In ML, the process of creating the desired
model is called training. Usually, the most challenging part of ML is choosing the right estimator based on
different types of data and problems. The scikit-learn library provides a broad range of estimators along with
a procedure on how to select the best estimator among them (www.scikit-learn.org). Some important ma-
chine learning estimators including linear regression, k-nearest neighbors, support vector machines (SVMs),
decision trees, random forest, Gaussian process (GP), fuzzy logic, and artificial neural networks (ANNs) are
defined in Table 2 . Moreover, ensemble methods aim to fuse the prediction of several single estimators
to improve the precision and accuracy of the model [85]. For example, the random forest is an ensemble
modeling method in which several decision trees are used to predict the outcome [86]. It is worth noting that
each estimator has its tunable parameters depending on the type of data and the problem.

3.1.4 Validation and evaluation

Model evaluation is first conducted on the training dataset to measure how well the model can predict
previously unseen data [87]. For instance, k-fold cross-validation is a standard method that evaluates the
estimator’s performance by randomly splitting the training dataset into training and test sets. For better
understanding, in this method, the training dataset is divided randomly into k equal parts, called k folds.
Then, the model runs k times, and in each round, one particular fold is used as the test set and k-1 folds as
training ones [88]. The accuracy of the model is computed for each test fold. When k-fold cross-validation is
operated, one can see how sensitive the model is to the training dataset. Next, by evaluating the accuracy,
the model’s parameters can be tuned to improve its generalization performance for unseen data [89, 90]. The
final evaluation of the model is conducted with test data, and the predictive ability of the model is quantified
by different evaluation metrics such as accuracy, sensitivity, specificity, precision, and recall [91, 92]. Figure
4 shows how evaluation methods can help to improve the model’s performance.

3.2 ML categories

ML methods are broadly divided into supervised, unsupervised, and semi-supervised learning [93]. Unsuper-
vised learning aims to uncover the hidden patterns and deduce the structures of unlabeled training data [18].
Unsupervised learning approaches cluster subgroups of data with similar properties or features into separate
categories. Moreover, dimensionality reduction methods mentioned earlier as preprocessing operations are
unsupervised learning methods that reduce the number of old features and create new principal features
with minimum information loss [94]. However, because there are no target values in unsupervised learning
methods, they cannot build an independent predictive model [95]. On the other hand, supervised learning
is applied to learn and discover associations relationships between features and target values in a labeled

6
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. dataset [96]. Therefore, the built model can be used as a predictive one to test previously unseen data. Two
main supervised methods are classification for discrete class labels and regression for numerical quantities
[97]. It is noteworthy that the output of unsupervised learning methods (e.g., low-dimension space features)
can be used as the input of supervised learning algorithms. For semi-supervised learning, there are both
labeled and unlabeled data in the training set; But usually, the amount of unlabeled data is more. In this
method, one can use labeled data to create labels for unlabeled ones [98].

3.3 Applications of ML algorithms for fermentation analysis and optimization

ANNs have been used successfully in several studies in the field of fermentation prediction and optimization
(Table 3 ). The predictive capacity comparison of ANN and RSM has been studied by Nelofer et al. for
the lipase production process by a recombinantEscherichia coli [99]. In this study, fermentation parameters
were optimized based on experimental lipase production data. As a result, ANN showed better performance
over RSM for both R2 and adjusted-R2 values. Moreover, absolute average deviation (AAD) and root mean
square error (RMSE) in the ANN model gave lower values, indicating the high accuracy of ANN. Instead of
comparing ANN and RSM, integration of these two strategies has also attracted much attention in recent
years. For instance, in a recent study, Wang et al. proposed an ANN-RSM methodology to overcome the
pure RSM failure in predicting complex nonlinear systems. They used original experimental datasets to
train and validate an ANN model and produce response surface models to analyze the effect of critical
parameters in dark hydrogen fermentation. The constructed model showed good and reliable results for
this nonlinear and noisy process [100]. Genetic algorithm (GA) is a global search optimization method
inspired by natural selection theory. GA usually has been coupled with ANN to find the optimum values of
fermentation parameters used in model training. Recently, Unni et al. employed ANN together with GA to
optimize medium composition for the production of human interferon-gamma (hIFN-γ) using a recombinant
Kluyveromyces lactis [101]. Recently, an on-line μ-stat strategy was proposed for controlling methanol feeding
in a fed-batch process of RecombinantPichia pastoris . In this study, Tavasoli et al. employed MLP3 neural
network (a class of ANNs) to reconstruct and adjust the controller’s performance. Consequently, a significant
enhancement was observed in the production of human recombinant alpha 1-antitrypsin (A1AT) [102].

SVMs are another popular method for training experimental fermentation data and predicting the process
outcome. One specific advantage that SVMs have over ANNs is that they always find the global optimum
solution, while ANNs may fall into the local optimum. Moreover, SVMs are effective for problems with a small
number of samples. The predictive capabilities of SVM and ANN were compared recently by Zhang et al. In
this investigation, SVM and ANN were used to build models for predicting biomass yield, lipid production,
and COD removal rate in a microbial lipid fermentation. The results demonstrated that the SVM linked
with the genetic algorithm performed better over ANN with a small number of samples [103]. In another
study, the least-square SVM (LS-SVM), a modified SVM, was coupled with orthogonal experimental design
(OED) to map the relationship between process parameters as inputs and cumulative biogas production
(CBP) as the output for corn stalks anaerobic fermentation with only nine samples. In this study, the LS-
SVM parameters were optimized by the grid search method. The results showed that using this optimization
method as an alternative to pure OED increases CBP by 14.13% [104].

Other ML methods also have shown reliable results in fermentation prediction and optimization. Kennedy
et al. investigated the capabilities of fuzzy logic as a tool for media formulation. They found that this
method can save 63% of the experiments and the remaining experiments are adequate for media design.
They found that the selection of correct number of fuzzy logic rules is critical for enhancing model accuracy
[105]. In another study, Melcher et al. utilized random forest and ANN for biomass and recombinant pro-
tein modeling in a fed-batch Escherichia coli process. Online fermentation parameters and two-dimensional
(2D) fluorescence spectroscopy were used for dry cell mass and productivity prediction. The hybrid model
accuracy reached about ±4% for dry cell mass and ±12% for protein concentration [106]. Masampally et al.
employed Gaussian process regression (GPR) in fed-batch fermentation of yeast saccharomyces cerevisiae to
predict biomass concentration. In this study, three cascade sub-models were developed to predict gas hold-up,
dissolved oxygen (DO), and biomass storage, respectively. Validation experiments were eventually perfor-
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. med [107]. Recently, using the k-nearest-neighbor (KNN) method, a 1.64-fold improvement in Penicillium
brevicompactumfermentation producing mycophenolic acid (MPA) has been obtained [108].

4. Incorporation of constraint-based modeling and machine learning

In recent years, the advances in high-throughput devices and the rapid growth of omics data provide a unique
opportunity to depict biological samples at multiple layers. Omics data generated from high-throughput tech-
nologies are big data that can be analyzed individually or inferred as multi-omic relationships through ML
algorithms to gain more biological insight [109-111]. Common omics datasets include genomics, transcripto-
mics, proteomics, and metabolomics produced from DNA sequencing, RNA sequencing and microarrays, and
mass spectrometry, respectively [112]. Furthermore, fluxomics is an additional layer of omics generated from
CBM approaches and includes metabolic flux distribution values, thus representing the metabolic phenotype
[113]. Consequently, the integration of ML (for omics and multi-omics analysis) and CBM (for generating
fluxomics) looks promising for analyzing a biological system such as cellular metabolism. However, the ca-
pabilities of this hybrid approach are just now being explored, and more research in this area is needed.
In this section, first, we briefly summarize the ways that ML and CBM can be coupled. Next, the most
prominent studies aiming at analysis and optimization of fermentation parameters by ML-CBM approaches
are reviewed.

4.1 Approaches for CBM and ML integration

The integration of ML and CBM can be conducted in three chief ways [26]: (a) The output of CBM is the flux
distribution that indicates the metabolic state of the cell. This fluxomic data can be trained directly through
ML methods to obtain more biological insight into the desired system (Figure 5A ). (b) ML is an effective
tool for merging and analyzing heterogeneous omics datasets beyond ML applications to single omics. By
combining these multi-omics datasets with GEMs, context-specific models are generated. More accurate flux
values obtained from context-specific GEMs can be re-integrated with experimental omics data for further
predictions (Figure 5B ). (c) CBM models and fluxomic data can be produced directly by introducing
omics or multi-omics datasets into ML algorithms. All of the three mentioned methods might be operated
by supervised or unsupervised algorithms (Figure 5C ).

4.2 Instances of CBM coupled with ML for fermentation analysis and optimization

Routinely, CBM uses genetic and environmental conditions as inputs to predict metabolic flux distributions.
However, Sridhara et al. investigated whether they could infer bacterial growth conditions from internal
fluxomics in an inverse manner. For this reason, the prediction conducted using a simple linear regression.
The results showed that using the intracellular flux values, carbon and nitrogen sources utilized in the
initial culture medium could be predicted even with a small number of impurities [114]. In a recent study,
Oyetunde et al. extracted over 1,200 curated bioprocess datasets from 100 articles to predict microbial
factories’ performance (yield, titer, and rate). The authors generated additional flux-based features from a
CBM model to augment ML input data. Next, they applied ensemble methods to alleviate data challenges
such as sparse, non-standardized, and incomplete datasets. The developed ML-CBM model could predict an
engineeredEscherichia coli performance with high accuracy [115]. In 2016, Wu et al. developed MFlux, an
online platform, for predicting bacterial central metabolism. The authors used ML approaches (SVM, KNN,
and decision tree) to train previously experimental data, including substrate types, bioprocess strategies,
and genetic modifications from about 100 13C-MFA articles. MFlux outputs can be used as inputs for FBA
to reduce the solution space, thus improving the model’s accuracy [116].

Most recently, a novel CBM-ML hybridization approach for time-course controlling nutrients availability in a
fed-batch CHO cell culture has been developed. For this reason, Schinn et al. used ML as a tool to overcome
CBM limitations, such as optimal metabolism considerations and steady-state assumptions. In this study,
cell density, product titer, glucose, lactate, glutamine, and glutamate concentrations were used as constraints
for the FBA solution. The metabolic model calculated the initial consumption rates of proteogenic amino
acids. Next, a series of linear regressions were used to refine the predictions. Finally, using a sigmoid
function, the refined consumption rates were fit to a time-course dependent profile. The model was able to
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. correctly forecast the concentrations of 13 out of 18 amino acids [117].

Essential genes are genes that are critical for cell viability and growth. Gene essentiality is not an intrinsic
trait of a gene. But instead, it can be influenced by environmental and genetic contexts [118]. Nandi et
al. developed an SVM-based model named SVM-RFE to classify Escherichia coli genes as essential or non-
essential. The model input included a mixture of genotypic and phenotypic features, i.e., gene and protein
sequences, topological network, and gene expression. Then, they employed flux coupling analysis (FCA) to
generate flux-based features to consider gene adaptability in different environmental conditions. SVM-RFE
was trained on 4094 reaction-gene combinations with 64 features. The model could successfully capture
the minimal set of essential genes in various environmental conditions with high accuracy [119]. This study
shows the importance of selecting and describing appropriate features in an ML study.

In the context of multi-omics integration, Zampieri et al. employed a combination of CBM and ML to
predict lactate production, a secondary metabolite, in CHO cell culture. In this study, transcriptomics data
from different culture conditions were integrated with fluxomics data from in-silico genome-scale modeling to
construct a data-driven framework. The results showed an improving performance over the predictive power
of pure transcriptomic analysis [120]. Similarly, Vijayakumar et al. proposed a machine learning pipeline in-
tegrated with genome-scale modeling to improve phenotypic prediction in a lipid-producing cyanobacterium.
First, they extracted RNA sequencing data from 23 different growth conditions to develop condition-specific
GEMs via transcriptomics data integration. Then, FBA was performed to obtain context-specific fluxomic
data. The preprocessing stage was conducted to incorporate fluxomics into experimental transcriptomics
data. PCA, k-mean clustering, and LASSO regression were used to identify the dataset’s key features. As a
result, a data-driven multi-view model was developed with a high phenotype predictive accuracy [121]. This
strategy also has been adapted to predict yeast S. cerevisiae growth rate. In this study, fluxomics, generated
from parsimonious flux balance analysis (pFBA), were coupled with transcriptomics to train neural networks
[122].

5. Challenges and perspectives

It is now clear that fermentation optimization and control are needed to achieve more efficient and economic
bioprocess. Therefore, different holistic strategies have been developed to obtain specifically tailored fer-
mentation parameters. In this review, we briefly summarized the applications of two important modeling
methods for analyzing and optimizing fermentation parameters: (a) Constraint-based modeling (CBM) and
(b) machine learning (ML). The former is a mechanistic method that aims to get more insight into the
biological system of metabolism. The latter is a data-driven approach in which a specified algorithm can
learn from previous data and make predictions with minimal human intervention. ML can be used to analyze
fermentation parameters directly or to infer high-dimensional omics datasets. Furthermore, recent investi-
gations showed that ML can be integrated with CBM to improve predictive power and get more biological
insights. However, despite the advances in CBM, ML, and CBM-ML applications in fermentation analysis
and optimization, several limitations remain to be discussed.

Here we review some of the major challenges in developing CBM and ML models. CBM can only estimate
the metabolic flux distribution relying on an optimal steady-state assumption in which it operates well only
in ideal limited time scales. Moreover, it does not account for metabolite concentrations, enzyme kinetics,
and regulations. Therefore, CBM cannot always predict accurate metabolic fluxes [11]. Kinetic models of
metabolism that can overcome these shortcomings have been successfully developed to analyze the effect of
genetic and environmental factors at genome scales [30]. However, difficult and computationally expensive
methods have limited kinetic model performance in an intracellular environment [123]. An alternative
approach to kinetic models is using omics and multi-omics datasets to generate context-specific metabolic
models and derive meaningful insights [49, 124]. To this end, several algorithms have been developed with
different assumptions and predictive capabilities [125, 126]. Nevertheless, omics datasets also have some
limitations, such as heterogeneity of individual omics, the necessity of intensive analysis, differences in
representation formats [124], lack of mechanistic knowledge, and inefficient genome-scale integration tools.
Thus, the construction of context-specific GEMs remains challenging. Therefore, many researchers prefer to
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. build data-driven ML models in order to analyze metabolic networks [7]. Moreover, thanks to the significant
amount of fermentation studies and advances in measuring tools, ML methods have been widely used to
optimize fermentation media and conditions. Nevertheless, ML models are black-box models, which use
previously experimental datasets and do not provide sufficient information on the underlying mechanism [6].

As described above, CBM and ML both can be used as powerful tools for analyzing metabolic networks
and fermentation parameters. However, the remarkable capabilities of each method have shown promise for
the construction of combined CBM-ML methods. The collaboration between ML and CBM is a reciprocal
process. In other words, ML can be applied to the CBM input datasets and increase the predictive power
of the metabolic model. Conversely, CBM is a practical tool for the generation of a new layer of omics
data called fluxomics to improve the interpretability of a data-driven ML model [23]. However, to take full
advantage of both CBM and ML, several challenges needed to be addressed. First, CBM-derived fluxomic
data require several preprocessing steps to integrate with multi-omic data to obtain suitable biological data.
This target is restricted due to the heterogeneous and high-dimensional datasets [111]. Second, despite the
advances in genome-scale metabolic reconstructions, appropriate high-throughput data are only available for
a small group of microorganisms [19]. Third, the results of the integrated models, although very accurate,
are not necessarily appropriate for large-scale industrial fermentations. Finally, the limitations of each ML
and CBM method are still not fully addressed in the integrated models.

Recent studies represent a hopeful future for improving fermentation processes and obtaining valuable bio-
logical products through the methods reviewed in this article. In our view, to overcome the challenges, it
is required to enhance our biological knowledge in parallel with the development of novel mathematical and
computational tools. This is possible through collaboration between chemical engineers, biologists, physi-
cists, and computer engineers. For example, the integration of high-quality metabolic regulatory networks
can improve the prediction power of CBM models. Moreover, further developments in high-throughput
techniques and more effective methods are needed to integrate omics data with GEMs.
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[32] King, Z. A., Lloyd, C. J., Feist, A. M., Palsson, B. O.,Curr Opin Biotechnol 2015, 35 , 23.

[33] Maia, P., Rocha, M., Rocha, I., Microbiol Mol Biol Rev2016, 80 , 45.

[34] Li, S., Richelle, A., Lewis, N. E., in: Lee, G. M., Faustrup Kildegaard, H., Lee, S. Y., Nielsen, J.,
Stephanopoulos, G. (Eds.),Cell Culture Engineering , Wiley 2019, pp. 73.

[35] Reed, J. L., Palsson, B. Ø., Genome Res 2004, 14 , 1797.

[36] Rau, M. H., Zeidan, A. A., Biochem Soc Trans 2018,46 , 249.

[37] Huang, Z., Lee, D.-Y., Yoon, S., Biotechnol Bioeng 2017,114 , 2717.

[38] O’Brien, E. J., Monk, J. M., Palsson, B. O., Cell 2015,161 , 971.

[39] Reed, J. L., PLoS Comput Biol 2012, 8 , e1002662.

[40] Suthers, P. F., Maranas, C. D., AlChE J 2020, 66 .

[41] Anand, S., Mukherjee, K., Padmanabhan, P., Biotechnol Genet Eng Rev 2020, pp. 1.

[42] Antoniewicz, M. R., Curr Opin Biotechnol 2013, pp. 973.

[43] Long, M. R., Ong, W. K., Reed, J. L., Curr Opin Biotechnol 2015, 34 , 135.

[44] Motamedian, E., Sarmadi, M., Derakhshan, E., Process Biochem 2019, 87 , 10.

11



P
os

te
d

on
A

u
th

or
ea

12
M

ay
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

08
36

22
.2

15
92

76
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. [45] Ebrahim, A., Lerman, J. A., Palsson, B. O., Hyduke, D. R.,BMC Syst Biol 2013, 7 , 74.

[46] Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., et al. , Nat Protoc 2019, 14 , 639.

[47] Fouladiha, H., Marashi, S.-A., J Biomed Inform 2017,68 , 35.

[48] Rai, A., Saito, K., Curr Opin Biotechnol 2016,37 , 127.

[49] Ramon, C., Gollub, M. G., Stelling, J., Essays Biochem2018, 62 , 563.

[50] Reinhart, D., Damjanovic, L., Kaisermayer, C., Kunert, R.,Appl Microbiol Biotechnol 2015, 99 , 4645.

[51] Ritacco, F. V., Wu, Y., Khetan, A., Biotechnol Progr2018, 34 , 1407.

[52] Maghsoudi, A., Hosseini, S., Shojaosadati, S. A., Vasheghani-Farahani, E., et al. , Biotechnol Bioprocess
Eng2012, 17 , 76.

[53] Kishishita, S., Nishikawa, T., Shinoda, Y., Nagashima, H., et al. , J Biosci Bioeng 2015, 119 , 700.

[54] Calmels, C., McCann, A., Malphettes, L., Andersen, M. R.,Metab Eng 2019, 51 , 9.

[55] Emenike, V. N., Schenkendorf, R., Krewer, U., Comput Chem Eng 2018, 118 , 1.

[56] Huang, Z., Xu, J., Yongky, A., Morris, C. S., et al. ,Biochem Eng J 2020, 160 , 107638.

[57] Irani, Z. A., Maghsoudi, A., Shojaosadati, S. A., Motamedian, E., Biochem Eng J 2015, 98 , 1.

[58] Meadows, A. L., Karnik, R., Lam, H., Forestell, S., Snedecor, B., Metab Eng 2010, 12 , 150.

[59] Bideaux, C., Montheard, J., Cameleyre, X., Molina-Jouve, C., Alfenore, S., Appl Microbiol Biotechnol
2016, 100 , 1489.

[60] Pham, N., Reijnders, M., Suarez-Diez, M., Nijsse, B., et al. , Biotechnol Biofuels 2021, 14 , 1.

[61] Zhao, X., Kasbi, M., Chen, J., Peres, S., Jolicoeur, M.,Biotechnol Bioeng 2017, 114 , 2907.

[62] Boyle, N. R., Morgan, J. A., BMC Syst Biol 2009,3 , 1.

[63] Parichehreh, R., Gheshlaghi, R., Mahdavi, M. A., Elkamel, A.,Biochem Eng J 2019, 141 , 131.

[64] Aminian-Dehkordi, J., Mousavi, S. M., Marashi, S. A., Jafari, A., Mijakovic, I., Front Bioeng Biotechnol
2020, 8 , 528.

[65] Fan, S., Zhang, Z., Zou, W., Huang, Z., et al. , J Biotechnol 2014, 169 , 15.

[66] Lee, K., Park, J., Kim, T., Yun, H., Lee, S., Microb Cell Fact 2010, 9 , 94.

[67] Swayambhu, G., Moscatello, N., Atilla-Gokcumen, G. E., Pfeifer, B. A., iScience 2020, 23 , 101016.

[68] Fouladiha, H., Marashi, S.-A., Torkashvand, F., Mahboudi, F., et al. , Bioprocess Biosystems Eng 2020,
43 , 1381.

[69] Yegane-Sarkandy, S., Farnoud, A. M., Shojaosadati, S. A., Khalilzadeh, R., et al. , Biotechnol Appl
Biochem 2009,54 , 31.

[70] Savizi, I. S. P., Soudi, T., Shojaosadati, S. A., Appl Microbiol Biotechnol 2019, 103 , 8315.

[71] Kaushal, M., Chary, K. V. N., Ahlawat, S., Palabhanvi, B., et al. , Bioresour Technol 2018, 249 , 767.

[72] Ivarsson, M., Noh, H., Morbidelli, M., Soos, M.,Biotechnol Progr 2015, 31 , 347.

[73] Sou, S. N., Sellick, C., Lee, K., Mason, A., et al. ,Biotechnol Bioeng 2015, 112 , 1165.

[74] Gupta, M. K., Misra, K., Netw Model Anal Health Inform Bioinform 2016, 5 , 4.

[75] Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., De Felice, F., Sustainability 2020, 12 , 492.

12



P
os

te
d

on
A

u
th

or
ea

12
M

ay
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

08
36

22
.2

15
92

76
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. [76] Venkatasubramanian, V., AlChE J 2019, 65 , 466.

[77] Muller, A. C., Guido, S., 2016.

[78] Erl, T., Khattak, W., Buhler, P., Prentice Hall Boston 2016.

[79] Volk, M. J., Lourentzou, I., Mishra, S., Vo, L. T., et al. , ACS Synth Biol 2020, 9 , 1514.

[80] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., et al. , J Mach Learn Res 2011, 12 , 2825.

[81] Cielen, D., Meysman, A., Ali, M., 2016.

[82] Kumari, B., Swarnkar, T., Advanced Computing and Intelligent Engineering , Springer 2020, pp. 309.

[83] Jolliffe, I. T., Cadima, J., Philos T R Soc A 2016,374 , 20150202.

[84] Bolon-Canedo, V., Sanchez-Marono, N., Alonso-Betanzos, A.,Progress in Artificial Intelligence 2016, 5
, 65.

[85] Ardabili, S., Mosavi, A., Varkonyi-Koczy, A. R., Lecture Notes in Networks and Systems 2020.

[86] Breiman, L., Machine Learning 2001, 45 .

[87] Vabalas, A., Gowen, E., Poliakoff, E., Casson, A. J.,PLoS One 2019, 14 , e0224365.

[88] Zhang, D., Del Rio-Chanona, E. A., Petsagkourakis, P., Wagner, J., Biotechnol Bioeng 2019, 116 , 2919.

[89] Caglar, M. U., Hockenberry, A. J., Wilke, C. O., PLoS One 2018, 13 , e0206634.

[90] Tokuyama, K., Shimodaira, Y., Terawaki, T., Kusunose, Y., et al. , J Biosci Bioeng 2020, 130 , 409.

[91] Danjuma, K. J., arXiv preprint arXiv:1504.04646 2015.

[92] Saito, T., Rehmsmeier, M., Bioinformatics 2017,33 , 145.

[93] Huang, S., Chaudhary, K., Garmire, L. X., Front genet2017, 8 , 84.

[94] Gilpin, W., Huang, Y., Forger, D. B., Curr Opin Syst Biol 2020, 22 , 1.

[95] Camacho, D. M., Collins, K. M., Powers, R. K., Costello, J. C., Collins, J. J., Cell 2018, pp. 1581.

[96] Smiatek, J., Jung, A., Bluhmki, E., Trends Biotechnol2020.

[97] Cuperlovic-Culf, M., Metabolites 2018, 8 , 4.

[98] Kim, M., Rai, N., Zorraquino, V., Tagkopoulos, I., Nat Commun 2016, 7 , 13090.

[99] Nelofer, R., Ramanan, R. N., Rahman, R. N. Z. R. A., Basri, M., Ariff, A. B., J Ind Microbiol Biotechnol
2012, 39 , 243.

[100] Wang, Y., Yang, G., Sage, V., Xu, J., et al. ,Environ Prog Sustain Energy 2021, 40 .

[101] Unni, S., Prabhu, A. A., Pandey, R., Hande, R., Veeranki, V. D., Can J Chem Eng 2019, 97 , 843.

[102] Tavasoli, T., Arjmand, S., Ranaei Siadat, S. O., Shojaosadati, S. A., Sahebghadam Lotfi, A., Biochem
Eng J 2019, 144 , 18.

[103] Zhang, L., Chao, B., Zhang, X., Bioresour Technol 2020,301 , 122781.

[104] Dong, C., Chen, J., Bioresour Technol 2019, 271 , 174.

[105] Kennedy, M. J., Spooner, N. R., Biotechnol Tech 1996,10 , 47.

[106] Melcher, M., Scharl, T., Spangl, B., Luchner, M., et al. , Biotechnol J 2015, 10 , 1770.

[107] Masampally, V. S., Pareek, A., Runkana, V., 2018 IEEE Symposium Series on Computational Intelli-
gence (SSCI) , IEEE 2018, pp. 128.

13



P
os

te
d

on
A

u
th

or
ea

12
M

ay
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

08
36

22
.2

15
92

76
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. [108] Patel, G., Patil, M. D., Tangadpalliwar, S., Nile, S. H., et al. , Ultrasound Med Biol 2021, 47 , 777.

[109] Misra, B. B., Langefeld, C., Olivier, M., Cox, L. A., J Mol Endocrinol 2019, 62 , R21.

[110] Noor, E., Cherkaoui, S., Sauer, U., Curr Opin Syst Biol2019, 15 , 39.

[111] Xu, C., Jackson, S. A., Genome Biol 2019, 20 , 76.

[112] Horgan, R. P., Kenny, L. C., Obstet Gynecol 2011,13 , 189.

[113] Kromer, J., Quek, L.-E., Nielsen, L., Aust Biochem2009, 40 , 17.

[114] Sridhara, V., Meyer, A. G., Rai, P., Barrick, J. E., et al. , PLoS One 2014, 9 , e114608.

[115] Oyetunde, T., Liu, D., Martin, H. G., Tang, Y. J., PLoS One 2019, 14 , e0210558.

[116] Wu, S. G., Wang, Y., Jiang, W., Oyetunde, T., et al. ,PLoS Comput Biol 2016, 12 , e1004838.

[117] Schinn, S. M., Morrison, C., Wei, W., Zhang, L., et al. , 2021, 118 , 2118.

[118] Larrimore, K. E., Rancati, G., Curr Opin Genet Dev2019, 58-59 , 55.

[119] Nandi, S., Subramanian, A., Sarkar, R. R., Mol Biosyst2017, 13 , 1584.

[120] Zampieri, G., Coggins, M., Valle, G., Angione, C., The 2nd International Electronic Conference on
Metabolomics , MDPI 2017, p. 4993.

[121] Vijayakumar, S., Rahman, P. K. S. M., Angione, C.,iScience 2020, 23 , 101818.

[122] Culley, C., Vijayakumar, S., Zampieri, G., Angione, C.,PNAS 2020, 117 , 18869.

[123] Almquist, J., Cvijovic, M., Hatzimanikatis, V., Nielsen, J., Jirstrand, M., Metab Eng 2014, pp. 38.

[124] Subramanian, I., Verma, S., Kumar, S., Jere, A., Anamika, K.,Bioinform Biol Insights 2020, 14 ,
1177932219899051.

[125] Blazier, A. S., Papin, J. A., Front Physiol 2012.

[126] Richelle, A., Chiang, A. W. T., Kuo, C.-C., Lewis, N. E.,PLoS Comput Biol 2019, 15 , e1006867.

Table 1. Overview of constraint-based modeling applications for analysis and optimization of fermentation
parameters demonstrated in this review.

Parameter Aim Achievement Ref

Culture medium Combining the FBA
with Plackett Burman
(PB) for a recombinant
Escherichia coli

Identifying the key
amino acids and carbon
sources for successful
improvement in
siderophore production

[67]

Culture medium Using the FVSEOF
algorithm to design
feeding strategies for
CHO cells

Suggesting threonine
and arachidonate as
supplements by the
metabolic model and a
two-fold increase in
antibody production

[68]

Culture medium Designing a strategy
for amino acid
supplementation by a
stoichiometric model

Enhancing the
production of
interleukin-2 by adding
a mixture of leucine,
aspartic acid, and
glycine

[69]
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. Parameter Aim Achievement Ref

Culture medium Performing FBA for C.
sporogenes NCIM on
glucose, glycerol & their
mixture

Glucose and
glucose-glycerol mixture
improve the growth and
the butyric acid
production. Glycerol
reduces the growth and
improves ethanol yield

[71]

pH MFA used for Bacillus
licheniformis to study
the effect of pH on
metabolic flux
distribution

Proposing a
pH-controlled strategy
to improve β-lactamase
production

[8]

pH FBA used to gain
mechanistic insight into
the question of how pH
affects lactate
metabolism for a
mammalian cell

Lowering the pH
increases lactate
consumption, antibody
production and makes
the cell more
energy-efficient

[72]

Temperature FBA implemented to
study the effect of mild
hypothermia conditions
on the CHO cell
behaviors

Formation of
premature glycosylated
antibodies during the
stationary phase at 32
°C

[73]

Table 2. A brief introduction to the machine learning estimators (algorithms) that considered in this review.

Estimator (Algorithm) Task Description Relevant studies

Linear regressions Regression The simplest form of
regression models.
Attempts to minimize
the mean squared error
(MSE) between actual
target values and the
target values estimated
by fitting a linear
equation to the
training set.

[114, 120, 121, 123]

k -nearest neighbors
(KNN)

Classification Regression A simple ML algorithm
that stores k nearest
neighbor samples in a
dataset (k=1, 2, 3, . . . )
based on the feature
similarities.

[81, 108, 116]
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. Estimator (Algorithm) Task Description Relevant studies

Support vector machines
(SVMs)

Classification Regression The objective of SVM is
to transform each data in
an n-dimensional space
(n: number of features)
and separate data points
into two categories in a
manner that maximizes
the width of the gap
between the nearest
observations. SVMs are
divided into two main
groups: Support vector
regressors (SVRs) and
support vector classifiers
(SVCs).

[103, 104, 115, 116, 119]

Decision trees and
random forest

Classification Regression Decision trees provide a
tree-shaped structure,
including nodes and
branches. The algorithm
makes decisions based on
a hierarchy of if/else
questions. Each node
classifies the input
depending on the
question, and the
branches are the final
decisions representing the
output. Random forest is
an ensemble method that
collects many randomly
made decision trees. This
algorithm aims to
overcome the limitations
of each individual
decision tree and
averages their results.

[106, 115, 116]

Gaussian process (GP) Classification Regression GP is a probabilistic
non-parametric method
that aims to make
predictions and provide
uncertainty information
on the estimations based
on Bayes’ rule. Gaussian
process classification
(GPC) and Gaussian
process regression (GPR)
are two main groups of
GP.

[107]
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Fuzzy logic (FL) Regression FL resembles the
pattern of human
reasoning for solving
problems considering
all available
possibilities between
Yes and No.

[105]

Artificial neural networks
(ANNs)

Classification Regression ANNs are one of the most
popular ML algorithms
which are inspired by the
human brain information
process. ANNs are
consist of interconnected
neurons arranged in an
input layer, a series of
hidden layers, and an
output layer. In these
algorithms, each neuron
makes decisions and gives
it to other neurons in the
next layer. The weighted
sum of the inputs is
calculated by an
activation function.
Then, the procedure
tends to update the
weights in order to
minimize the prediction
errors.

[99-102, 106, 115, 117,
122]

Table 3. Overview of machine learning applications for analysis and optimization of fermentation parameters
demonstrated in this review.

Host Aim Input features Achievement Ref

Escherichia
coliBL21

Comparing RSM
and ANN for
optimizing lipase
production

Glucose, sodium
chloride (NaCl),
temperature and
induction time

ANN showed
better R2 and
adjusted-R2

values, and lower
AAD and RMSE
values

[99]

Sludge Integrating RSM
and ANN for
improving
biohydrogen titer

Carbon sources,
metal cofactor
Fe0, pH, and
sludge
concentration

Developing a
robust,
cost-effective, and
reliable
optimization
methodology

[100]
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. Host Aim Input features Achievement Ref

Kluyveromyces
lactis

Using ANN
coupled with GA
for media
optimization in
hIFN-γ
production

Medium
components
(sorbitol, glycine,
Na2HPO4, and
MgSO4.7H2O)

Achieving
maximum
productivity in
shake flasks level
and bioreactor
level

[101]

Pichia pastoris MLP3 neural
network was used
to optimize the
controller for a
novel fed-batch
production of
A1AT

Controller gain
and control poles

The cell growth
and protein titer
were improved
significantly in
comparison to
traditional
approaches

[102]

Rhodotorula glutinis Establishing ANN
and SVM models
for microbial lipid
production

Biomass, lipid yield,
and COD removal
rate

SVM performed
better than ANN
for small samples
Fermentation
parameters were
optimized by
integration of SVM
and GA

[103]

Sludge Developing a
hybrid model for
optimizing CBP
production using
LS-SVM and
OED

Corn stalk
weight, ultrasonic
duration time,
pretreatment
time, and
dual-frequency
ultrasound

The model
increases CBP
14.13% more than
pure OED

[104]

Escherichia coli Using random
forest and ANN
for biomass and
recombinant
protein modeling
in a fed-batch
process

Temperature,
induction
strength, growth
rate,
soluble/insoluble
product formation

The accuracy
reached about
±4% for dry cell
mass and ±12%
for protein
concentration

[106]

saccharomyces
cerevisiae

Employing GPR
for prediction of
S. cerevisiae
biomass
concentration

Molasses feed rate Experimentally
validation results
showed high
accuracy

[107]

Penicillium
brevicompactum

Establishing a k -
nearest-neighbor
model to optimize
different
independent
factors in MPA
production

Ultrasound
power, irradiation
duration,
treatment
frequency and
duty cycle

1.64-fold
improvement
observed in MPA
production

[108]

Figure Legends:
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. Figure 1: Schematic of constraint-based modeling methods. FBA and MFA indicate metabolic
flux distributions (fluxomics). A rational analysis of fluxomics causes the optimization of fermentation
parameters, thus enhancing the product yield and reducing the production costs.

Figure 2: Machine learning workflow.

Figure 3: An overview of the structure of a dataset. This figure demonstrates a labeled dataset
because one or more target values are reported. Datasets are usually prepared by data scientists. However,
the more one knows about a dataset, the easier the machine learning process will be.

Figure 4: The role of cross-validation in machine learning.First, the generalization power of the
ML model is evaluated through cross-validation. Then, hyperparameter tuning is performed before training
the model to refine the model’s parameters which are called hyperparameters. Grid search and Bayesian
optimization algorithms are the most common search-based methods to tune hyperparameters. Finally, the
curated model is used to evaluate the prediction capability of unseen test data.

Figure 5: Integrating constraint-based modeling and machine learning. CBM and ML can be
integrated in different ways for analysis and optimization of fermentation parameters. (a) Predicting pa-
rameters by ML when fluxomics are used as inputs. (b)Predicting parameters by ML when the integration
of fluxomics with multi-omics is used as input. (c) Predicting fluxomics and constraint-based models by ML
when multi-omics are used as inputs.
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Figure 1
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Figure 2

Figure 3
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