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Abstract

Anthropogenic withdraw of groundwater and climatic drought results in the decline of groundwater depth that, in turn, severely
limits the water availability for phreatophytic vegetation in arid regions. In this study, a small xeric, phreatophytic tree
Haloxylon ammodendron (C.A. Mey.) was investigated to understand the influence of depth to groundwater (DGW) on hydraulic
traits and on the trade-off between drought tolerance and leaf area increment. A suite of traits including leaf water potential,
pressure-volume (P—V) curves, Huber value, assimilation branch growth, and osmotic regulation substance were measured
across five sites with DGW ranges from 3.45 to 15.91 m. Our results indicate that H. ammodendron was subject to greater
water stress with increasing DGW, as indicated by decreased predawn (¥pd) & midday (¥md) branch water potential. We
also found that growth rate declined as Huber value increased with increasing DGW in the early growing season (EGS). Solute
sugar, as a major osmotic substance, drives decreases in osmotic potential at full turgor, and thus constrains assimilation branch
growth with increasing DGW in EGS. Therefore, osmotic adjustment accompanied with water potential regulation (¥pd-¥md)
and plasticity of Huber value allows this phreatophyte to absorb water from deeper soil layers and tolerate drought. However,
these adaptive adjustments cannot fully compensate for nonoptimal water conditions as growth rate continued to decrease as
DGW increased in EGS and even became negative in the late growing season (LGS) at almost all sites. Our results provide
an insight into how H. ammodendron responds and adapts to changes DGW in a region experiencing hydrological and climatic
drought. Greater depth of groundwater had a significant effect on H. ammodendron and may have similar effects for other

non-riparian phreatophytic plants in arid regions.

Introduction

Arid regions occupy approximately 30% of the Earth’s land surface and are occupied by almost 1 billion
people (Yin et al., 2013; Yin et al., 2015). The ecosystems in these regions are substantially more fragile than
most owing to dry infertile soil, resulting in poor vegetation cover (J. Huang, Yu, Guan, Wang, & Guo, 2016;
Reynolds et al., 2007). Native vegetation plays an important role in keeping these environments suitable for
socioeconomic development and human habitation by providing natural protection against desertification
and reducing poverty and food insecurity (Reynolds et al., 2007; Schreckenberg et al., 2006). Because
of low rainfall accompanied by high evapotranspiration in these inland regions, groundwater is often an
important water source for natural vegetation, agricultural practices, domestic use, and public drinking
(Fan, Li, & Miguez-Macho, 2013; F. Huang, Zhang, & Chen, 2019). In recent years, the vegetation of inland
groundwater-dependent terrestrial ecosystems (GDEs) has been increasingly recognized for its ecological and
socio-economic values (Froend & Sommer, 2010; Thomas et al., 2006). However, anthropogenic withdrawal
of groundwater for expanding agricultural and domestic use, coupled with climate change-related drought
(Ashraf et al., 2017; Taylor et al., 2013), had lead to the depletion of groundwater reserves and resulted in



groundwater decline, hence severely limiting water availability for inland vegetation (Glazer & Likens, 2012;
Orellana, Verma, Loheide, & Daly, 2012). GDEs are at risk of degrading, which has become of increasing
concern, due to uncertainties about how vegetation will respond to changing groundwater conditions on
short and long term timescales (Antunes, Chozas, et al., 2018; Antunes, Diaz Barradas, et al., 2018).

Plant functional traits are important in determining differential tree mortality in response to drought
(O’Brien et al., 2017), and trait-based methods have proven effective in identifying changes to water availabi-
lity due to precipitation gradients or altitudinal variations (Rosado, Joly, Burgess, Oliveira, & Aidar, 2016).
However, these methods have been applied to tropical rainforest plants where rainfall is plentiful; whereas,
woody, perennial phreatophytes that are supported by shallow groundwater aquifers (Wu, Zheng, Li, & Xu,
2019; Yin et al., 2015; Zhou, Zhao, & Zhang, 2017) make up the majority of natural vegetation in arid
regions (Sommer & Froend, 2011; Thomas, 2014). The resilience of these ecosystems to changing hydrolo-
gical and climatic conditions depends largely on the capacity of phreatophytic plants to cope with reduced
groundwater availability (Hultine et al., 2020). Understanding the physiology of woody phreatophytes to
decreases in groundwater level is considered to be a major unresolved question in GDEs (Eamus, Zolfaghar,
Villalobos-Vega, Cleverly, & Huete, 2015; Orellana et al., 2012). Previous studies have focused on groundwa-
ter fluctuation (flood inundations, experimental alterations, or distances to main river channels) on desert
riparian forest performance (Li et al., 2019; Pan, Chen, Chen, Wang, & Ren, 2016). However, the effects
of variation in groundwater on non-riparian phreatophytes remains unclear (Wu, Zheng, Yin, et al., 2019),
despite the affected areas being very large (Cooper et al., 2006).

Access to groundwater plays an important role in determining plant function and survival in GDEs (Froend &
Sommer, 2010; Zolfaghar, Villalobos-Vega, Cleverly, & Eamus, 2015). Depth to groundwater (DGW) further
influences leaf water relations, hydraulic properties, growth, productivity, survival, and species composition
(Gries et al., 2003; Griffith, Rutherford, Clarke, & Warwick, 2015; Yang, Li, Li, & He, 2019; Zolfaghar et al.,
2014). Plasticity in hydraulic architecture plays a central role in adapting to differences in water availability
(Tyree & Ewers, 1991; Zolfaghar, Villalobos-Vega, Zeppel, & Eamus, 2015). By affecting the rate of water
flow through xylem, hydraulic architecture potentially influences water potential (¥ ), stomatal conductance,
rate of photosynthesis and growth (Awad, Barigah, Badel, Cochard, & Herbette, 2010; Carter & White,
2009; Zeppel & Eamus, 2008). Huber value, xylem vulnerability to embolism, and hydraulic safety margins
are key components of hydraulic architecture (Carter & White, 2009; Hubbard, Ryan, Stiller, & Sperry,
2001). Understanding how these traits change across gradients of water availability (DGWs) is important
for predicting the fates of xeric phreatophytes facing groundwater decline (Antunes, Diaz Barradas, et al.,
2018). Currently, few studies have assessed the response of intraspecific hydraulic architecture to variations
in DGW (Garrido et al., 2020; Lucani, Brodribb, Jordan, & Mitchell, 2019).

Osmotic adjustment protects against declining water availability by counteracting turgor loss (Burgess,
2006; Cushman, 2001; Si, Feng, Yu, Zhao, & Li, 2015). Pressure-volume (P-V) analyses have revealed that
osmoregulation increases drought resistance as DGW increases (Zolfaghar, Villalobos-Vega, Cleverly, et al.,
2015). By increasing and maintaining higher levels of intracellular compatible solutes, osmotic adjustment
enhances the capacity for turgor maintenance (Cater, 2011; Gebre, Tschaplinski, Tuskan, & Todd, 1998;
Nolan et al., 2017) via active accumulation of in/organic solutes in cells in response to deceases in the
cellular environment’s ¥ . Declining cell osmotic potential (r) further attracts water into cells maintaining
turgor pressure (Cater, 2011; Si et al., 2015). However, attributes that confer the capacity to tolerate
water stress (lower saturated turgor) may limit growth potential under favorable water conditions (Chen et
al., 2015; Fernandez & Reynolds, 2000; Leuschner, Wedde, & Luebbe, 2019). Increasing DGW limits the
growth of woody phreatophytes (Gries et al., 2003; J. Li et al., 2013), but how do groundwater-dependent
woody phreatophytes survive hydrological drought conditions and what drives that osmoregulation (Kroeger,
Zerzour, & Geitmann, 2011)? To our knowledge, the effects of increasing DGW on plant growth through
cell turgor regulation has never been tested.

Halozylon ammodendron (C.A. Mey.), a small non-riparian, xeric phreatophytic tree, is endemic to desert
regions of Asia and Africa (Thomas, 2014; G.-Q. Xu, McDowell, & Li, 2016). Our early research showed



several morphological adjustments (decreases in assimilation-related branch areas and assimilation-related
branch growth rates) that are important drought acclimation strategies to ensure normal photosynthesis and
survival of H. ammodendron during summer droughts (H. Xu, Li, Xu, & Zou, 2007). As a succulent and
xero-halophytic shrub, osmotic adjustments are also important forH. ammodendron ’s success in a drought
environment, as mediated through Na™, soluble sugar, and proline (Lu et al., 2019; Zheng, Xu, Li, & Wu,
2019). Moreover, during the extreme summer drought period, H. ammodendron uses deeper water sources,
while the depth of the water absorption deepens as groundwater depth declines (Wu, Zheng, Li, et al.,
2019). Therefore, absorbing water from deeper soils may influence water budgets, hydraulic properties, and
growth rates at the leaf and branch levels (Canham, Froend, & Stock, 2009; Zolfaghar et al., 2014). Yet,
the influence of DGW on hydraulic properties and the trade-off between drought tolerance and growth are
not clear. Here, we compared xeric phreatophytes under the same meteorological conditions that provided
an opportunity to compare intra-specific variation in hydraulic architecture across sites having differential
access to groundwater. The aims of this study were to: 1) elucidate differences in hydraulic performance
across sites with different DGW, 2) asses drought resistance at greater DGW, and 3) reveal the major active
osmoregulation compounds responsible for influencing growth in H. ammodendron .

Materials and methods
Site description

The current study was performed in the southern edge of the Gurbantunggut Desert near the Fukang Station
of Desert Ecology, Chinese Academy of Science (44°17'N, 87degh6’E). This region has a continental, arid
climate with a dry, hot summer and cold winter. The minimum air temperature is -42.2degC in winter,
and the maximum air temperature is 44.2degC in summer. The annual mean temperature and annual
precipitation average are 6.6degC and 164 mm, respectively, with an annual pan evaporation of approximately
1,000 mm. The stable snow cover can last 100-150 d with depth of 25 c¢m in winter, which then quickly
melts and recharges soil moisture. Therefore, plants in this area experience frequent water deficits in the
later growing season (Xu, Yu, & Li, 2017).

From the southern edge of the Gurbantunggut Desert to the interior, topography defines a spatial gradient
of depth to groundwater (Wu, Zheng, Yin, et al., 2019). Along this gradient, five sites with different
groundwater depths were selected (Fig. 1). We used a hand-held laser rangefinder to determine the DGW
every month (Deli Tools Co., Ltd , Ningbo, Zhejiang, China). All the sites have been protected from logging
since their declaration as “Desert public welfare forests” in the 2000s. The location coordinates of the
sampling site is shown in Table 1. The straight-line distance is 15 km from the outmost site to the innermost
site. The soil in the desert has a sandy texture (1.3% clay, 13.7% loam, and 85% sand). In such a short
distance, we assumed that precipitation patterns were the same. The contrasting hydrological conditions of
groundwater were ideal for studying the influence of DGW on the hydraulic properties and growth of H.
ammodendron .

Measurement protocols
ITpedawy avd utddadh ¥

The predawn and midday ¥ of leaf (¥ ,q and ¥ ,,q, respectively) were measured once a month from May to
September 2019 using a model 3005 pressure chamber (Soil Moisture Equipment Corp., Santa Barbara, CA,
USA) to evaluate the water states of the plants. In the field, eight healthy and similar-sized individuals at
each site were selected and marked, and from each of them, one distal twig with leaf attached was sampled
and the water state measured immediately after the twig was cut. The¥ 4 and ¥ ,q4 values were measured
20 min before sunrise and at solar noon, respectively. In accordance with our previous diurnal measurements,
theW .,q was considered the minimum leaf ¥ (G. Q. Xu & Li, 2008). The¥ difference (¥ pq-~¥ ma) was
also calculated.

Measurement of assimilation branch surface area

At each site across the DGW, 10 branches were selected and labeled on each of the five sampled plants.



All foliage on each branch was photographed using a 6 x 108 pixel digital camera (EOS550D, Canon Inc.,
Japan), at 10-d intervals, from the beginning to the end of the experimental period. The total leaf surface
area of each branch was calculated from the images using CI-400 CIAS software (Computer Imaging Analysis
Software, CID Co., Logan, UT, USA). Seasonal changes in leaf area per branch were recorded (H. Xu et al.,
2007). The daily relative growth rate of leaves was calculated as the change in leaf area during the intervals
between the two measurements. The calculation formula is as follows:

, (1)
where S; represents the leaf area at the time t; Syy1 represents the assimilation branch area at the next
measurement time, t+1, and At represent the interval time between the two measurements.

Pressure—volume traits

Pressure-volume (P-V) measurements were carried out during spring (from the end of May to the beginning
of June) and late summer (at the end of August) to assess leaf water relations. P-V measurements were
generated for a minimum of four twigs using the bench-drying method in accordance with Tyree and Hammel
(Tyree & Hammel, 1972). Within each site, five trees were selected, and one terminal woody branch of each
tree was excised (leaf attached) and immediately recut under deionized water at 6:00 AM to remove any
air emboli. The newly recut ends of the branches were rehydrated in deionized water for more than 4 h
with entire branch and assimilating organs covered in black plastic bags to facilitate full rehydration (Arndt,
Irawan, & Sanders, 2015). One leaf of each woody branch was cut, and its turgid weight measured using
a digital balance (0.0001 g resolution). Then, the corresponding ¥ was measured using the model 3005
pressure chamber. If this measurement was less than -0.5 MPa, then the twig was discarded, because it had
not fully rehydrated. The leaves were left on a bench at room temperature (~ 22°C) to slowly dehydrate.
This process was repeated several times until the correlation between 1/Wand fresh weight formed a straight
line consisting of at least four measurements with R 2 > 0.98. The twig was then oven-dried at 70°C for 1
week (until a constant weight was reached) and then weighed to determine the relative water content (RWC)
as follows:

RWC (%) = 100 x (FW-DW)/(TW-DW), (2)

where FW represents the fresh weight of the twig; DW represents the dry weight; and TW represents the
turgid weight. The n at full turgor (r 199) and turgor loss point (¥rrp) were derived from the curve of 1/ ¥
against RWC using a P-V curve-fitting method available online (http://landflux.org) based on Schulte and
Hinckley (Schulte & Hinckley, 1985).

Huber value

Huber values, i.e., sapwood-to-leaf area ratios, were measured both at the beginning of June and the end of
August. Five healthy adult trees were selected from each field sample point, and the new assimilating twigs
of the current year were taken as the first-order branches. We collected one third-order branch from the
southern upper part of the canopies of the selected trees at each site. The areas of the assimilating branches
were scanned (Epson Perfection 2400 Photo, Seiko Epson Corp., Japan). The cross sections of the branches
were dyed with 1% aqueous acid-fuchsin, and the stained sapwood areas were measured using digital calipers.

Determination of inorganic ions and organic solutes in plant tissues

The green assimilating branches of H. ammodendron were collected at the five sites in May and July
and oven-dried at 70°C for at least 48 h to a constant mass. The dried samples were ground in a ball
mill MM400 (Retsch, Germany) into they were uniformly fine powders and freeze dried for preservation. For
the extraction of soluble sugar and starch, we followed Anderegg et al., 2012. After the digestion of sucro-
se and starch, the concentrations of each was measured using the phenol-sulfuric acid method and a UV
spectrophotometer (colorimetric method, UV-2401PC, Shimadzu Corporation, Japan). A ninhydrin colori-
metric method was used for proline concentration determinations with a UV spectrophotometer (Abraham,



Hourton-Cabassa, Erdei, & Szabados, 2010; Song et al., 2006). The Na'concentrations were determined
using pulsed flame photometer detection (Song et al., 2006; Jenway Ltd., UK).

Data analyses

Owing to the contrasting soil-water conditions and water-use strategies along the DGW gradient in spring
and summer (Wu, Zheng, Li, et al., 2019), all data were grouped into two growth stages, namely the early
growing season (EGS) from April to June, which included spring and early summer, and late growing season
(LGS) from July to September, which included late summer and autumn. Descriptive statistics were used to
calculate the means and standard errors of each subset. A linear mixed effect model (LMEM) was used to
evaluate the effects of growth stage on the hydrological drought (different depth to groundwater) response of
the studied species using “lme4” package (Bates et al., 2014) and running on 3.6.3 version on R. Differences
among hydraulic traits, mi00, ¥ TP, 0Osmotic substance contents, assimilation branch areas, and growth
rates at different sites within the same growing season were also tested using one-way analyses of variance
(ANOVA) with Tukey’s-HSD post-hoc test. To compare the differences of traits in the EGS and LGS,
independent-samplest -tests were used. Linear regressions were carried out between hydraulic properties,
P-V curve parameters, Huber values, growth rates, and DGWs. Figures were prepared using Origin 8.0
(Origin Lab Corp., Northampton, MA, USA) and R ver. 3.6.3 (R development Core Team 2016). Data
analyses were conducted using R ver. 3.6.3 and IBM SPSS Statistics software (Ver. 22, Armonk, NY, USA).

3. Results
Agap ¥ avd II-7 tpoutg

The mixed models revealed that growth stage significantly influenced the relationship between DGW and
VU 5ds ¥ mds Yrs -Pus (F =52.34, P <0.001;F =61.32, P <0.001; F =18.05,P <0.001, respectively). There
were significant differences in the average ¥ ,q and¥ .,q, as well as in the W5 -¥,,5 values among the
five sites during both the EGS and LGS (Fig. 2). There were also significant differences between the two
growth stages within the same site (Fig. 3). Except the¥ ,q during the LGS, branch ¥ s (¥ ,q and ¥ 1,q)
and¥ pq -¥ mq significantly decreased as DWG increased (Fig. 4). The assimilating branch Wvalues at
100 and ¥ Trp were significantly different among the sites (Fig. 5). The njgp ranged between -3.74 MPa
(shallowest DGW) and -4.59 MPa (deepest DGW; EGS). The¥ rppranged between -4.14 MPa (shallowest
DGW) and -5.00 MPa (deepest DGW; EGS). The m199 values ranged between -3.80 MPa (shallowest DGW)
and -4.82 MPa (deepest DGW; LGS). The¥ rpp ranged between -4.21 MPa (shallowest DGW) and -5.14
MPa (deepest DGW; LGS) (Fig. 5). There were no significant differences in m199 and ¥ pppbetween the
two growth periods at the same site (data not show here). The ¥ .4 values were generally less negative
than the leaf ¥ at zero turgor. The mixed models revealed that growth stage had no significant influence on
the relationship between DGW and nti00, ¥ Trp (F =55.80,P <0.001; F =60.97, P <0.001, respectively).
However, there was a decreasing trend of ¥ at m199 and ¥ ppp along with groundwater depth irrespective
of the growth stage (Fig. 6).

Growth rates and Huber values

Decreasing DGW significantly influenced the seasonal patterns of assimilation area per branch, especially
during the EGS (Fig. 7). The average assimilation area accumulation per branch at each trial day was
greater in the shallow DGW sites than the deeper DGW sites during the EGS (Fig. 7a). The growth rate
of the branch assimilation area was greater in the shallow DGW sites than the deeper DGW sites in the
same trial phase during the EGS (Fig. 7a and b). The branch assimilation areas and growth rates were
not significantly different among sites on the same trial day during the LGS (Fig. 7a and b); growth rate
slowed and even became negative during the LGS as a result of summer droughts (Fig. 7a and b). The
mixed models revealed that growth stage had a significant influence on the relationship between DGW and
growth rate & Huber values (F =5.07, P <0.01; F' =6.23,P <0.01, respectively). We saw growth rates in
assimilation branches decrease as DGW increased during EGS (Fig. 8a) but not LGS (Fig. 8b). Huber
values increased as DGW increased during the EGS (Fig. 8c) but not during the LGS (Fig. 8d).



Variation in organic solutes and inorganic ions

Growth stage was significant (P =0.097) in the relationship between DGW and soluble sugars (F =7.64,
P <0.01). There were no correlation between soluble sugar concentrations and increasing DGW during
both EGS and LGS. Concentrations of soluble sugars in the assimilation branches of H. ammodendron were
lower at the shallowest DGW site compared to the deepest DGW site during both growth stages. The
concentrations of soluble sugars in the assimilation branches within the shallowest site were also significantly
different between the EGS and LGS (Table 1). Growth stage significantly affected DGW and starch (F
=13.65, P <0.001). There were no correlations between starch concentration and increasing DGW during
either EGS or LGS. Starch concentrations were significantly different among sites having contrasting DGW
levels. Starch concentrations were high at the site with the shallowest DGW compared to the site with
the deepest DGW (Table 1). Growth stage was significant in the relationship between DGW and proline
(F =13.52, P <0.001). There were no correlation between proline and increasing DGW during either EGS
or LGS. Proline during the whole growth season ranged between 10.44 + 1.34 and 1.70 + 0.08 (Table 1).
Season had significant influence on the relationship between DGW and Na't concentration (F =37.40, P
<0.001). Na*concentration was higher during LGS than EGS (Table 1). There were no trends between Na™
and DGW during EGS or LGS.

Discussion

Predicted droughts and anthropogenic water intensify groundwater limitation, particularly for groundwater-
dependent ecosystems arid environments (Ashraf et al., 2017; Challis, Stevens, McGrath, & Miller, 2016). Yet,
our ability to predict the impacts of groundwater changes on these ecosystems is still poor. Increasing depth
of groundwater (DGW) alters the soil water supply by dramatically reducing the water availability (Garrido
et al., 2020; Hultine et al., 2020). Water absorption occurs deeper as groundwater depths decline, which
increases the water transport distance along with the DGW (Wu, Zheng, Li, et al., 2019). Here, DGW was
the most important driver of ecophysiological adjustments for a small, xeric phreatophytic tree. Increasing
DGW negatively affected the hydraulic properties and growth rate of H. ammodendron (Fig. 4, Fig. 6 and Fig.
7). Effective osmotic adjustments (accumulating organic compounds to tolerate low assimilating branch ¥ and
facilitate water absorption from deeper soil layers) decreases the cell turgor, which constrained leaf growth
(Fig. 8 and Fig. 9). The decline in the growth rate, in turn, led to a Huber value adjustment to increase
the water supply of a unit of sapwood area (Fig. 9). The switching of water sources (Wu, Zheng, Li, et al.,
2019), osmotic regulation, and plasticity in Huber value, however, did not sufficiently compensate for the
impact of drought stress on the physiological performance as reflected in decreased growth rates in response
to DGW during the EGS and even a negative growth rate at most sites during the LGS. Therefore, more
attention should be given to the influence of groundwater level decline on plant health in natural ecosystems,
especially the most vulnerable arid, desert ecosystems mainly dominated by phreatophytic species.

We divided the growing season into early and late phases to reflect contrasting meteorological conditions
in different growth stages. In our research area, snow usually covers the land, with a maximum depth of
20 cm, from late November to late March of the next year (H.-F. Zhou, Zheng, Zhou, Dai, & Li, 2012).
Due to the seasonal recharge from snowmelt, the soil water content was higher in spring and early summer
but quickly depleted in the dry, hot mid/late summer (Tiemuerbieke et al., 2018; Wu, Zheng, Li, et al.,
2019). Therefore, H. ammodendron experiences different upper soil water conditions during the growing
season despite the pattern of upper soil water content variation being the same across sites with different
DGW values. Thus, it is necessary to distinguish the EGS and LGS, which may help clarify the impact of
groundwater on hydraulic traits and growth. Additionally, annual growth rhythms may influence the impact
of DGW on plants. Future studies should distinguish dynamic changes in leaf growth caused by soil water
supply conditions.

The influence of DGW on hydraulic traits

The impact of groundwater depth on the water available to H. ammodendron was evident from leaf ¥ .4
values experienced by trees over shallow and deep groundwater (Fig. 2, Fig. 3, Fig. 4). The decrease in the



twig W ,q suggested reduced water availability, implying that H. ammodendron was under more severe water
stress at deeper groundwater sites. The decline in%¥ as DGW increased had been previously reported (Wu,
Zheng, Li, et al., 2019) and was consistent with the study by Cater (2011).¥ ,4-¥ nq values also increased
as the DGW increased (Fig. 4), which we anticipated because the xylem transport distance increases at a
greater groundwater depth. Lower leafW s and greater ¥ ,,q- ¥ n,q values are required for water uptake (Gries
et al., 2003).

Prior analyses of leaf P-V traits in multiple species across gradients of aridity indicate that w199 and ¥ ppare
robust proxies for important components of drought tolerance (Bartlett, Scoffoni, & Sack, 2012; Bartlett
et al., 2014).¥ Trp indicates the capacity of a plant to maintain cell turgor pressure during dehydration,
which is strongly predictive of the plant’s response to drought (Zhu et al., 2018). In our currently study,
U rrp decreased as DGW increased (Fig. 5 and 6), which indicates an increasing drought resistance as
DGW increases. These results are consistent with previous studies in which water stress was induced by
groundwater level decline (Pan et al., 2016; Zolfaghar, Villalobos-Vega, Cleverly, et al., 2015). However, ther
100 was lower than the average¥ .4 during the EGS and LGS in our current study, which is inconsistent with
previous results (Zheng et al., 2019). This inconsistency may be attributed to the long-term average of ¥
pd during the EGS lowering the¥ ,4 values corresponding to the period when the P-V curve measurements
were taken or to the absorption of atmospheric water or dew water in the early morning, which lowers¥ .4
values (Gong, Lu, He, Sarkar, & Yang, 2019).

How plants respond to increases in DGW and its impact on their growth rates

Osmotic adjustment is an important drought-tolerance mechanism that offsets turgor loss through the accu-
mulation and maintenance of soluble substances in cells (Cushman, 2001). Leaf or stem succulence facilitates
osmotic adjustment by regulating internal ion concentrations in many xerophytic shrubs (Ogburn & Edwards,
2010). Variation in osmotic solute levels under different groundwater depths (Si et al., 2015), and thus, the
corresponding osmotic regulation, have been reported in a few case studies (Pan et al., 2016; Zolfaghar,
Villalobos-Vega, Cleverly, et al., 2015). Here, osmotic adjustments were evident by decreases in¥ atm 199
and ¥ Tp as DGW increased (Fig. 6). Nathas been reported as an important inorganic osmoregulatory
substance used by H. ammodendron to cope with summer drought (Kang, Duan, Wang, Zhao, & Yang,
2013). Higher Na™ concentration during LGS compared to EGS may facilitate this xeric species’s resistance
to summer drought (Table 1). However, Na® concentration did not correlate to increasing DGW during
either the EGS or LGS, which may indicate that the accumulation of Na™ was not a key factor in sustaining
negative m 199 as DGW increased.

The levels of organic compounds, such as soluble sugar and proline, increase under water-stress conditions
and are, therefore, potentially important contributors to osmotic adjustment (Hong, Lakkineni, Zhang, &
Verma, 2000; Si et al., 2015). In our current study, the proline concentration was lower during LGS than EGS,
and thus, it did not increase the plant’s tolerance to summer droughts. Previous studies have proposed that
proline does not play an important role in osmoregulation for H. ammodendron (Song et al., 2006). Soluble
sugar concentration was higher at the deepest DGW site compared to the shallowest DGW site during both
EGS and LGS (Table 1), indicating that sugar concentration increased along with DGW. Additionally, sugar
concentration correlated with 199 as DGW increased during EGS. Thus, we ascertained that soluble sugars
act as important osmotic substances for decreasing © 100(Fig. 9a). The use of these substances, in turn,
decreases the growth rate as DGW increases (Fig. 8a and Fig. 9c). Decreasingr 100 limited the expansion of
plant cell walls during leaf cellular growth (Passioura & Fry, 1992). Limited studies have investigated such
an apparent correlation between leaf turgor and leaf growth rates (Kroeger et al., 2011), and fewer have
investigated the effects of physiological processes, including those involving osmotic solutes, on decreasing ©
100, Which then constrains growth. Here, we are the first to display such a correlation.

The plasticity of Huber values is important for plants to respond to variations in groundwater depth and
to sustain the homeostasis of leaf water use and water budget (Carter & White, 2009). Here, Huber values
increased along with DGW during the EGS (Fig. 8c). Huber values were lower for trees over shallow
groundwater (8.19 x 10™*) than for trees over deep groundwater (13.14 x 10™*; Fig. 8c) during the EGS,



which resulted in an increased capacity of stems to transport water to leaves (Carter & White, 2009).
These results are consistent with those of other studies on the same or closely related species across climatic
gradients (Addington et al., 2006; Canham et al., 2009; Magnani, Grace, & Borghetti, 2002). Furthermore,
decreased growth rate was marginally significant to the increase in Huber values with increasing DGW during
EGS (Fig. 9e) as similarly reported for Prosopis tamarugo (Garrido et al., 2020). Therefore, as an important
strategy to hydrological drought induced by a greater DGW, osmotic adjustment may constrain growth but
also facilitate the plasticity of Huber values and help xeric trees buffer suboptimal water-supply conditions.
However, these adjustments cannot fully compensate for the effects of the hydrological drought, as shown
by decreased growth rates, even becoming negative during the LGS, at almost all sites.

Conclusion

For Haloxylon ammodendron , a small xeric phreatophytic tree, we showed that increasing DGW significantly
worsened water conditions. We postulate turgor loss traits to be adaptive for osmoregulation due to their
decrease with increasing DGW. Consequently, an osmotic adjustment that accompanied ¥ regulation (¥
pd-¥ ma) and Huber value plasticity helps phreatophytes absorb water from deeper soil layers and tolerate
drought. Soluble sugars, as major components of osmoregulation, drove the decline in osmotic potential
at full turgor; thereby, constraining assimilating branch growth during the early growing season (EGS).
However, these adaptive adjustments did not fully compensate for worsened water conditions as growth rate
continued to decrease during EGS and resulted in negative growth rates during the late growing season at
almost all sites. Our results provide insight into how H. ammodendron responds and adapts to changes
in DGW in a region experiencing hydrological and climatic drought. Greater depth to groundwater had a
significant effect on this small, xeric phreatophytic tree’s survival and growth.
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TABLES

Table 1 The contents of osmotic substances in assimilating Halozylon ammodendron branches

Growing Sample
Season Sites location DGW (m) Nat (%) Proline (%)  Sugars (%) Starch (%)
EGS S1 44°24’54" N, 3.45 1.474+0.05a*  0.06+0.003b* 3.81+0.11b*  2.43+0.03a*
87degh5’01"E
S2 44°24’32" N, 9.08 1.5240.22a*  0.064+0.006b* 4.83+0.12b 2.64+0.19a*
87degbb’22”E
S3 44°23'45" N, 10.47 1.71£0.07a*  0.10£0.013a* 4.23+0.40b 2.38+0.13a

87degb5'34”E
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Growing Sample
Season Sites location DGW (m) Nat (%) Proline (%)  Sugars (%) Starch (%)
S4 44°25'37"N, 13.27 1.234+0.29a*  0.06+0.47b*  4.224+0.23b 2.834+0.15a*
87degh4’30"E
S5 44°30’35”N, 15.91 1.35+0.10a*  0.05+0.003b  8.37+0.61a 1.80+0.22b
87deg53'50"E
LGS S1 44°24’54” N 3.45 2.384+0.23a*  0.03+0.007a* 5.894+0.60b*  1.52+0.11b*
,87degh5’01”E
S2 44°24’32” N ,87d€508’22” E 2.60+0.06a*  0.034+0.002a* 4.984+0.26b 1.814+0.14ab*
S3 44°23’45"N,87dd¢baB4” E 2.2340.02a*  0.034+0.003a* 5.154+0.55b 2.01£0.07a
S4 44°25'37"N,87ddgh2B0” E 2.59+0.12a*  0.024+0.001b* 4.834+0.37b 1.764+0.14ab*
S5 44°30°35”N,87ddgh9150” E 2.74+0.37a*  0.04+0.004a  9.69+0.47a 1.6940.08ab

Note: Data are the means + SEs shown with significant differences among sites as assessed using Tukey’s
HSD test (P < 0.05). Values followed by the same letter were not significantly different among sites. Values
with an asterisk (*) were significantly different among the two growth stages at the same site. Results are
presented for both early growing season (denoted as EGS, n = 5) and late growing season (denoted as LGS,
n=>5).

FIGURE LEGENDS
Figure 1 . Location of the five study sites.

Figure 2 .Box plots of twig water potential in Haloxylon ammodendron across five sites differing in depth-to-
groundwater (DGW) at early (EGS) and late (LGS) growing season. The global assessment of a statistical
difference among the sites with different DGW was conducted using ANOVA. Different letters represent
significant differences among different DGWs as assessed using Tukey’s HSD test (P < 0.05).

Figure 3 .Twig water potential in Halozylon ammodendronbetween the early (EGS) and late growing season
(LGS) with the same depth-to-groundwater (DGW). To compare the difference between twig water potential
in the EGS and LGS at every site with contrasting DGW, independent-samples ¢ -tests were used.

Figure 4. Relationships between twig water potential and depth-to-groundwater (DGW) of Haloxzylon am-
modendron in early growing season (EGS; a, ¢ and e) and late growing season (LGS; b, d and f). Blue lines
indicate linear trends of DGW changes of turgor pressure, and shallow blue bands represent 95% confidence
intervals.

Figure 5. Twig water relation traits in Halozylon ammodendron across five sites differing in depth-to-
groundwater (DGW) at early (EGS; a and ¢) and late (LGS; b and d) growing season. The global assessment
of a statistical difference among the sites with different DGW was conducted by ANOVA. Different letters
represent significant differences among the different DGWs as assessed using Tukey’s HSD test (P < 0.05).

Figure 6. Relationships between twig P-V parameters and depth-to-groundwater (DGW) of Halozylon
ammodendron in the early growing season (EGS; a and ¢) and late growing season (LGS; b and d). Values
are means £ SEs (n = 5).

Figure 7. Seasonal changes in leaf area per branch (a) and growth rate of branch area (b) of Halozylon
ammodendron at five sites with different depth-to-groundwater (DGW). Error bars represent standard errors
of means. Asterisks (*) indicate significant differences among the five sites with different DGWs on the same
trial day or during the same growth period at P = 0.05.

Figure 8. Relationship between growth rates, Huber values, and depth-to-groundwater (DGW) of Halozylon
ammodendron during the early growing season (EGS; a and c) and the late growing season (LGS; b and d).
Blue lines indicate linear trends of DGW changes of growth rate and HV, and shallow blue bands represent
95% confidence intervals.
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Figure 9 . Relationship between soluble sugars and full turgor (7 190; @ and b), betweenr 199 and growth
rate (c and d), and between growth rate and Huber value (e and f) of Haloxylon ammodendronduring the
early growing season (EGS; a, ¢ and e) and the late growing season (LGS; b, d and f). Values are means +
SEs (n = 5-10). Blue lines indicate linear trends between soluble sugar and full turgor, between full turgor
and growth rate, and between growth rate and Huber Value. Dashed blue lines represent 95% confidence
intervals of linear trendlines.
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