Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally Carlos Alberto Arnillas¹, Elizabeth Borer², Eric Seabloom², Juan Alberti³, Selene Baez⁴, Jonathon Bakker⁵, Elizabeth Boughton⁶, Yvonne Buckley⁷, Miguel Bugalho⁸, Ian Donohue⁷, John Dwyer ⁹, Jennifer Firn¹⁰, Riley Gridzak¹¹, Nicole Hagenah¹², Yann Hautier¹³, Aveliina Helm¹⁴, Anke Jentsch¹⁵, Johannes (Jean) M H Knops¹⁶, Kimberly (La Pierre) Komatsu¹⁷, Lauri Laanisto¹⁸, Ramesh Laungani¹⁹, Rebecca McCulley²⁰, Joslin Moore²¹, John Morgan²², Pablo Peri²³, Sally Power²⁴, Jodi Price²⁵, Mahesh Sankaran²⁶, Brandon Schamp²⁷, Karina Speziale²⁸, Rachel Standish²⁹, Risto Virtanen³⁰, and Marc Cadotte³¹ ¹University of Toronto at Scarborough ²University of Minnesota ³Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) ⁴Escuela Politécnica Nacional ⁵University of Washington ⁶Archbold Biological Station ⁷Trinity College Dublin ⁸Centre of Applied Ecology "Prof. Baeta Neves" (CEABN- InBIO), School of Agriculture, University of Lisbon ⁹The University of Queensland ¹⁰Queensland University of Technology ¹¹Queen's University ¹²University of Pretoria Mammal Research Institute ¹³Universiteit Utrecht ¹⁴University of Tartu $^{^{15}}$ University of Bayreuth $^{^{16}\}mathrm{Xi'}\mathrm{an}$ Jiaotong-Liverpool University ¹⁷Smithsonian Environmental Research Center ¹⁸Eesti Maaulikool ¹⁹Doane University ²⁰University of Kentucky ²¹Monash University ²²La Trobe University $^{^{23}}$ INTA ²⁴University of Western Sydney ²⁵Charles Sturt University $^{^{26}\}mathrm{National}$ Centre for Biological Sciences ²⁷Algoma University June 28, 2021 ## Abstract Dominant and non-dominant plants could be subject to different biotic and abiotic influences, partially because dominant plants modify the environment where non-dominant plants grow, causing an interaction asymmetry. Among other possibilities, if dominant plants compete strongly, they should deplete most resources forcing non-dominant plants into a more constrained niche space. Conversely, if dominant plants are constrained by the environment, they might not fully deplete available resources but instead ameliorate some of the environmental constraints limiting non-dominants. Hence, the nature of the interactions between the non-dominants could be modified by dominant species. However, when plant competition and environmental constraints have similar effects on dominant and non-dominant species no difference is expected. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (underdispersed), suggesting dominant species are likely organized by environmental filtering, and that non-dominant species were either randomly assembled or overdispersed. Traits showed similar trends, but insufficient data prevented further analyses. Furthermore, several lineages scattered in the phylogeny had more non-dominant species, suggesting that traits related to non-dominants are phylogenetically conserved and have evolved multiple times. We found some environmental drivers of the dominant—non-dominant disparity. Our results indicate that assembly patterns for dominants and non-dominants are different, consistent with asymmetries in assembly mechanisms. Among the different mechanisms we evaluated, the results suggest two complementary hypotheses seldom explored: (1) Non-dominant species include lineages adapted to thrive in the environment generated by the dominant species. (2) Even when dominant species reduce resources to non-dominant ones, dominant species could have a stronger effect on—at least—some non-dominants by ameliorating the impact of the environment on them, than by depleting resources and increasing the environmental stress to those non-dominants. The results show that the dominant-non-dominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities. ## Hosted file arnillas-dominance discrepancy phylogeny_10_MWC.docx available at https://authorea.com/users/383451/articles/528068-opposing-community-assembly-patterns-for-dominant-and-non-dominant-plant-species-in-herbaceous-ecosystems-globally ²⁸Instituto de Investigaciones en Biodiversidad y Medioambiente ²⁹Murdoch University ³⁰Oulun Yliopisto ³¹University of Toronto Are dominant species more or less phylogenetically dispersed than non-dominant species? What is the probability of a species of a clade to be non-dominant when it occurs in a site?