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Abstract

The degree of rate control quantitatively identifies the kinetically relevant (sometimes known as rate-limiting) steps of a

complex reaction network. This concept relies on derivatives which are commonly implemented numerically, e.g. with finite

differences. Numerical derivatives are tedious to implement, and can be problematic, and unstable or unreliable. In this work,

we demonstrate the use of automatic differentiation in the evaluation of the degree of rate control. Automatic differentiation

libraries are increasingly available through modern machine learning frameworks. Compared to the finite differences, automatic

differentiation provides solutions with higher accuracy with lower computational cost. Furthermore, we illustrate a hybrid local-

global sensitivity analysis method, the distributed evaluation of local sensitivity analysis (DELSA), to assess the importance

of kinetic parameters over an uncertain space. This method also benefits from automatic differentiation to obtain high-quality

results efficiently.

Introduction

Complex reaction systems involving multiple reaction steps are common in the real world. Quantifying the

influence of each reaction in a complex system is an important step to better understand what controls the

kinetic behavior of the overall rate or to improve the reaction system to meet a desired target by adjusting

the reaction conditions or catalysts. For example, we can increase the rate of the rate-determining step to

increase the net reaction rate. Among various tools, the degree of rate control (DRC) is a versatile concept

proposed by Campbell to measure the kinetic contribution of each reaction steps to a target reaction rate

(Carsten Stegelmann & Campbell, 8077; Campbell, 2770). There are many applications of this concept

in the research areas of catalysis and microkinetic modeling (C. Stegelmann & P. Stoltze, 2004; Mecha-

nism of the Water Gas Shift Reaction on Pt : First Principles Experiments, and Microkinetic Modeling,

4608; Christopher A. Wolcott & Campbell, 2015; Jørgensen & Grönbeck, 4034; Mao & Campbell, 9465).

These applications involve the investigation of the relationship between the reaction conditions and the

rate-determining step (C. Stegelmann & P. Stoltze, 2004), using the degree of rate control to screen the

catalysts (Christopher A. Wolcott & Campbell, 2015), exploring the mechanism of reactions (C. Stegelmann

& P. Stoltze, 2004; Mechanism of the Water Gas Shift Reaction on Pt : First Principles Experiments, and

1
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Microkinetic Modeling, 4608) and so forth. The kinetic DRC is defined as the derivative of the rate with

respect to the energy of the transition state or the forward kinetic rate constant given the corresponding

equilibrium constant is fixed:

XRC,i =
ki
r

(
∂r

∂ki

)
kj 6=i,Ki

=

(
∂ ln r

∂ ln ki

)
kj 6=i,Ki

(1)

where r is the net rate of the production of interest, ki is the forward kinetic constant of step i and Ki

is the equilibrium constant of step i. The thermodynamic version of the DRC extends the application of

this concept to the free energy of the intermediate species in the reaction system, which is mathematically

defined as

XTRC,n =

(
∂ ln r

∂
−G0

n

RT

)
G0

m 6=n,G
0,TS
i

(2)

where G0
m is the free energy of species m, G0,TS

i is the transition-state energy of step {i}. Several variants of

the DRC have been proposed to fulfill different purposes, including the DRC for selectivity (Talin Avanesian

& Christopher, 2016), for transient kinetics, (Campbell, 2001; Campbell, 2770; Foley & Bhan, 2556) and for

uncertain parameters (Tian & Rangarajan, 1353).

From a practical perspective, a simple and common way to assess the DRC is using finite difference (FD)

approximations for the derivatives (Campbell, 2001; Foley & Bhan, 2556; Quantifying the Impact of Para-

metric Uncertainty on Automatic Mechanism Generation for Co2 Hydrogenation on Ni (111), Apr, 1437).

These are fairly straightforward to implement and only require a few more lines of code in addition to the

original simulation code. Mathematically, the centered difference approximation is formulated by

XRC,i =
ki
r

(
∂r

∂ki

)
kj 6=i,Ki

≈ ki
r

δr

δki

2
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(3)

where δki is the perturbation applied on ki and δr is the change of the net reaction rate resulted from the

perturbation of ki. Although the finite difference approximation is a popular choice because of its ease of

understanding and implementation, one must be careful to choose the magnitude of the perturbation. The

change of the kinetic constant should be small enough such that the response of the net reaction is linear,

but not so small that goes beyond the precision limitation of the computer (Campbell, 2001).

Formally, there is a trade-off between the truncation error and the rounding error in this approach.

The scale of the truncation error is O(δ) for the first-order derivative, which prefers small δ. How-

ever, when the δ is smaller than the precision limitation, then the value is no longer reliable. In

addition, FD requires O(n) rounds of function calls or forward simulations to get the derivatives

of n parameters, which is time consuming for large size of parameters. For example, Bjarne et

al. took 300 CPU-hours to conduct the sensitivity analysis when investigating the mechanism of

CO2hydrogenationonNi(111)usingfinitedifferencemethod(Quantifying the Impact of Parametric Uncertainty on Automatic Mechanism Generation for Co2 Hydrogenation on Ni (111), Apr, 1437).

To avoid these issues, sensitivity analysis methods like the direct sensitivity analysis and the adjoint sen-

sitivity analysis (Yang Cao & Serban, 1076) are usually adopted by common differential equation solvers

(Sundials, 2005; Zhang & Sandu, 2014; (missing citation) to provide the derivative of the numerical solution

to the parameters for differential equations. The direct sensitivity analysis converts the solution sensitivity

with respect to the parameters of differential equations into n extra (number of parameters) differential

equations, which are solved simultaneously with the original differential equations. The adjoint sensitivity

analysis requires the definition of some scalar functional of the numerical solution and the parameters. Then

the sensitivities are given by an integration. For the mathematical details, one could refer to the introduction

of these two methods in the chemical kinetic systems by Sandu (Adrian Sandu & Carmichael, 5083).

To be applied in the calculation of the DRC, the partial derivatives of the reaction rate to the concentrations

and the kinetic parameters still needs to be solved, since the sensitivity analysis methods only provide

the derivatives of the numerical solution (commonly the concentration or coverages in the chemical kinetic

systems) to the parameters. One of the tools to integrate these derivatives is automatic differentiation

(AD), (Rall, 1981; Atilim Gunes Baydin & Siskind, 2015) which automatically evaluates the derivatives of

a function that is built on a set of atomic operations and functions (e.g., addition, multiplication, exp, log,

etc.). The derivatives are generated by chain rule based on the derivatives of these elementary operations.

3
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For the DRC case, the numerical integration and post functions from the kinetic constants to the reaction

rate could be regarded as a sequence of the atomic operations and functions. Thus, the derivatives of the

reaction rate to the kinetic constants could be evaluated by the chain rule applied on this sequence of basic

operations. In addition, AD calculates the derivatives simultaneously with the function evaluations, which

makes it more efficient compared to the finite difference or direct sensitivity analysis.

In this work, we adopt AD to the evaluation of the DRC. In section , we introduce the working mechanism of

the AD to obtain the derivatives of a function automatically. In section , we illustrate three case studies to

check the correctness of the AD and to show its advantages over FD. Specifically, we take the hypothetical

reaction scheme from Foley’s non-steady DRC work as a simple case (Foley & Bhan, 2556). For a slightly

more complicated example, we use the water-gas shift reaction adopted from Motagamwala’s maximum

rate work (Motagamwala & Dumesic, 2879). Finally, we show the application of AD to calculate the DRC

of a more complex mechanism, the propylene partial oxidation on Cu(100), (Song & Wang, 2743) which

involves 17 elementary steps. Further more, we demonstrate the utilization of the distributed evaluation

of local sensitivity analysis (DELSA) (Distributed Evaluation of Local Sensitivity Analysis ( Delsa ), with

Application to Hydrologic Models, 2014) to deal with the uncertain range of the kinetic parameters, which is

a hybrid local-global sensitivity analysis method to identify the important parameters and the importance

distribution over an uncertain range.

Methodology

Automatic Differentiation

Automatic differentiation has two modes to generate the derivatives: the forward mode and the reverse

mode (Rall, 1981; Atilim Gunes Baydin & Siskind, 2015). In the forward mode, the computational graph

starts with the input variables, and grows along the elementary operations and functions applied on the

input variables. During the forward expansion, the function evaluations and derivative calculations take

place simultaneously. In the reverse mode, there are two rounds of evaluations. The first one is the forward

evaluation of the function values starts from the input variables. The second round is the back-propagation

of the derivatives from the function output to the input.

We use the example y = ln (3x1 − 2x2) + x1x2 with (x1, x2) = (1, 1) as a prototype example to illustrate

the workflow of the AD. The computational graph is shown in Figure 1. The details of the forward AD and

the reverse mode are shown in Table 1 and Table 2. The comparison between the forward and the reverse

4
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mode is clear in Table 1 and Table 2. In the forward mode, all derivatives of the intermediate and the final

results with respect to a specified input variable (x1 in this case) are calculated in one forward propagation.

However, in the reverse mode, the derivative of a specified scalar output with respect to all the intermediate

and input variables are obtained in one backward propagation. Thus, the forward mode is suitable for the

functions with fewer input dimensions, while the reverse mode is more efficient for the functions with fewer

output dimensions.

Figure 1: Computational graph for the example y = ln (3x1 − 2x2) + x1x2. Each blue node contains the

corresponding variable and the operation that applied on its parent node(s). For instance, w3 is the result

of the multiplication between a constant 3 and another node variable w1.

Table 1: Forward AD for the example y = ln (3x1 − 2x2) + x1x2. Left side shows the forward function
evaluations. Right side shows the derivative of ∂y

∂x1
. Head dot means ∂

∂x1

Function evaluation Derivative calculation (from top to bottom)
w1 = x1 = 1 ẇ1 = ẋ1 = 1
w2 = x2 = 1 ẇ2 = ẋ2 = 0
w3 = 3w1 = 3 ẇ3 = 3ẇ1 = 3
w4 = 2w2 = 2 ẇ4 = 2ẇ2 = 0
w5 = w3 − w4 = 1 ẇ5 = ẇ3 − ẇ4 = 3
w6 = lnw5 = 0 ẇ6 = 1

w5
ẇ5 = 3

w7 = w1w2 = 1 ẇ7 = w1ẇ2 + ẇ1w2 = 1
w8 = w6 + w7 = 1 ẇ8 = ẇ6 + ẇ7 = 4
y = w8 = 1 ẏ = ẇ8 = 4

Similar to the example above, AD could also be applied on the numerical integration of the ODE systems.

5
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. Table 2: Reverse AD for the example y = ln (3x1 − 2x2) + x1x2. Left side shows the forward function
evaluations. Right side shows the back-propagation of the derivative of ∂y

∂x1
.

Function evaluation Derivative calculation (from bottom to top)

w1 = x1 = 1 ∂y
∂x1

= ∂y
∂w1

∂w1

∂x1
= 4

w2 = x2 = 1 ∂y
∂x2

= ∂y
∂w2

∂w2

∂x2
= −1

w3 = 3w1 = 3 ∂y
∂w1

= ∂y
∂w1

+ ∂y
∂w3

∂w3

∂w1
= 4

w4 = 2w2 = 2 ∂y
∂w2

= ∂y
∂w2

+ ∂y
∂w4

∂w4

∂w2
= −1

w5 = w3 − w4 = 1 ∂y
∂w3

= ∂y
∂w5

∂w5

∂w3
= 1

∂y
∂w4

= ∂y
∂w5

∂w5

∂w4
= −1

w6 = lnw5 = 0 ∂y
∂w5

= ∂y
∂w6

∂w6

∂w5
= 1

w7 = w1w2 = 1 ∂y
∂w1

= ∂y
∂w7

∂w7

∂w1
= 1

∂y
∂w2

= ∂y
∂w7

∂w7

∂w2
= 1

w8 = w6 + w7 = 1 ∂y
∂w6

= ∂y
∂w8

∂w8

∂w6
= 1

∂y
∂w7

= ∂y
∂w8

∂w8

∂w7
= 1

y = w8 = 1 ∂y
∂w8

= ∂y
∂y

∂y
∂w8

= 1

Consider the initial-value problem

θ̇ = f(θ,k,K, t), θ(k,K, t = 0) = θ0

(4)

where θ is the state vector, f is the state derivative vector, k and K are the parameters of this ODE system,

and θ 0 is the initial state vector. For the sake of simplicity, we assume the explicit forward Euler method

is used to solve this ODE. Thus, the update equation is

θn+1 = θn + hf(θn,k,K, tn)

(5)

where h is the step size. Therefore, to get the derivative of θn+1 with respect to k, we have

dθn+1

dk
=
dθn
dk

+ h
df(θn,k,K, tn)

dk

6
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(6)

In the forward AD, the derivative of the terms at the RHS of Eq 6 with respect to k is propagated to the

LHS. In the reverse AD, the derivative of θn+1 with respect to the LHS is back propagated to the variables

in the RHS. In both modes, the derivatives of the ODE solution with respect to the parameters could be

obtained automatically. Even if there are post operations applied on the ODE solution (e.g., conversion of

the concentrations to reaction rates), the derivatives of the final results to the parameters can be calculated

in an end-to-end way as long as these operations are in the same computational graph. We note that some

ODE solvers may have the step size (h) that is dependent on the parameters, in this case, the derivative of

the step size with respect to the parameters are enforced to be zero during the implementation (Eberhard

& Bischof, 1999).

In the past decade, various AD packages have been developed for applications in machine learning

(Atilim Gunes Baydin & Siskind, 2015). Typical examples include Pytorch (Pytorch: an Imperative Style,

High-Performance Deep Learning Library, 2019) and Jax (Jax : Composable Transformations of P Ython+

N Um P Y Programs, 2018) in Python, and ForwardDiff (Jarrett Revels & Papamarkou, 2016) in Julia.

To integrate the AD into the solution of an ODE system, the ODE solver should be compatible to these

AD packages and the operations and functions in the ODE solver should be included in the computational

graph of the AD packages. There are several modules satisfying these requirements such as the torchdiffeq

(Ricky T. Q. Chen & Duvenaud, 2018) for Pytorch, the DifferentialEquations (Rackauckas & Nie, 2017)

for ForwardDiff and the PyBaMM (Python Battery Mathematical Modelling ( Pybamm, 2020) for Jax. In

this work, we use the ForwardDiff and DifferentialEquations in the Julia language since they provides

various differentiable ODE solvers that could handle various non-stiff and stiff problems.

Distributed Evaluation of Local Sensitivity Analysis

Distributed evaluation of local sensitivity analysis (DELSA) (Distributed Evaluation of Local Sensitivity

Analysis ( Delsa ), with Application to Hydrologic Models, 2014) is a hybrid local-global sensitivity analysis

method to measure the distribution of parameter sensitivity across the parameter space with low compu-

tational cost. Basically, it is an extension to local sensitivity analysis that takes the uncertainty of the

parameters into account. The importance of a parameter over the parameter space is measured by a local

sensitivity statistic like the median or the mean of a set of samples drawn from the parameter space. Local

7
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sensitivity analysis is then conducted on each parameter sample. This makes DELSA much cheaper to get

the detailed distribution of the importance over the parameter space than the Sobol’s indices which is a

popular global sensitivity analysis method based on the variance decomposition (Sobol, 2001; Saltelli, 2002).

Mathematically, the first-order sensitivity measure for jth parameter at sample i is defined as

Sij =

∣∣∣ yiθij ∣∣∣2 s2j
V (yi)

(7)

where Sij is the sensitivity measure for the parameter θij at sample i, yi is the model output or an element

of the model output of sample i, sj is the prior variance of θj , and V (yi) is the total variance of the model

output yi, which can be evaluated using the first-order-second-moment method (Hill & Tiedeman, 2005):

V (yi) =

(
∂yi
∂θ

)T (
XTωX

)(∂yi
∂θ

)
(8)

where X is a matrix of (nobs + nprior) rows and nparam columns. nobs, nprior, nparam are the number of

observations, the number of prior information equations and the number of parameters respectively. In the

application of DELSA, there is no observation and the prior information is the variance of each parameter.

Therefore, nobs = 0 and nprior = nparam, and each row of X has zeros except for one which indicates the

parameter associated with the prior information. ω is a diagonal matrix contains the reciprocal of the prior

variance of each parameter. More details of the structure of X and ω could refer to the related works (Hill

& Tiedeman, 2005; Petropoulos & Srivastava, 2016; Distributed Evaluation of Local Sensitivity Analysis (

Delsa ), with Application to Hydrologic Models, 2014).

Intuitively, the sensitivity measure Sij captures the contribution of θij to the total uncertainty of the output

yi. The parameters with more contribution to the uncertainty are considered more important. This sen-

sitivity measure gives similar importance evaluation to the Sobol’s method (Sobol, 2001) for the uncertain

8
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parameters in the previous reports (Sobol’ & S. Kucherenko, 1212; Distributed Evaluation of Local Sensitiv-

ity Analysis ( Delsa ), with Application to Hydrologic Models, 2014). In addition, DELSA could be easily

integrated to the original local sensitivity implementation which is the DRC with automatic differentiation

in our work.

Results and Discussion

We firstly show that AD can reproduce the DRC results of previous reports (Motagamwala & Dumesic, 2879;

Foley & Bhan, 2556) in the first two simple cases. Then, we compare the performance of the FD and the AD

on another more complicated reaction mechanism of propylene oxidation (Song & Wang, 2743). Lastly, we

show the application of AD to deal with uncertain parameters by manually introducing an uncertain range

for the kinetic constants in the propylene oxidation case.

Case I: Hypothetical Two-Step Reaction

We first consider the hypothetical reaction mechanism in Table 3 (Foley & Bhan, 2556).

Table 3: Hypothetical Two-Step Catalytic Reaction (case I). (Foley & Bhan, 2556)
Step id Elementary Step ki k−i

1 A+ ∗ ↔ A∗ 10−5 0
2 A ∗+B → C + ∗ 1 NA

which leads to the following differential equations (Eqs 9 - 10):

1

L

θA∗(t)

dt
= k1aA(t)θ∗(t)− k−1θA∗(t)− k2aB(t)θA∗(t)

(9)

1

L

θ∗(t)

dt
= −k1aA(t)θ∗(t) + k−1θA∗(t) + k2aB(t)θA∗(t)

(10)

9
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where θi are the coverages, ai are the thermodynamic activities and L is the number of active sites. The net

reaction rate is defined as the rate to produce C per active site:

rC(t)

L
= k2aB(t)θA∗(t)

(11)

The analytical solution for rC(t)/L is

rC(t)

L
=

k1aAk2aB
k1aA + k−1 + k2aB

(
1− e−(k1aA+k−1+k2aB)t

)
+ k2aBθA∗,0e

−(k1aA+k−1+k2aB)t

(12)

where θA∗,0 is the coverage of A∗ at t = 0.

According to the settings in the original paper (Foley & Bhan, 2556), aA = 1, aB(t < 0) = 1 and

aB(t ≥ 0) = 3. Since k−1 is set as 0 and k1 � k2, thus

rC(t)

L
= (k1aA)

(
1− e−(k2aB)t

)
+ k2aBθA∗,0e

−(k2aB)t

(13)

10
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which has the corresponding DRC as:

XRC,1 =
k1L

rC(t)
aA

(
1− e−(k2aB)t

)
(14)

XRC,2 =
k2L

rC(t)

[
k1aAaBte

−(k2aB)t + aBθA∗,0e
−(k2aB)t − k2a2BθA∗,0te

−(k2aB)t
]

(15)

We note that this transient DRC is based on the definition of Eq 1, which is different from the modified

version proposed by Bhan (Foley & Bhan, 2556). Upon Eq 14 - 15, notice that at t = 0+, XRC,1 is 0 and

XRC,2 is 1. As t→∞, XRC,1 grows to 1 and XRC,2 decreases to 0. The solutions from the analytical form

and the AD are shown in Figure 2, in which the solution of the AD perfectly matches the analytic solution

over the whole time range. The DRC in the Figure 2 does not obey the sum of kinetic DRC equaling one

because the rate during the transient process also depends on the time, apart from the kinetic constants.

This issue is discussed in more detail in the non-steady DRC paper (Foley & Bhan, 2556). The main message

conveyed by this simple example is that the AD is practically equivalent to having the analytical derivatives

to evaluate the transient DRC defined by Eq 1, but without the need to analytically derive the expressions

or to approximate them with finite differences.

11



P
os

te
d

on
A

u
th

or
ea

9
A

u
g

20
21

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

85
50

56
.6

04
83

26
0/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Figure 2: Degree of rate control for the hypothetical reaction of case 1 evaluated by analytic solution and

automatic differentiation.

Case II: Redox mechanism for water-gas shift

Case I was a hypothetical example and it only contained two steps with manually set kinetic parameters,

which is relatively simple. In case II, we consider a more complicated reaction mechanism for the water-gas

shift reaction (Motagamwala & Dumesic, 2879) which is listed in Table 4. The pressures for the gas-phase

species PCO, PH2O, PH2
, PCO2

are 0.07 atm, 0.21 atm, 0.38 atm, and 0.085 atm, respectively. The target

net rate is of the production of the hydrogen, which could be expressed as (Eq 16):

rH2 = k7θ
2
H∗ − k−7

PH2

P
θ2∗

(16)

For this reaction system, the DRC evaluated by the AD are shown in Figure 3. Among the 7 steps of this

reaction mechanism, only two steps are identified as important to the net rate. Step 4 (dissociation of OH∗)

has a DRC of 0.88 while step 5 (formation of CO2∗) has a DRC of 0.12. The other 5 steps have little

12
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influence on the net rate of the whole reaction system. This result is consistent to the calculation of the

original paper (Motagamwala & Dumesic, 2879) and illustrates the reliability of the AD to evaluation the

DRC of a moderately complicated reaction system.

Table 4: Redox mechanism for water-gas shift (case II). (Motagamwala & Dumesic, 2879)
Step id Elementary Step Keq,i ki

1 CO + ∗ ↔ CO∗ 2.15× 102 1.33× 108

2 H2O + ∗ ↔ H2O∗ 5.93× 10−5 2.01× 1011

3 H2O ∗+∗ ↔ H ∗+OH∗ 6.28× 10−2 2.64× 106

4 OH ∗+∗ ↔ H ∗+O∗ 1.18× 10−5 5.24× 101

5 CO ∗+O∗ ↔ CO2 ∗+∗ 1.03× 103 2.05× 105

6 CO2∗ ↔ CO2 + ∗ 1.92× 105 1.48× 1012

7 2H∗ ↔ H2 + 2∗ 4.50× 101 5.32× 102

Figure 3: Degree of rate control for the water-gas shift reaction (case II). (Motagamwala & Dumesic, 2879)

Case III: Propylene Partial Oxidation

Our third case is the propylene partial oxidation (Song & Wang, 2743), which could be an environmentally

friendly route to produce propylene oxide. Its 17 elementary steps and corresponding kinetic constants are

shown in Table 5. The partial pressures for the gas-phase species PC3H6
and PO2

are 0.1 bar and 0.05 bar

respectively. The reaction simulation temperature is 500 K. The net rate of interest is the desorption of

13
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propylene oxide, which is the sum of the step 13 and 14 (Eq 17):

rPO = k13θPO1∗ − k−13
PPO
P

θv∗ + k14θPO2∗ − k−14
PPO
P

θv∗

(17)

The DRC results for this case are shown in Figure 4, where the adsorption of propylene as the III type and the

desorption of PO2∗ have the major positive contribution to the generation of PO(g). These positive DRCs

are reasonable since the adsorption of propylene provides the material to produce PO(g) and the desorption

of PO2∗ directly generates PO(g). On the other side, the desorption of O2∗ hinders the production of PO(g)

since this step results in more v∗ produced and more O∗ and O1∗ consumed, which benefits the negative

direction of step 13 and 14.

Table 5: Elementary steps for the propylene partial oxidation (case III) (Song & Wang, 2743). Ea and E−r
a

are the activation energies for the forward and reverse directions. A and A−r are the pre-expotential factor
of the forward and reverse reactions. v represents the oxygen vacancy.

Step id Elementary Step Ea(eV ) A E−r
a (eV ) A−r

1 C3H6(g) + ∗ ↔ C3H6(I)∗ 0.00 1.87× 108 0.42 1.00× 1013

2 C3H6(g) + ∗ ↔ C3H6(II)∗ 0.00 1.87× 108 0.57 1.00× 1013

3 C3H6(g) + ∗ ↔ C3H6(III)∗ 0.00 1.87× 108 0.58 1.00× 1013

4 C3H6(I) ∗+O∗ ↔ C3H5 ∗+OH∗ 0.36 8.03× 1012 1.40 8.93× 1012

5 C3H6(II) ∗+O∗ ↔ OMP1∗ 0.59 1.17× 1013 1.10 1.78× 1013

6 C3H6(III) +O∗ ↔ OMP2∗ 0.31 1.28× 1013 0.95 1.92× 1013

7 C3H5 ∗+O∗ ↔ C3H4O ∗+H2O∗ 0.30 1.14× 1013 1.19 7.14× 1012

8 C3H5O ∗+OH∗ ↔ C3H4O ∗+H2O∗ 0.54 1.09× 1013 1.72 1.54× 1013

9 OMP1∗ ↔ PO1 ∗+∗ 0.62 4.10× 1013 0.83 1.53× 1013

10 OMP2∗ ↔ PO2 ∗+∗ 0.77 3.24× 1013 0.89 1.31× 1013

11 H2O∗ ↔ H2O(g) + v∗ 0.76 1.00× 1013 0.00 2.85× 108

12 C3H4O∗ ↔ C3H4O(g) + v∗ 0.10 1.00× 1013 0.00 1.62× 108

13 PO1∗ ↔ PO(g) + v∗ 0.90 1.00× 1013 0.00 1.59× 108

14 PO2∗ ↔ PO(g) + v∗ 0.96 1.00× 1013 0.00 1.59× 108

15 O2 ∗+v∗ ↔ O ∗+O1∗ 0.00 1.00× 1013 1.43 1.00× 1013

16 2O1∗ ↔ O2 ∗+∗ 0.00 1.00× 1013 1.18 1.00× 1013

17 O2∗ ↔ O2(g) + ∗ 1.36 1.00× 1013 0.00 2.14× 108

14
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Figure 4: Degree of rate control for the propylene partial oxidation reaction (case III). (Song & Wang, 2743)

We then compare the DRC calculation results using FD and AD in this case. The temperature is set as 350

K in this comparison. We evaluate the transient DRC defined by Eq 1 using the FD and the AD methods

separately. The transient DRC for step 3, 4, 14, and 17 are shown in Figure 5. Different perturbation

magnitudes (10−4, 10−11, 10−14) are used in the FD method. There is an optimal choice of the perturbation

size to reduce the truncation error and the rounding error. A large perturbation size suffers from the

truncation error resulting from the nonlinearity of the target function, which is the transient part from

t = 0 to t = 5. Too small of a perturbation size makes the solution affected by the rounding error due

to the limited precision for floating numbers. In this case, 10−11 is the best perturbation size among these

candidates, whose result is the most aligned with the solution of the AD method. Case III illustrates that

although with finite difference it is possible to get a reliable transient DRC for a complicated system, it highly

depends on the choice of the perturbation size. This issue does not hold for the automatic differentiation

since there is no truncation error during the derivative evaluation process of the AD.
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Figure 5: Transient degree of rate control evaluated by the finite difference and automatic differentiation

for the propylene partial oxidation reactions 3, 4, 14 and 17 (case III) (Song & Wang, 2743). Different

perturbation sizes are used in the FD method as indicated in the legend.

Degree of Rate Control for Uncertain Parameters

It is common to consider an uncertain space of the kinetic parameters instead of the exact values in the

real-world catalyst applications. To illustrate the usage of the DELSA (Distributed Evaluation of Local

Sensitivity Analysis ( Delsa ), with Application to Hydrologic Models, 2014) to measure the importance of

the parameters over a space, we hypothetically add an uncertainty range to the forward kinetic constant

of each elementary step of the case III, which corresponds to an uncertain range of [-0.03 eV, 0.03 eV] on

the forward activation energy. We assume the log of the kinetic parameters are uniformly distributed in

the candidate space. The samples are drawn using the quasi-random Sobol sequence (Sobol’, 1967) which

more evenly samples the space than a uniform distribution would. According to the definition of the DELSA

importance measure (Eq 7), the importance of a kinetic parameter kij to the net rate of sample i could be

measured by:

Skij =

∣∣∣ ∂ ln ri
∂ ln kij

∣∣∣2
kim6=ij ,Kj

s2j

V (ln ri)

(18)
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where sj is the variance of the uniform distribution of kj . Among the 17 parameters, only 3 parameters

are found to be important (with the average DELSA importance measure > 0.1) over the potential space.

Their distributions are shown in Figure 6. It is notable that the important steps identified by DELSA (step

3, 14 and 17) are different from the local DRC (step 1, 4, 5, 17). This is because DELSA considers the

contribution of a parameter over the whole space instead of a local point. An important parameter at local

scope (e.g., step 1) could have small contribution from a global perspective. A trivial parameter locally (e.g.,

step 14) is possible to be a significant step globally. In addition, DELSA provides the distribution of the

importance across the parameter space. For example, the histogram of step 14 has two peaks near 0 and 1,

which means that for about half of the samples, step 14 has no effect on the net rate (with 0 importance

measure), but for the other half of the samples, step 14 is the most important parameter (with 1 importance

measure). High quality distributions rely on more samples in the potential space, which could be expensive

for finite differences and difficult to ensure the results are accurate. Using the automatic differentiation,

DELSA could be performed with higher accuracy and lower computational cost.

Figure 6: DELSA results for 3 important steps (3, 14 and 17) in the propylene oxidation reaction (Song &

Wang, 2743).

Conclusion

The degree of rate control is a versatile concept in heterogeneous catalysis. We discussed the application

of automatic differentiation (AD) in the evaluation of the derivatives needed to evaluate the DRC. We also

compared the AD method to the commonly used finite difference (FD) method. Compared to FD, AD

provides a faster and more accurate solution. There is no need to choose the optimal perturbation size

in AD which is a critical step in FD to obtain a reliable result. In three cases with various complexity,

17



P
os

te
d

on
A

u
th

or
ea

9
A

u
g

20
21

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

85
50

56
.6

04
83

26
0/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

we demonstrated the correctness of the AD method. In addition, we illustrated that AD could be used

to perform the DELSA method, which is a hybrid local-global sensitivity analysis method to measure the

importance of parameters over an uncertain space. With AD, DELSA could be conducted accurately and

efficiently.
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