Medium optimization and subsequent fermentative regulation for the scaled-up production of anti-tuberculosis drug leads ilamycin-E1/E2

Zhiying Fan¹, Nian Tong¹, Zhoukang Zhuang¹, Cheng Ma², Junying Ma³, Jianhua Ju³, Yanwen Duan¹, and Xiangcheng Zhu¹

¹Central South University

²National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery ³South China Sea Institute of Oceanology Chinese Academy of Sciences

September 24, 2021

Abstract

Tuberculosis (TB) and its emerged drug resistance exert huge threats on the global health, therefore development of novel anti-TB antibiotics is very essential. Ilamycin-E1/E2 is a pair of cycloheptapeptide enantiomers obtained from a marine-derived Streptomyces atratus SCSIO ZH16- Δ ilaR mutant, and become promising anti-TB lead compounds due to their significant anti-TB activities, but their low titer hampered the further clinical development. In this work, the statistical Plackett-Burman design (PBD) model was applied to screen out bacterial peptone as the only significant but negative factor affecting the ilamycin-E1/E2 production. Subsequent single factor optimization revealed that replacement of bacterial peptone with malt extract eliminated the accumulation of porphyrin-type competitive byproduct, and the titer of ilamycin-E1/E2 in shaking flasks was improved from original 13.6 \pm 0.8 to 142.7 \pm 5.7 mg/L for about 10.5 folds. Furthermore, a pH coordinated feeding strategy was first adopted in scaled-up production of ilamycin-E1/E2. The obtained titer of ilamycin-E1/E2 in 30L was 169.8 \pm 2.5 mg/L, while in 300L fermentor was only 131.5 \pm 7.5 mg/L due to the unsynchronization of feeding response and pH change. Therefore, the continuous pulse feeding strategy was further applied in 300L fermentor and finally achieved 415.7 \pm 29.2 mg/L ilamycin-E1/E2, which represented about 30.5 folds improvement at last. Our work provided the solid basis to achieve sufficient ilamycin-E1/E2 lead compounds and support their potential anti-TB drug development.

Hosted file

Manuscript-BTJ-210809-final.doc available at https://authorea.com/users/435360/articles/ 538443-medium-optimization-and-subsequent-fermentative-regulation-for-the-scaled-upproduction-of-anti-tuberculosis-drug-leads-ilamycin-e1-e2