Performance and pressure drop of CO2 absorption into task-specific and halide-free ionic liquids in a microchannel

Daofan Ma¹, Chunying Zhu¹, Taotao Fu¹, Youguang Ma¹, and Xigang Yuan¹

¹Tianjin University

September 24, 2021

Abstract

The gas-liquid two-phase flow pattern, absorption rate and pressure drop of CO2 absorbed into the aqueous solution of the taskspecific ionic liquid (1-aminopropyl-3-methylimidazole tetrafluoroborate [Apmim][BF4] and 1- hydroxyethyl-3-methylimidazole tetrafluoroborate [OHemim][BF4]) and halide-free ionic liquid 1- butyl -3-methylimidazolium methylsulfate [Bmim][CH3SO4] were investigated in a microreactor. The absorption mechanism of the three ionic liquids was analyzed employing the 13C NMR spectroscopy. The [Apmim][BF4] was found to have the best ability of CO2 capture compared to the other two ionic liquids, as chemical absorption occurred between [Apmim][BF4] and CO2, while only physical absorption took place between [OHemim][BF4] / [Bmim][CH3SO4] and CO2. The sequence of CO2 absorption rate in three ionic liquid aqueous solutions is: [Apmim][BF4] > [Bmim][CH3SO4] >[OHemim][BF4]. Furthermore, the effects of gas-liquid flow rate and ionic liquids concentration on CO2 absorption rate and pressure drop were studied, the pressure drop models based on various flow patterns were proposed.

Hosted file

manuscript.docx available at https://authorea.com/users/435676/articles/538535-performanceand-pressure-drop-of-co2-absorption-into-task-specific-and-halide-free-ionic-liquids-ina-microchannel