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Abstract

This work explores the model predictive controller design of the continuous pulp digester process consisting of the co-current zone
and counter-current zone modelled by a set of nonlinear coupled hyperbolic partial differential equations (PDE). The distributed
parameter system of interest is not spectral and slow-fast dynamic separation does not hold. To address this challenge, the
nonlinear continuous-time model is linearized and discretized in time utilizing the Cayley-Tustin discretization framework,
which ensures system theoretic properties and structure preservation without spatial discretization or model reduction. The
discrete model is used in the full state model predictive controller design, which is augmented by the Luenberger observer
design to achieve the output constrained regulation. Finally, a numerical example is provided to demonstrate the feasibility
and applicability of the proposed controller designs.

Figure 1: The categories of paper products
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Figure 2: Simplified scheme of a continuous pulp digester (missing citation)
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Figure 3: The cook zone and wash zone in a digester

Figure 4: The conceptual model of the mass in a digester
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Figure 5: Steady-state profiles of the digester (The solid lines denote the steady-states of the components
in cook zone; the dash lines denote the steady-states of the corresponding components in wash zone.)

Figure 6: The proposed closed-loop operation framework
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Figure 7: The open-loop state profiles of the digester
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Figure 8: The state profiles of the digester under closed-loop operation

6



P
os

te
d

on
A

u
th

or
ea

24
S
ep

20
21

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
63

25
20

62
.2

57
88

28
7/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

0 100 200 300 400 500 600 700

t (min)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
o

n
c
e

n
tr

a
ti
o

n
 o

f 
lig

n
in

 (
%

)

Open-loop

MPC

Target 1

Target 2

Constraints

Figure 9: The concentration profile of lignin under closed-loop operation
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Figure 10: The optimal manipulated input trajectory under closed-loop operation
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. Table 1: Notations and values of parameters

Process parameters Notations Numerical Values

Volumetric flow rate of chip V̇c 0.0267 m3/min

Volumetric flow rate of free liquor V̇f 0.09 m3/min
Digester cross sectional area A 1 m2

Concentration of non-reactive lignin ρ0
s 0.015 kg/m3

Frequency factor of lignin reactions A1 0.09 m3/kg ·min
Activation energy for lignin E1 38 kJ/mol ·K

Stoichiometric coefficient for lignin reactions b1 0.15
Stoichiometric coefficient for carbohydrates reactions b2 0.25

Heat capacities of the wood Cps 1.47 kJ/kg ·K
Heat capacities of the liquor Cpl 4.19 kJ/kg ·K

Heat of reaction ∆HR -581 kJ/kg
Water density ρw 1000 kg/m3

Table 2: Parameters for the MPC Design

Descriptions Notations Values
Sampling time h 10 min

Prediction horizon N 50
Input weight R 0.5

Output weight Q 0.5
Input constraints [umin, umax] [414.5K, 440.5K]

Controlled output constraints [ymin, ymax] [0.04%, 0.26%]
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. Introduction

The pulp and paper industry has a profound influence on the economy of the world, which produces pulp,

paper, paperboard, and various cellulose-based products. Even though electronic media and paperless com-

munication have been widely expanded, the global pulp and paper market is growing steadily at a rate of

over 1% per year (missing citation); (missing citation). For instance, the global consumption of paper and

board amounted to an estimated 399 million metric tons in 2020. It is expected that demand will increase

steadily over the next decade, reaching approximately 461 million metric tons in 2030 (missing citation).

The vast majority of increasing demand mainly comes from the following categories of products (missing

citation): personal hygiene paper products, food packaging products, corrugated packaging materials, and

paper-based medicinal materials (shown in Figure 11), which closely related to the growing e-commerce busi-

ness and awareness of safety and hygiene, especially under the pandemic situation of COVID-19. Advanced

process control and state-of-the-art process optimization techniques would provide enormous opportunities

for maximized efficiency and optimized energy usage to satisfy the steadily growing need.

The pulp and paper mills aim to convert wood chips into pulp, the raw material for different types of

products. In general, a pulping process can be classified into mechanical pulping, chemical pulping, and

thermomechanical pulping according to the fundamental mechanism of separating wood fibers (missing

citation). More than two-thirds of globally produced pulp comes from Kraft pulping which belongs to the

chemical pulping process (missing citation). In the Kraft pulping process, the conversion of wood chips

into pulp mainly takes place in a pressured vertical cylindrical reactor known as the pulp digester, which

operates in a batch manner or as a continuous process. Due to lower space requirements and lower energy

costs, continuous pulp digesters are predominantly used in industrial applications (missing citation). As

illustrated in Figure 12, the typical continuous digesters consist of three basic zones: an impregnation zone,

a cook zone, and a wash zone. White liquor and pre-steamed wood chips are introduced at the top of the

digester into the impregnation zone where the liquor penetrates the wet chips. After that, the two streams

flow downwards into the cook zone where the most delignification reactions occur. Then, the spent liquor

is withdrawn from the digester at extraction screens. At the same time, the cooked pulp moves downwards

to the wash zone where the chips are washed by the counter-current flow of cold wash liquor. The cooked

pulp is then removed from the bottom of the digester. In particular, the cooking degree is evaluated by the

Kappa number, which denotes the residual lignin content of the pulp.

Due to the complex nature of the delignification process, numerous mathematical models for the pulp di-

gesters have been proposed over the last few decades. Three widely used dynamic models are known as the

Purdue, Gustafson, and Andersson models, which have similar conceptual bases and assumptions (missing

citation); (missing citation); (missing citation). These kinetic models show the effect of a change of temper-

9
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. ature on the reaction rate constants for different wood components according to the Arrhenius expression

(missing citation). The main differences are the numbers of wood components, the assumption of consecutive

or parallel reactions, and the assumption about how the delignification reaction takes place along the digester

length. Among them, the most commonly used model is the extended Purdue model, which is followed and

further developed by other researchers (missing citation); (missing citation); (missing citation).

When it comes to the controller design for the pulp digesters, a wide variety of control methods, such as

reduced dimension control, robust control, and generic algorithms have been investigated (missing citation);

(missing citation). Since one of the main objectives of the pulp digester is to produce pulp with specific

properties with minimum chemical and energy inputs, the digester is usually operated in a constrained set-

ting(missing citation). In this case, model predictive control (MPC) as a widely deployed methodology in

different types of processes is capable of handling such requirements. Michaelsen et al. (missing citation)

developed a model predictive controller for a Kamyr digester using a real-time mechanistic model compen-

sated by an optimal state estimator and the performance demonstrated to be superior when compared with

proportional-integral (PI) control in offline simulations. Lee and Datta (missing citation) designed a model

predictive control system coupled with an extended Kalman filter for a batch-type pulp digester. Along the

same line of work, Wisnewski and Doyle (missing citation) analyzed the performance of linear MPC and

nonlinear MPC for set-point tracking and unmeasured disturbance rejection. Alexandridis and Sarimveis

(missing citation) employed an adaptive MPC based on a radial basis function ANN model for Kappa num-

ber control of continuous pulp digesters. H.-K. Choi and J. S.-I. Kwon (missing citation); (missing citation);

(missing citation); (missing citation) developed a class of MPC for continuous pulp digester and batch pulp

digester based on the proposed multi-scale model. However, even though the aforementioned works have

made a valuable contribution toward the modelling and controller design for the pulp digester, there still some

aspects which did not receive much attention and/or accurate consideration. First of all, most of the works

depend on the approximation of the PDE into a large-scale ordinary differential equation (ODE), which is

generally prone to approximation error and is difficult to capture the spatial kinetics properties within the

digester. In addition, these approaches need to perform the spatial discretization in an early lumping man-

ner, which might induce numerical instability and/or alter the fundamental control theoretical properties,

such as controllability, observability, and stabilizability (missing citation); (missing citation). Secondly, the

target of the kappa number and cooking temperature setting are considerably different between softwood

and hardwood pulp, the shift operations, therefore, need to be taken into account when the controller is

developed. Thirdly, the co-current flow and counter-current flow in the digester need to be considered in

accurate manner, mainly due to the fact that the main control manipulation is performed in the top part

of the digester, while the controlled variable is physically measured at the outlet of the digester (missing

citation).

10
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. Motivated by the aforementioned issues, this work considers a bilinear transformation of a continuous infinite-

dimensional system to a discrete one by the application of the Cayley-Tustin time discretization approach,

in which the physical characteristics (energy) and theoretical properties of considered systems are preserved

(missing citation). In addition, the finite-dimensional MPC setting is extended to the distributed parameter

pulp digester system to realize target tracking and achieve optimal grade transitions. The cascade zones

(cook zone and wash zone) of the digester are considered as an extended distributed parameter system, which

is described by 10 hyperbolic PDEs.

In this manuscript, the claimed novelty is the extension of linear MPC designs for the finite-dimensional

system to the infinite-dimensional one to realize target tracking. Particularly, the pulp digester system

described by a set of coupled nonlinear hyperbolic PDEs is considered, which can capture the spatiotemporal

evolution of wood chips and wash liquor. In addition, the linearized continuous-time model is transformed to

a linear discrete-time infinite-dimensional model, and the fundamental continuous-time properties (including

stability, controllability and observability) are preserved under the Cayley–Tustin transformation. Moreover,

a discrete-time observer for the system of hyperbolic PDEs is proposed, accounting for the available output

measurement and the system states reconstruction. Finally, the controller design provides optimal asymptotic

stabilization and target tracking realization of the system with the inclusion of output and input constraints.

The article is organized as follows: we initially present a dynamic model to describe the delignification process

in the continuous pulp digester. Then, the developed model is linearized and discretized in time by utilizing

the Cayley-Tustin approach. Lastly, we propose a Luenberger observer-based model predictive controller for

the discrete model to realize the target tracking. The simulation results demonstrate the performance of the

proposed controller design.

Problem Formulation

In this section, the mathematical model of the pulp digester process is introduced. In particular, the

equilibrium profiles are calculated to proceed with the linearization of the original nonlinear system. For the

sake of simplicity, an infinite-dimensional representation is given to illustrate the linearized system. Finally,

a discrete-time model is obtained utilizing the Cayley-Tustin discretization framework.

Model description

The main section of a continuous pulp digester can be divided into the co-current zone and counter-current

zone, which are also referred to as cook zone and wash zone respectively, as shown in Figure 13. Each zone

can be modelled by a set of nonlinear coupled PDEs, which are derived from the first principle. The models

11
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. of cook zone and wash zone are similar, but different flow direction of the liquor. Generally, each volume in

the digester contains three phases, solid phase, entrapped liquor phase, and free liquor phase. In particular,

the combination of solid phase and entrapped liquor phase is further referred to as the wood chip phase,

and the details of the conceptual model of the mass in the digester are shown in Figure 14. The wood chips

are often assumed to consist of five components, and the entrapped liquor and free liquor contain four same

components. For more details of the model, one can see the references(missing citation); (missing citation).

Based on the model proposed by Michelsen, the following assumptions are considered to obtain a simple

model which describes some dominant dynamics of the process. Wood chips are assumed to be of equal size

and to have a constant volume during cooking. The volume flows of wood chips and free liquor are assumed

to be equal at all space positions, and the chip compaction profile is assumed to be stationary, expressed as

a piecewise linear function of position. The cross-sectional area is assumed to be constant in the digester.

For simplicity, the degradation of carbohydrates is assumed to follow a lignin reduction linearly and the

concentrations of dissolved solids in the entrapped liquor and free liquor can be omitted (missing citation);

(missing citation); (missing citation). According to Gustafson et al. (missing citation), the carbohydrate

reaction rate in the bulk delignification period is proportional to the lignin reaction rate.

Hence, from control and monitoring point of view, the following variables are important, which are considered

as the states of the model:

ρs(z, t): concentration of lignin of solid phase (%)

ρe(z, t): concentration of alkali of entrapped liquor phase (g/l)

ρf (z, t): concentration of alkali of free liquor phase (g/l)

Tc(z, t): temperature of wood chip phase (K)

Tf (z, t): temperature of free liquor phase (K)

Based on the abovementioned assumption, the mathematical models of cook zone and wash zone can be

simplified to the following equations:

12
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. 0 ≤ z ≤ Lco {

∂ρCs (z,t)
∂t = −vc ∂ρ

C
s (z,t)
∂z −RCs

∂ρCe (z,t)
∂t = −vc ∂ρ

C
e (z,t)
∂z +

DCEA

εc
(ρCf (z, t)− ρCe (z, t))− ρODW (b1 + 0.47b2)RCs

∂ρCf (z,t)

∂t = −vf
∂ρCf (z,t)

∂z − DCEA

εf
(ρCf (z, t)− ρCe (z, t))

∂TCc (z,t)
∂t = −vc ∂T

C
c (z,t)
∂z +

[
1.47ρc∆HRR

C
s + U(T Cf (z, t)− T Cc (z, t))

]
/Cpe

∂TCf (z,t)

∂t = −vf
∂TCf (z,t)

∂z − U(T Cf (z, t)− T Cc (z, t))/Cpf + b(z)u(t)

0 ≤

z ≤ Lws {
∂ρWs (z,t)

∂t = −vc ∂ρ
W
s (z,t)
∂z −RWs

∂ρWe (z,t)
∂t = −vc ∂ρ

W
e (z,t)
∂z +

DWEA

εc
(ρWf (z, t)− ρWe (z, t))− ρODW (b1 + 0.47b2)RWs

∂ρWf (z,t)

∂t = vf
∂ρWf (z,t)

∂z − DWEA

εf
(ρWf (z, t)− ρWe (z, t))

∂TWc (z,t)
∂t = −vc ∂T

W
c (z,t)
∂z +

[
1.47ρc∆HRR

W
s + U(TWf (z, t)− TWc (z, t))

]
/Cpe

∂TWf (z,t)

∂t = vf
∂TWf (z,t)

∂z − U(TWf (z, t)− TWc (z, t))/Cpf
(1)

where the superscript C and W indicate the cook zone and wash zone, respectively. RCs and RWs are the rate

of consumption of mass of solid per chip volume in cook zone and wash zone, describing by the Arrhenius

coefficients, RCs = A1e
− E1

TCc ρCe (ρCs − ρ0
s), R

W
s = A1e

− E1
TWc ρWe (ρWs − ρ0

s). ρ
0
s denotes the non-reactive lignin in

wood. The mass diffusion rate DEA usually take the form, DCEA = 0.16
√
T Cc e

−2452.4

TCc (−2.0ρCs +0.13(
ρCe

32.0 )0.55+

0.58) and DWEA = 0.16
√
TWc e

−2452.4

TWc (−2.0ρWs + 0.13(
ρWe
32.0 )0.55 + 0.58). εc is the chip compaction, which

increases from the entry through the cook zone, reaching a maximum at the main extraction, εc(z) =

ε10 + ε11z, and εf (z) = 1 − εc(z). U denotes the heat-transfer coefficient, and the heat capacities of the

entrapped and free liquor phases (Cpe and Cpf ) are determined by the mixing rules based on weighted

averages (missing citation). In this case, the input is the temperature of free liquor and the distribution is

described by the actuation distribution function b(z) = 1[za−ε,za+ε]. The controlled output is defined as the

concentration of lignin of solid phase at the outlet in wash zone, and the measurements of each state at the

outlet are assumed available which are taken as the measured outputs.

The boundary conditions for the cook zone are given at z = 0 (see Figure 13):

13
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.

and for the wash zone at z = 0 and z = Lws:

Model Linearization

In order to reduce the mathematical complexity of the nonlinear process model, we make the linearization

around the system equilibrium point or spatially nonuniform steady-state by setting the time derivative

terms to be zero. The steady-states are solved numerically using the finite difference method. As a result,

the corresponding steady-states profiles are illustrated in Figure 15. Additionally, we assume that Lco and

Lws are the same, which denote as L for notation simplicity, and introduce the following notations to define

the local dynamics from the states of the cook zone to the states of the wash zone:

x(C)(z, t) = [ρCs (z, t); ρCe (z, t); ρCf (z, t);T Cc (z, t);T Cf (z, t)]

x(W)(z, t) = [ρWs (z, t); ρWe (z, t); ρWf (z, t);TWc (z, t);TWf (z, t)]

(2)

The above nonlinear model Equation (1) can be linearized applying the Taylor series expansion. The lin-

earized model is then obtained as:

14
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. ẋ(C)(z, t) = A1x
(C)(z, t) + B1u(t)

ẋ(W)(z, t) = A2x
(W)(z, t)

yc(t) = C2x(W)(z, t)

ym(t) = Cm1x
(C)(z, t)

Cm2x
(W)(z, t)


(3)

where z1 ∈ [0, L] and z2 ∈ [0, L]. The operator A1(·) = (V1
∂
∂z + ψ1(z))(·) and A2(·) = (V2

∂
∂z + ψ2(z))(·),

where V1 = diag{−vc,−vc,−vf ,−vc,−vf} and V2 = diag{−vc,−vc, vf ,−vc, vf} and



J11(z) J12(z) 0 J14(z) 0

J21(z) J22(z) J23(z) J24(z) 0

J31(z) J32(z) J33(z) J34(z) 0

J41(z) J42(z) 0 J44(z) J45(z)

0 0 J53(z) J54(z) J55(z)


, ψ2(z) =



J̄11(z) J̄12(z) 0 J̄14(z) 0

J̄21(z) J̄22(z) J̄23(z) J̄24(z) 0

J̄31(z) J̄32(z) J̄33(z) J̄34(z) 0

J̄41(z) J̄42(z) 0 J̄44(z) J̄45(z)

0 0 J̄53(z) J̄54(z) J̄55(z)



where the Ji,j(z) and J̄i,j(z)(i, j = 1, 2, ..., 5) are the nonlinear term evaluated at steady-state by ignoring

the 2nd order and higher order terms, such as J1,1 = −A1ρe,sse
− E1

Tc,ss , J1,2 = A1(ρ0
s1 − ρs1,ss)e

− E1
Tc,ss . The

input operator B1 is defined as a bounded operator B1 =[ 0; 0; 0; 0; b(z)] and b(z) = 1
2z̄L

1[zL−z̄L,zL+z̄L](z).

The controlled output operator C2 is determined as C2(·) = diag{
∫ L

0
δ(z−L)(·)dη,0,0,0,0}, and the measured

output operators are defined as Cm1 =diag{
∫ L

0
δ(z − L)(·)dη,

∫ L
0
δ(z − L)(·)dη,

∫ L
0
δ(z − L)(·)dη,

∫ L
0
δ(z −

L)(·)dη,
∫ L

0
δ(z − L)(·)dη} and Cm2 = diag{

∫ L
0
δ(z − L)(·)dη,

∫ L
0
δ(z − L)(·)dη,

∫ L
0
δ(z)(·)dη,

∫ L
0
δ(z −

L)(·)dη,
∫ L

0
δ(z)(·)dη}, respectively.

15
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. In this form, the domains of operator A1 and A2 are D(A1) = {[φ1(z);φ2(z);φ3(z);φ4(z);φ5(z)] ∈

L2(0, 1)5|φi(z) are abs. cont., and φi(0)=0, i = 1, 2, ..., 5}, and D(A2)={[φ6(z);φ7(z);φ8(z);φ9(z);

φ10(z)] ∈ L2(0, 1)5|φj(z) are abs. cont.,j = 6, 7, ..., 10 and φj(L) = 0, j = 8, 10}, respectively.

Mathematically, the dynamics of the above cascade system (cook zone and wash zone) can be described by

the following extended system:

ẋ(z, t) = Ax(z, t) + Bu(t)

yc(t) = Ccx(z, t)

ym(t) = Cmx(z, t)

(4)

with boundary conditions given below:

x1(0, t) = 0, x2(0, t) = 0, x3(0, t) = 0, x4(0, t) = 0, x5(0, t) = 0

x6(0, t) = x1(L, t), x7(0, t) = x2(L, t), x8(L, t) = 0, x9(0, t) = x4(L, t), x10(L, t) = 0

(5)

where the extended state x(z, t) = [x(C)(z, t);x(W)(z, t)] and the corresponding extended operators are given

as follows:

16
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. A(·) = V
∂

∂z
(·) + ψ(z)(·), V = bdiag{V1, V2}, ψ(z) = bdiag{ψ1, ψ2}

B = [B1;0], Cc = [0, C2], Cm = bdiag{Cm1, Cm2}
(6)

The state x(z, t) ∈ X , with X = L2((0, L),R10) being defined as a real separable Hilbert space with inner

product 〈·, ·〉. The input u(t) ∈ L2
loc([0,∞),U) and output y(t) ∈ L2

loc([0,∞),Y), where U and Y are

real separable Hilbert spaces. Based on the coupling conditions Equation (??), we have the domain of A,

which is D(A) = D(A1)
⊕
D(A2) = {[φ1;φ2; ...;φ10] ∈ L2(0, L)10|[φ1;φ2; ...;φ5] ∈ D(A1), [φ6;φ7; ...;φ10] ∈

D(A2), and φ1(L) = φ6(0), φ2(L) = φ7(0), φ4(L) = φ9(0)} (missing citation). The adjoint operator A∗ is

easily found using the inner product formula, 〈Aϕi, φi〉 = 〈ϕi,A∗φi〉, i = 1, 2, ..., 10, and is:

with its domain defined as D(A∗) = {[φ1;φ2; ...;φ10] ∈ L2(0, 1)10, φi(z) is absolutely continuous,

dφi

dz ∈ L2(0, 1), with i = 1, 2, ..., 10, and φj(L) = 0, j = 3, 5, 6, 7, 9, φm(0) = 0,m = 8, 10, φ1(L) =

v6
v1
φ6(0), φ2(L) = v7

v2
φ7(0), φ4(L) = v9

v4
φ9(0)}.

Model Discretization

In this section, the Cayley-Tustin discretization framework is considered and applied to the linearized di-

gester system without any spatial approximation induced. By the use of Cayley–Tustin transformation,

a discrete-time state-space model for describing the extended digester system is established and realized

by determining the resolvent operator, which is amenable to the discrete observer and controller designs.

Meanwhile, the essential properties of the continuous-time system stay invariant under this transformation,

such as conservative (energy preserving)(missing citation), stability(missing citation), observability(missing

citation); (missing citation), controllability.
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. Cayley-Tustin Time Discretization Framework

The above linear system in Equation (4) is considered. For a given time discretization h > 0, and for j ≥ 1

the Cayley-Tustin discretization is given by:

x(jh)− x((j − 1)h)

h
≈ Ax(jh) + x((j − 1)h)

2
+ Bu(jh)

yc(jh) ≈ Cc
x(jh) + x((j − 1)h)

2

ym(jh) ≈ Cm
x(jh) + x((j − 1)h)

2
(7)

with x(0) = x0, where the spatial dependence of x is omitted for brevity. Then, let
u
(h)
j√
h

be an approximation

of u(jh) by the mean value within a given sampling time,
u
(h)
j√
h

= 1
h

∫ jh
(j−1)h

u(t)dt. It has been shown

in (missing citation) that
u
(h)
j√
h

converges to u(jh) as h → 0 in several different ways, similar for Y (jh).

Further, rewriting Equation (7) gives the discrete time dynamics Equation (8). It is frequently called Tustin

discretization in the engineering literature, which is proposed in 1940s by Tustin and referred as Tustin

transform in digital and sample-data control literature (missing citation).

xj − xj−1

h
≈ Axj + xj−1

2
+ B uj√

h
ycj√
h
≈ Cc

xj + xj−1

2
ymj√
h
≈ Cm

xj + xj−1

2
(8)

18
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. Through some basic computations, the following infinite-dimensional discrete-time state space model is

obtained:

(9)

where Ad, Bd, Cd, Dd, Ccd and Cmd are the discrete-time spatial operators and we denote:


Ad Bd
Ccd Dcd
Cmd Dmd

=


−I + 2δR(z, δ)

√
2δR(z, δ)B

√
2δCcR(z, δ) Gc(δ)

√
2δCmR(z, δ) Gm(δ)



where δ = 2/h and the resolvent is R(z, δ) = (δ − A)−1. Clearly, one must satisfy δ ∈ ρ(A) so that the

resolvent operator is well-defined. In particular, Gc(δ) denotes the transfer function from input to controlled

output Gc(δ) = Cc(δ − A)−1B, and Gm(δ) denotes the transfer function from input to measured outputs

Gm(δ) = Cm(δ−A)−1B. The unbounded operatorsA of the continuous-time system are mapped into bounded

operators Ad in the discrete-time counterpart through Cayley transform, which describe by the resolvent

operator with Ad(·) = [δ − A]−1[δ +A](·) = −I(·) + 2δ[δ − A]−1(·) = −I(·) + 2δR(δ,A)(·). In addition, it

has been demonstrated that the controllability and stability are invariant under this transformation (missing

citation).

Resolvent operator

The resolvent operator can be obtained by utilizing the Laplace transform. Under the zero input condition,

we can have the following expression,

19



P
os

te
d

on
A

u
th

or
ea

24
S
ep

20
21

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
63

25
20

62
.2

57
88

28
7/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

where ψ is taken as the average of ψ(z). By solving the above ODE, one obtains:

Since ψ is the block diagonal matrix and V is already in diagonal form, the matrix F is finally a block

diagonal matrix, denoted as follows:

[F1]5×5 05×5

05×5 [F2]5×5



Then eFz = diag(eF1z, eF2z) and we denote [Mij(z, s)]10×10 = eFz for simplicity.

In order to obtain the unknown boundary conditions, one needs to evaluate the boundary conditions in

Equation (5) as follows:

(1) At z = 0, one can plug x1(0, t) = 0, x2(0, t) = 0, x3(0, t) = 0, x4(0, t) = 0, x5(0, t) = 0 into Equation (??)

which leads to Mij(0, s) = 0, i = 1, 2, ...5, j = 6, 7, ...10.

(2) At z = L, one can firstly substitute x6(0, s) = x1(L, t), x7(0, s) = x2(L, t), x9(0, s) = x4(L, t) into

Equation (??) which yields
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.

x6(0, s) = −
10∑
k=1

∫ L

0

M1k(L− η, s)Vvkkxk(η, 0)dη

x7(0, s) = −
10∑
k=1

∫ L

0

M2k(L− η, s)Vvkkxk(η, 0)dη

x9(0, s) = −
10∑
k=1

∫ L

0

M4k(L− η, s)Vvkkxk(η, 0)dη

(9)

where Vv denotes V −1. Then, substituting the boundary conditions x8(L, s) = 0, x10(L, s) = 0, one can have

M88 M810

M108 M1010


 x8(0, s)

x10(0, s)


= ∑10

k=1

∫ L

0
M8k(L− η, s)Vvkkxk(η, 0)dη −M86x6(0, s)−M87x7(0, s)−M89x9(0, s)∑10

k=1

∫ L

0
M10k(L− η, s)Vvkkxk(η, 0)dη −M106x6(0, s)−M107x7(0, s)−M109x9(0, s)



By substituting x6(0, s), x7(0, s), x9(0, s) and solving the above equations, we can obtain the expressions of

x8(0, s) and x10(0, s) as follows,

where
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.

M88 M810

M108 M1010

 −1

Therefore, the resolvent operator is determined as following form by substituting the boundary conditions

(Equation (5)):

where

Rcij , i ∈ [1, 5], j ∈ [1, 10]

Rwij , i ∈ [6, 10], j ∈ [1, 10]

where
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. Rwij = (Mi8(z, s)G11 +Mi10(z, s)G21)

∫ L

0

M8j(L− η, s)Vvjj(·)dη

+ (Mi8(z, s)G12 +Mi10(z, s)G22)

∫ L

0

M10j(L− η, s)Vvjj(·)dη

+ (Mi8(z, s)G11M86(L, s) +Mi8(z, s)G12M106(L, s) +Mi10(z, s)G21M86(L, s)

+Mi10(z, s)G22M106(L, s)−Mi6(z, s))

∫ L

0

M1j(L− η, s)Vvjj(·)dη

+ (Mi8(z, s)G11M87(L, s)+Mi8(z, s)G12M107(L, s)+Mi10(z, s)G21M87(L, s)+Mi10(z, s)G22M107(L, s)

−Mi7(z, s))

∫ L

0

M2j(L− η, s)Vvjj(·)dη + (Mi8(z, s)G11M89(L, s) +Mi8(z, s)G12M109(L, s)

+Mi10(z, s)G21M89(L, s) +Mi10(z, s)G22M109(L, s)−Mi9(z, s))

∫ L

0

M4j(L− η, s)Vvjj(·)dη

−
∫ z

0

Mij(z − η, s)Vvjj(·)dη, i ∈ [6, 10], j ∈ [1, 10]

The discrete-time operators in Equation (9) can be solved by straightforwardly substituting the above resol-

vent operators. Afterwards, the discrete-time linear model is obtained:

(8)

with the boundary conditions (Equation (5)).

Observer-Based MPC Design

An observer-based model predictive controller is designed for the discrete-time pulp digester system. In

particular, a discrete Luenberger observer is designed first to reconstruct the states based on the available

real-time measurements. The Luenberger observer is one of the practical and easy-to-realize observer, which

is further considered in a discrete setting controller realization. The constrained optimal controller design for

the finite-dimensional system theory is extended and deployed for the infinite-dimensional digester system.

The overall closed-loop operation of the digester process is schematically presented in Figure 16.
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. Discrete Luenberger observer design

Firstly, let us recall the linearized discrete-time model:

(8)

The discrete Luenberger observer is presented by the following standard form:

(8)

where the reconstructed state x̂(ζ, k) is defined as a copy of the system dynamics and Ld is the discrete

observer gain to be designed. Stability of the observer implies that the state estimation error, ek = x(ζ, k)−

x̂(ζ, k), converges to zero within a certain time. The error dynamic equation is shown as follows:

To guarantee the operator Ãd in the state estimation error dynamics given by Equation (??) is stable, the

design objective is to determine the appropriate spatially varying gain Ld. By Curtain and Zwart (missing

citation), it can be shown that the operator Ãd is power stable if and only if there exists a non-negative

self-adjoint operator Qd such that
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. where Md is a positive definite design parameter.

Then, let us assume that the pair (A, C) is exponential detectable, then if there exists a nonnegative self-

adjoint operator Qd which is the solution of the following operator Riccati equation (missing citation);

(missing citation):

where

The observer gain Ld = AdQdC∗d(CdQC∗d + I)−1 is a strongly stabilizing gain which guarantees the power

stability of Ãd = Ad − LdCd. To solve the algebraic Riccati Equation (??), one can utilize the numerical

iteration methods, such as Newton-Kleinman iteration method (missing citation), and the detailed procedures

were provided (missing citation).

MPC design for target tracking

The ultimate objective of a pulp and paper mill is to ensure the specified quality of the end products while

meeting the production targets and minimizing the operational costs. Specifically, when it comes to practical

applications, the most characteristic point is that the species of feed wood chips are switched frequently,

softwood and hardwood chips, to supply the required amount of pulp according to the production schedule

of the paper machines (missing citation). Accordingly, the desired product quality needs to change in the

middle of the operation, i.e., the shift operations. To realize it, the MPC is developed for the infinite-

dimensional setting, emerging from the finite-dimensional linear time-invariant systems, see Rawlings et al.

(missing citation).

In this case, we consider that the system output is required to track a nonzero target vector, yt, then state

and input vectors, xt and ut, are required which bring the system to yt at steady-state (missing citation);

(missing citation); (missing citation). The state and input target can be computed by solving the following
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. quadratic program.

I −Ad −Bd
Cd Dd


xt
ut

 =

 0

yt


umin ≤ ut ≤ umax

ymin ≤ yt ≤ ymax

(8)

In this quadratic program, ū is the set point for the manipulated variables and Rt, is symmetric positive

definite. Notice that, often, the input set point is not specified and it can be assumed zero in order to use

(missing citation). The equality constraints guarantee a steady-state solution and offset free tracking of the

target vector (missing citation). umin, umax, ymin, ymax are the input and output constraints, respectively.

Then, the the following quadratic objective function is used for the regulator to track a nonzero target vector.

(8)

where N is the prediction horizon, and Q, R are symmetric positive semidefinite and symmetric positive

definite spatial operator, respectively. Q̄ is the spatial operator to penalize the terminal state which depends

on the stability of the given model. The target vector xt, and ut are computed from the quadratic program

in Equation (9). yk+j|k and uk+j|k represent the output and input variables at future time k + j predicted

at current time k, and the term ∆uk+j|k denotes the change of an input vector at time k + j as ∆uk+j|k =

uk+j|k − uk+j−1|k. The vector uN includes the control sequence {uk|k, uk+1|k, uk+2|k, ..., uk+N−1|k} and the
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. first element uk|k will be injected to the plant as the future control action.

As discussed by H. Kwakernaak and R. Sivan (missing citation), using the targets computed from Equation

(9), we define a shifted input ũk = uk − ut, a shifted state x̃k = x̂k − xt, and a shifted output ỹk = ŷk − yt
to reduce the problem to the standard form. The corresponding constraints can be translated to constraints

on ũ and ỹ.

Thus the regulator optimization problem Equation (9) becomes:

(8)

According to the nature of transport reaction systems, the operator Q̄ can be determined from the positive

self-adjoint solution of the following discrete-time Lyapunov equation:

or equivalently the continuous-time Lyapunov equation (missing citation):

on the dual space of X−1. In addition, the operator Q̄ is the unique positive self-adjoint solution of the

Lyapunov equations (Equation (??) and (??)) (missing citation); (missing citation).

Before further manipulate the objective function (Equation (9)), we introduce the following notations: Yk =

{yk+n}Nn=1 ∈ YN and Uk = {uk+n}Nn=1 ∈ UN . As a result, the straightforward algebraic manipulation of

the objective function presented in Equation (9) leads to the following quadratic programming optimization

problem:
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.

(8)

where H ∈ L(UN ) is positive and self-adjoint, which is given by:

D∗dQDd + B∗dQ̄Bd +R for i = j

D∗dQCdA
i−j−1
d Bd + B∗dQ̄A

i−j
d Bd for i > j

h∗j,i for i < j

and F is given by F = {D∗dQCdA
k−1
d + B∗dQ̄Akd}

N−1
k=1 . The mateix G is a lower triangular given by

Dd for i = j

CdAi−j−1
d Bd for i > j

0 for i < j

and S = {CdAk−1
d }Nk=1.

The inner products in the objective function given in Equation (9) are vector products as U is the finite-

dimensional input space, and therefore we have a finite dimensional quadratic optimization problem:


I

−I

G

−G

 Uk ≤
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
Umax

−Umin

Ymax − Sx̃k
−Ymin + Sx̃k


(8)

Here we neglect the term 〈x̃k, Q̄x̃k〉 as x̃k is the initial condition for step k + 1 and cannot be affected by

the control input. Thus, the optimal input trajectory (Uk) can be obtained as the solution of the feasible

quadratic optimization problem (Equation (9)) converges to zero.

Numerical Simulations

In this section, the closed-loop performance of the proposed MPC framework is demonstrated. The tem-

perature of free liquor flowing into the cook zone is selected as the manipulated input variable and the

concentration of lignin is selected as the controlled output variable. In this case, we consider the target

tracking of the output by using the proposed MPC. The resulting constrained optimization problems be-

come quadratic programming problems which are solved using the MATLAB subroutine QuadProg. Both

the control and prediction horizons are chosen to be 50 sampling periods. The sampling time is set to be 10

min and the internal spatial discretization is taken as 0.05 m.

The values of all system parameters taken in the simulations are listed in Table 3. For the initial conditions

of the dynamic system, we consider x1(z, 0) = 0.067z, x2(z, 0) = 0.1646z, x3(z, 0) = 0.2377z, x4(z, 0) =

1.7073z, x5(z, 0) = 0.8661z, x6(z, 0) = 0.0336 + 2.87 × 10−4z, x7(z, 0) = 0.8232 + 0.0095z, x8(z, 0) =

0.0012z, x9(z, 0) = 8.5363 + 0.1767z, and x10(z, 0) = −0.086z. In addition, ζ̄L = 0.15 is chosen for the

input operator. The selected parameter values for MPC implementation are listed in Table 4 .

As illustrated in Figure 17, the open-loop states converge to their corresponding steady-states rapidly which

indicates the original plant is intrinsically stable. The figures in the left column represent the evolution

of the states in the cook zone, and the right column denotes the evolution of the states in the wash zone.

Figure 17(a) and 17(f) shows how the concentration of lignin decreases smoothly down toward the end of the

cooking zone where the reactions are stopped (or quenched) by displacement of the hot liquor with dilute

wash liquor from below. Hence, no significant decrease occurs in the wash zone. The concentration of alkali

of entrapped liquor phase in the feed flow to the cook zone is about 23 g/l (as shown in Figure 17(b)) and

then is consumed giving a decreasing profile down toward the extraction. At the bottom of the wash zone,
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. the concentration of alkali of entrapped liquor phase is about 8 g/l (as shown in Figure 17(g)). A similar

trend occurs for the alkali of the free liquor phase, as shown in Figures 17(c) and 17(h). Figure 17(d) and

17(e) shows the temperature profiles for the two phases (wood chip phase and free liquor phase) at cook

zone, and the temperature profiles of them at wash zone shown in Figure 17(i) and 17(j). The temperature

of wood chips rises due to the exothermic reactions and is also affected by the high temperature of the

circulation liquor. Below the extraction screens, in the wash zone, the chips are rapidly cooled down by the

wash water which has a temperature of 360K at the inlet in the bottom.

By implementing the proposed MPC frameworks, we aim to steer the system to the desired targets without

violating the physical constraints of actuators and sensors. In this case, we consider the shifted output

targets, which are chosen as yt1 = 0.06 and yt2 = 0.14, respectively. First of all, the steady-state target xt

and input vector ut are computed from the quadratic program Equation (9). Then, based on the operator

Riccati Equation (??), we determine Qd in the discrete-time observer design. The estimate state x̂ from the

Luenberger observer is then utilized for the MPC design. Finally, the optimal input trajectory is computed

by solving the above optimization problem outlined in Equation (9) with a receding prediction horizon

strategy. The state evolutions of the closed-loop system under the MPC law are obtained and shown in

Figure 18. Comparing with the open-loop state profiles, the closed-loop system is able to track the target

steady-states when the grade shift happens (t = 370 min). In addition, three pairs of states in cook zone

and wash zone are successfully connected through the extend system (Equation (4)), such as, ρCs (z, t) and

ρWs (z, t); ρCe (z, t) and ρWe (z, t); T Cc (z, t) and TWc (z, t).

The open-loop output profile and the close-loop profile under the observer-based MPC law are shown in

Figure 19. Without implementing the controller, the concentration of lignin converges to its steady-state,

while violating the given constraints of the system. In the closed-loop system, the concentration of lignin

is able to track the targets or desired values and satisfies the requirements of the constraint simultaneously.

As the targets are switched, the output can also achieve target tracking across the original steady-state.

Specifically, the target tracking above the steady-state is realized in the first period, t ∈ [0, 370], where

yt1 = 0.06 is considered. Similarly, the target tracking blows the steady-state is realized in the second

period (i.t.,t ∈ (370, 740]) when yt2 = 0.14 is taken into account. Typically, this results in higher yield, thus

lowering the operating cost significantly (missing citation). The free-liquor temperature profile, computed

by the proposed model-based MPC system at each sampling time, is presented in Figure 20. The input

trajectory corresponds to the output variables, that is, in the first 370 minutes, the optimal input variables

fluctuate between 425-430 and converge to 427K when the output goes to track target 1. In the last 370

minutes, the corresponding input rises and stabilizes at 436K when target 1 switches to target 2. In these two

stages of tracking, the input variables are constrained within the given bounds of actuators. The simulation

studies demonstrate that the extended system is able to describe the dynamics of the original cascade system
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. which contains a co-current zone and a counter-current zone. Furthermore, it is possible to realize the optimal

control of the output in the wash zone through the operation of the input in the cook zone. The effectiveness

can be demonstrated from the proposed MPC design.

Conclusions

In this work, dynamic modelling and model predictive control design of a continuous pulp digester described

by ten linearized first-order coupled hyperbolic equations was developed. The connected cook zone and wash

zone of the digester were modelled as a cascade PDE system. By using Cayley–Tustin transformation, the lin-

earized continuous-time infinite-dimensional model was transformed into a discrete-time infinite-dimensional

model without spatial discretization and model reduction which preserves the input-output stability of the

system. A Luenberger observer was designed to realize the state estimation of the system and the discrete-

time Riccati equation was used to calculate the observer gain. The model predictive controller was formulated

on that basis to realize target tracking and account for input and output constraints when it comes to the

shift operations of the digester. The closed-loop simulation results have demonstrated that the controlled

variables were able to reach to the target values and satisfy the constraints of actuators simultaneously.

31



P
os

te
d

on
A

u
th

or
ea

24
S
ep

20
21

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
63

25
20

62
.2

57
88

28
7/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. List of Figures

1 The categories of paper products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Simplified scheme of a continuous pulp digester (missing citation) . . . . . . . . . . . . . . . 2

3 The cook zone and wash zone in a digester . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 The conceptual model of the mass in a digester . . . . . . . . . . . . . . . . . . . . . . . . . . 3

5 Steady-state profiles of the digester (The solid lines denote the steady-states of the components

in cook zone; the dash lines denote the steady-states of the corresponding components in wash

zone.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

6 The proposed closed-loop operation framework . . . . . . . . . . . . . . . . . . . . . . . . . . 4

7 The open-loop state profiles of the digester . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

8 The state profiles of the digester under closed-loop operation . . . . . . . . . . . . . . . . . . 6

9 The concentration profile of lignin under closed-loop operation . . . . . . . . . . . . . . . . . 7

10 The optimal manipulated input trajectory under closed-loop operation . . . . . . . . . . . . 7

11 The categories of paper products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

12 Simplified scheme of a continuous pulp digester (missing citation) . . . . . . . . . . . . . . . 33

13 The cook zone and wash zone in a digester . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

14 The conceptual model of the mass in a digester . . . . . . . . . . . . . . . . . . . . . . . . . . 35

15 Steady-state profiles of the digester (The solid lines denote the steady-states of the components

in cook zone; the dash lines denote the steady-states of the corresponding components in wash

zone.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

16 The proposed closed-loop operation framework . . . . . . . . . . . . . . . . . . . . . . . . . . 35

17 The open-loop state profiles of the digester . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

18 The state profiles of the digester under closed-loop operation . . . . . . . . . . . . . . . . . . 37

19 The concentration profile of lignin under closed-loop operation . . . . . . . . . . . . . . . . . 38

20 The optimal manipulated input trajectory under closed-loop operation . . . . . . . . . . . . 38

32



P
os

te
d

on
A

u
th

or
ea

24
S
ep

20
21

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
63

25
20

62
.2

57
88

28
7/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Figure 11: The categories of paper products

Figure 12: Simplified scheme of a continuous pulp digester (missing citation)
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Figure 13: The cook zone and wash zone in a digester
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Figure 14: The conceptual model of the mass in a digester

Figure 15: Steady-state profiles of the digester (The solid lines denote the steady-states of the components

in cook zone; the dash lines denote the steady-states of the corresponding components in wash zone.)

Figure 16: The proposed closed-loop operation framework
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Figure 17: The open-loop state profiles of the digester
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Figure 18: The state profiles of the digester under closed-loop operation
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Figure 19: The concentration profile of lignin under closed-loop operation

Figure 20: The optimal manipulated input trajectory under closed-loop operation
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. Table 3: Notations and values of parameters

Process parameters Notations Numerical Values

Volumetric flow rate of chip V̇c 0.0267 m3/min

Volumetric flow rate of free liquor V̇f 0.09 m3/min

Digester cross sectional area A 1 m2

Concentration of non-reactive lignin ρ0
s 0.015 kg/m3

Frequency factor of lignin reactions A1 0.09 m3/kg ·min

Activation energy for lignin E1 38 kJ/mol ·K

Stoichiometric coefficient for lignin reactions b1 0.15

Stoichiometric coefficient for carbohydrates reactions b2 0.25

Heat capacities of the wood Cps 1.47 kJ/kg ·K

Heat capacities of the liquor Cpl 4.19 kJ/kg ·K

Heat of reaction ∆HR -581 kJ/kg

Water density ρw 1000 kg/m3

Table 4: Parameters for the MPC Design

Descriptions Notations Values

Sampling time h 10 min

Prediction horizon N 50

Input weight R 0.5

Output weight Q 0.5

Input constraints [umin, umax] [414.5K, 440.5K]

Controlled output constraints [ymin, ymax] [0.04%, 0.26%]
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