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ABSTRACT

Background: The COVID-19 pandemic has highlighted the need for targeted local interventions given
substantial heterogeneity within cities and counties. Publicly available case data are typically aggregated to
the city or county level to protect patient privacy, but more granular data are necessary to identify and act
upon community-level risk factors that can change over time.

Methods : Individual COVID-19 case and mortality data from Massachusetts were geocoded to residential
addresses and aggregated into two time periods: “Phase 1”7 (March—June 2020) and “Phase 2” (September
2020-February 2021). Institutional cases associated with long-term care facilities, prisons, or homeless
shelters were identified using address data and modeled separately. Census tract sociodemographic and
occupational predictors were drawn from the 2015-2019 American Community Survey. We used mixed-
effects negative binomial regression to estimate incidence rate ratios (IRRs), accounting for town-level spatial
autocorrelation.

Results : Case incidence was elevated in census tracts with higher proportions of Black and Latinx res-
idents, with larger associations in Phase 1 than Phase 2. Case incidence associated with proportion of
essential workers was similarly elevated in both Phases. Mortality IRRs had differing patterns from case
IRRs, decreasing less substantially between Phases for Black and Latinx populations and increasing between
Phases for proportion of essential workers. Mortality models excluding institutional cases yielded stronger
associations for age, race/ethnicity, and essential worker status.

Conclusions: Geocoded home address data can allow for nuanced analyses of community disease pat-
terns, identification of high-risk subgroups, and exclusion of institutional cases to comprehensively reflect
community risk.

1. INTRODUCTION

The COVID-19 pandemic has exacerbated existing racial and ethnic health and socioeconomic disparities
in the United States. Notably, Black/African American, Latinx, and Indigenous populations have suffered
disproportionate morbidity and mortality, as well as financial loss from subsequent economic disruption.
These inequities are substantially due to existing systemic inequities that affect infectious disease transmission
and recovery, including unequal access to medical care, suboptimal housing characteristics, and employment
in essential services with minimal physical distancing. While the literature highlights the significant burden
on communities of color in the United States as a result of the pandemic, there are few analyses to date that



evaluate these disparities at higher resolution than the county level, and even fewer that disentangle cases
originating in institutional congregate settings. Using stratified, higher-resolution data, we may be able to
identify important community-level conditions that contribute to the clear and persistent disparities induced
by the pandemic.

In particular, it has been widely recognized that older Americans, especially individuals living in nursing
homes or assisted-living facilities, have faced significantly elevated risk of COVID-19 morbidity and mortality,
especially early in the pandemic. Similarly, high case burdens have been observed in other institutional
residential settings, such as prisons and homeless shelters. Models using total case and mortality rates without
removing or controlling for these institutional settings may obfuscate trends or risk factors in community
transmission. Since the racial and ethnic composition of institutional and non-institutional settings may
differ, disparities may be better characterized using higher-resolution data. In addition, characteristics
and risk factors associated with disease transmission and severity within institutional settings may not
coincide with those driving COVID-19 transmission within non-institutional community settings. Efforts to
disaggregate institutional and community outcomes would inform a more comprehensive understanding of
health disparities in both institutional and non-institutional settings, in turn directing testing efforts and
informing mitigation activities.

Analyses using highly resolved geospatial data provide the tools to identify specific, local factors that con-
tribute to disease outcomes and hone targeted efforts to intervene and support communities. Such data are
particularly useful for local public health departments, for whom local data from their community is more
valuable than aggregated larger-scale trends. Local case data coupled with community-level sociodemo-
graphic data at the census-tract level can provide public health leaders with actionable and highly relevant
local information and support pandemic response.

State public health departments have served a critical role during the pandemic in collecting and aggregating
individual patient information across municipalities within the state and communicating relevant informa-
tion back to local leaders. Due to patient privacy regulations, data on residential addresses associated
with COVID-19 that would support generating census tract resolution case estimates and distinguishing
institutional from non-institutional cases are not publicly available. Cross-sectoral partnerships and data
sharing agreements between state public health agencies and academic researchers can support analyses that
integrate protected public health data with community-level characteristics. This study reflects one such
partnership between the Massachusetts Department of Public Health (MDPH) and academic researchers at
Boston University School of Public Health to inform state and local interventions to mitigate COVID-19 risk
and associated health disparities.

In this study, we geocoded residential home addresses (street, city/town, and zip code) of all individual
COVID-19 cases confirmed via nucleic acid amplification tests (NAAT) from the first year of the COVID-19
pandemic in Massachusetts provided by MDPH. We then analyzed community-level sociodemographic and
occupational predictors of outcomes at the census-tract level . The goals of this project were to: 1) estimate
associations between community-level risk factors and COVID-19 cases and deaths by census tract in the
state; 2) evaluate the sensitivity of these associations to the exclusion of institutional cases and deaths, given
the relevance of institutional settings to larger-scale disease patterns; and 3) assess changes over time in
these associations during the initial two Phases of the pandemic in Massachusetts.

2. METHODS
2.1. Data sources

Individual-level COVID-19 case and mortality data from March 2020-February 2021, including residential
address and date of diagnosis or death, were provided by MDPH. Residential addresses were geocoded using
a cascade matching geocoding method developed by combining MassGIS Address Points for Geocoding and
ArcGIS Business Analyst geocoding locators ((©) Esri, Redlands, CA), and assigned to the census tract
associated with home locations (1462 tracts within MA after dropping five tracts with zero cases or zero
population). Cases and deaths were aggregated into two time periods for analysis: “Phase 17 (March—June



2020) and “Phase 2” (September 2020-February 2021). The 2020 summer months were a period of reduced
COVID-19 burden of cases/deaths in MA; the exclusion of those months in our modeling allowed comparison
of periods of time with similar levels of disease burden.

2.2. Identification of institutional outcomes

Using geocoded addresses, we identified institutional cases and deaths as outcomes among individuals residing
in a long-term care facility (LTCF), prison, or homeless shelter in MA. Locations and capacities of licensed
nursing homes, rest homes, and assisted-living facilities (collectively aggregated to total number of LTCF
beds) were obtained from MassGIS. Likewise, locations of all state, county, and federal correctional facilities
in MA were obtained from MassGIS. Prison data excluded temporary processing or treatment facilities
without residential inmates. Locations of homeless shelters in MA were provided by the MDPH Office of
Population Health upon request.

2.8. Community-level predictors

We obtained total population counts, as well as select social, occupational, housing, and demographic data
at census tract resolution from the most recent five-year (2015-2019) American Community Survey (ACS).
We evaluated potential predictors hypothesized to be associated with increased risk of disease transmission,
disease severity, and/or health disparities, including: population proportions of those who identify as Black
or African American, Hispanic or Latino (Latinx), or American Indian or Alaska Native (ATAN); share of
population with ages greater than 80 years and share with ages under 20 years; percent of population enrolled
as undergraduate students or employed in essential services; the number of LTCF beds per capita; the percent
of households with more than 1.5 persons per room; and housing unit density (number of housing units per
square mile). We defined “essential services” following the approach of the American Civil Liberties Union
(ACLU) Massachusetts. These variables are informed by and consistent with our previous modeling work at
the town level, in which we used backwards model selection to select non-correlated covariates (confirming
that none of the independent variables had a correlation of |r| > 0.60).

2.4. Statistical analysis

We used mixed-effects negative binomial regression models to generate incidence rate ratios (IRRs) and 95%
confidence intervals for each predictor in the model. We modeled case and death outcomes separately for each
Phase, and we fit case and death models inclusive and exclusive of cases/deaths identified as institutional
(vielding eight models in total). A random effect of town (351 towns in MA) was included to address within-
town spatial autocorrelation of residuals for nearby tracts. We used counts of cases or deaths at each census
tract as the outcome variable, with census tract population used as an offset term to reflect consistent
rates. Predictors that affected modeling estimates significantly or that demonstrated changes between the
Phases were retained in the models, as were predictors of a priori interest to health disparities or specific
COVID-19 risk factors regardless of statistical significance (e.g., housing unit density and proportion of ATAN
residents). All statistical analyses were conducted in R (version 4.0.3) using the “glmmTMB” function from
the glmmTMB package (version 1.0.2.9).

3. RESULTS

Total cases, deaths, and community characteristics differed between Phase 1 and Phase 2 of the COVID-
19 pandemic in Massachusetts (Table 1). Phase 1 had substantially fewer cases than Phase 2 (99,051 vs.
407,525), but more deaths (7,285 vs. 6,207). Compared to Phase 1, non-institutional outcomes in Phase 2
accounted for greater shares of total cases (96.6% vs. 80.1%) and deaths (57.0% vs. 37.0%). Geocoding was
highly successfully at matching individuals with census tracts of residence, with each outcome group having
at least a 99.7% match rate; in total, 1,360 cases (0.27%) were excluded from the models due to inability to
geocode to a census tract.

3.1. Total Cases and Deaths

The first models we ran assessed the relationship between the total number of COVID-19 cases and deaths



in each census tract in each Phase 1 and Phase 2 (four models in total). These models included all cases and
deaths, including those in institutional settings.

3.1.1. Models Predicting Total Case Incidence

Models of key predictors of COVID-19 cases by census tract in each of the two phases are presented in Figure
1 (left points, in lighter blue). Overall, census tract characteristics consistently associated with increased
risk of COVID-19 cases included higher population proportions of essential workers, those without health
insurance, Black or Latinx residents, and number of LTCF beds per capita. By contrast, proportion of
residents aged 20 or younger, proportion of undergraduate students, and housing density were significantly
associated with decreased IRRs. Crowded housing, % aged over 80 years, and proportion of American Indian
and Alaska Native (AIAN) residents were not statistically significantly associated with tract-level COVID-19
case incidence rates. All associations were statistically stable between Phase 1 and Phase 2 (i.e., there were
no changes in directionality or statistical significance), but a few variables had substantive attenuations in
magnitudes (i.e., more than a 10% change in point estimates toward the null): IRRs for % Black decreased
from 1.20 (95% confidence interval [CI]: 1.16, 1.24) in Phase 1 to 1.04 (1.03, 1.06) in Phase 2, % Latinx
decreased from 1.37 (1.30, 1.44) to 1.16 (1.13, 1.19), LTCF beds decreased from 1.39 (1.35, 1.44) to 1.06
(1.04, 1.07), and % undergraduates increased from 0.83 (0.80, 0.86) to 0.93 (0.91, 0.94).

3.1.2. Models Predicting Total Mortality Incidence

Models of key predictors of COVID-19 deaths by census tract in each of the two phases are presented in Figure
1 (right points, in darker blue). Overall, tract-level characteristics consistently associated with increased risk
of COVID-19 mortality included population proportions of Black or Latinx residents, share of population
aged over 80 years, and number of LTCF beds per capita. The only variable consistently associated with
decreased risk of census-tract mortality rates was proportion of undergraduate students. Crowded housing,
proportion of ATAN residents, and rate of uninsured individuals were not statistically significantly associated
with tract-level COVID-19 case deaths in either phase. While most variables were statistically stable between
Phase 1 and Phase 2 (i.e., consistent directionality and significance), proportion of essential workers went
from not statistically significant in Phase 1 (IRR: 0.98 [0.90, 1.06]) to significantly positive in Phase 2 (IRR:
1.08 [1.03, 1.14]), and housing density went from not statistically significant (0.94 [0.85, 1.03]) to significantly
negative (0.89 [0.83, 0.97]) . Other variables had substantive attenuations in their point estimates between
Phase 1 and Phase 2 (i.e., greater than 10% change toward the null): IRRs decreased for proportion of Black
residents (decreasing from 1.20 [1.11, 1.30] in Phase 1 to 1.07 [1.01, 1.13] in Phase 2) and LTCF beds per
capita (decreasing from 2.53 [2.33, 2.74] to 1.70 [1.62, 1.78]), while IRRs increased for proportion of residents
aged 20 years or younger, albeit to become non-significant (increasing from 0.90 [0.82, 0.98] to 0.98 [0.92,
1.04])).

3.2. Non-Institutional Cases and Deaths
3.2.1. Models Predicting Non-Institutional Case Incidence

Variables associated with non-institutional cases are shown in Figure 2 (left points in lighter green). As with
the models of all cases, consistently significant positive associations in both Phase 1 and Phase 2 included
proportions of Black and Latinx residents, essential services workers, and those without health insurance.
Proportion of undergraduate students was the only consistently significant negative association for non-
institutional cases. Substantive attenuations toward the null between Phases 1 and 2 were exhibited in %
Black (decreasing from 1.22 [1.18, 1.25] to 1.03 [1.01, 1.05]), % Latinx (decreasing from 1.36 [1.31, 1.42] to
1.13 [1.11, 1.16]), and % undergraduates (increasing from 0.83 [0.80, 0.86] to 0.93 [0.91, 0.94]). LTCF beds
per capita, population proportions of AIAN residents, housing density, and share of individuals aged over 80
years were not significant predictors of non-institutional cases.

3.2.2. Models Predicting Non-Institutional Death Incidence

Variables associated with non-institutional deaths are shown in Figure 2 (right points in darker green).
Consistently significant positive associations in both Phase 1 and Phase 2 include proportions of Black



and Latinx residents, as well as the percent of people aged over 80 years. No covariate was found to have
statistically significant negative associations in both phases, though % aged under 20 years was negative in
Phase 1 (0.82 [0.75, 0.89]) and % undergraduates was negative in Phase 2 (0.87 [0.81, 0.94]). Substantive
changes in point estimates were seen for % of workers in essential services, which increased from 1.03 (0.96,
1.12) in Phase 1 to 1.14 (1.08, 1.21) in Phase 2, and for % Black, which decreased from 1.32 (1.23, 1.41) to
1.14 (1.08, 1.20).

3.8. Comparisons between Total and Non-Institutional Cases and Deaths

We observed some similarities and differences in predictors between the models for total cases and deaths and
for non-institutional cases and deaths (Table 2). Most notably, the strongly positive associations between
LTCF beds per capita and total cases and deaths were sharply reduced to statistical non-significance in
the non-institutional models, per our original hypotheses. All other variables had confidence intervals that
overlapped between the total and non-institutional models, and estimates were similar across all remaining
variables in both phases between total and non-institutional cases. However, a few substantive differences
emerged in the IRR point estimates from models with total versus non-institutional deaths, albeit confidence
levels overlapped. Associations between % Black, % Latinx, % aged over 80 years, and % essential workers
and non-institutional deaths were greater than the associations with total deaths across both phases. The
largest absolute difference was for the % Black variable in Phase 1 deaths, which was 1.20 (1.11, 1.30) for
total deaths and 1.32 (1.23, 1.41) for non-institutional deaths.

4. DISCUSSION

By using individual geocoded addresses of COVID-19 cases and deaths in MA, we were able to both evaluate
community-level risk for these outcomes at high spatial resolution and distinguish institutional outcomes from
those in non-institutional settings in community models of disease over time. Removing institutional cases
from our models, especially in the context of mortality endpoints where institutional facilities contributed
an appreciable percentage, allowed for a more nuanced understanding of local risk and disease drivers.
Additionally, assessing trends over time across both case and mortality outcomes shed light on differential
case fatality by subpopulation over time. Overall, our efforts highlight the value of collaboration between
state public health departments and academic researchers to access, analyze, and interpret COVID-19 data
to maximize its effective use in public health practice.

We observed key disparities in models of both cases and death outcomes associated with the proportion of
Black and Latinx populations by tract, findings that parallel those at town-level resolution across a shorter
time period as well as findings from other studies. The variability observed in the size of these estimates over
time reinforces how these race and ethnicity variables are proxies for social constructs and not inherent or
constant risk factors. Broader assessments of the structural factors that result in these disparities, including
systemic racism, socioeconomic status, housing inequities, and multigenerational family stressors, are vital to
comprehensively understand why these communities have experienced elevated COVID-19 risk. The variable
IRRs over time could be coupled with other community-level information to better assess the particular
factors driving disparities in each phase of the pandemic.

The finding that the association with % Black residents was smaller during Phase 2 than Phase 1 may
indicate that public health policies and other measures enacted by Fall 2020 among communities with higher
proportions of Black residents successfully reduced risk relative to other communities. This could include
greater availability of testing than existed in the early months of the pandemic. Notably, we did not see as
substantial of a reduction for communities with higher proportions of Latinx residents, which points toward
the need for a closer look at testing as well as structural barriers to implementing risk-reduction methods
(such as ability to self-isolate, work from home, or physically distance) across these communities.

Our study period captured only the early months of vaccination availability in the state, reflecting availability
for healthcare workers (beginning on December 15, 2020), residents of long-term care facilities (December
28, 2020), and all individuals aged 75 and over (February 1, 2021). It is possible that our findings related to
racial/ethnic patterns for Phase 2 reflect, in part, differential vaccination patterns from early 2021; however,



this is unlikely to have a large influence on our overall findings, given the limited number of individuals
fully vaccinated by the end of the time period assessed here. Given that LTCF residents were eligible for
vaccination for several weeks of the study period, it is plausible that our estimates for the LTCF beds per
capita variable is an underestimate of the true association.

Case risk associated with proportion essential workers by tract remained elevated across both time periods
in our study. This finding may reflect the limitations of workplace interventions to reduce exposure risk
among this workforce, including challenges to physical distancing in essential service jobs, and lack of paid
sick leave. Our study period did not overlap with vaccine availability targeting essential workers outside of
healthcare settings (March 22, 2021); analyses utilizing more recent data could consider the effect of targeted
vaccination on these estimates by tract. The elevated mortality risk observed in association with proportion
essential workers by tract, especially in Phase 2, may suggest that communities with more essential workers
faced a higher case fatality rate, although it is difficult to conclude with certainty from our data.

One important aspect of modeling cases and deaths separately across pandemic phases is the ability to
effectively control for differential testing availability and utilization. This was particularly salient during
Phase 2, which saw increased availability of testing to the public and widespread asymptomatic surveillance
testing at workplaces and schools. Since testing is not uniformly distributed across all census tracts, IRRs
are likely higher in places with more testing, irrespective of case severity. By contrast, COVID-19 deaths in
Phase 2 are expected to have much more consistent identification, making comparisons less susceptible to
testing biases. The greater mortality risk for Black/Latinx populations, essential workers, and older residents
that we observed in Phase 2 may thus provide a more accurate depiction of racial and ethnic inequities in
COVID-19 impacts than case rates alone, which could potentially be more useful for informing targeted
public health interventions.

By retaining LTCF facilities in non-institutional models, we attempted to estimate the impact of LTCF cases
on disease incidence outside of these facilities. Our data indicate that density of long-term care services was
not a major correlate of infections or deaths in the community at large (among individuals who were not
residing in these institutions; section 3.2). This observation may indicate successful biocontainment within
these facilities or limited interaction between residents/employees and community members. However, we
lack key information to determine this definitively, including controls within facilities and residential location
of LTCF employees. It also may indicate that risk factors for institutional cases and deaths differed in
meaningful ways from what was observed at the community level. While beyond the scope of this study,
considerations of risk factors for mortality specifically within institutions, and comparisons between these
within-institution and community-level risk factors, would be a valuable addition to this literature.

Our analysis is limited by a few key factors. First, census tracts are heterogenous and not distinctly clas-
sified by the variables in our models, which complicates the interpretation of our findings. We identified
tracts using continuous demographic and occupational characteristics, and the same town may have eleva-
ted proportions of some, but not all, of the covariates in our model. As such, our analyses can serve as a
guide for understanding differential risk by population subgroups but not to identify specific tracts to target
with public health interventions, as would be possible with spatial methods. Additionally, as mentioned pre-
viously, limited availability of testing during Phase 1 resulted in testing and diagnosis of only symptomatic
cases early in the pandemic, while testing was widely available in Phase 2, both for symptomatic cases and
asymptomatic surveillance. It is difficult to concretely assess the directionality of these biases, but these
trends may indicate that our data from Phase 1 reflects an underestimate of the true association with the
covariate analyzed. In addition, the variables we included might not be all or the strongest predictors of
cases or deaths. Another limitation is that patient address information likely contains errors, which cascade
into the geocoding process, resulting in misclassification of LTCF residents and tract of residence; however,
this is likely non-differential with respect to outcome and, moreover, there is no feasible way to ameliorate
this type of error. Our age-related covariates may imprecisely classify risk associated with age. Finally, ACS
data were derived pre-pandemic and may not fully reflect conditions during the pandemic, especially with
respect to employment and housing.



Our project is strengthened by our geocoded individual-level data, which was facilitated by a cross-sectoral
partnership. Using address geocodes of individual patients who were diagnosed or died of COVID-19, we
observed significant disparities in both case and mortality burden in association with population proportions
of Black and Latinx residents, as well as essential workers at the census tract level in the first year of the
pandemic in Massachusetts. Modeling cases and deaths separately, as well as with and without institutional
outcomes, allowed us to more comprehensively understand health disparities experienced by vulnerable
subgroups during the first year of the pandemic.
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Table 1. Descriptive statistics by phase of COVID-19 cases, deaths, and average census tract characteristics
in Massachusetts, USA. 'Reflects the number of cases and deaths that were successfully geocoded to a census
tract (total number of individuals excluded due to lack of geocoding is 1,360 [0.27%]).
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Table 2. Incidence rate ratios (IRRs) for COVID-19 cases and deaths in MA census tracts, by total and non-
institutional settings and phase of the pandemic. Bold values indicate non-overlapping confidence intervals
between total and non-institutional outcomes (rows); carrots () indicate non-overlapping confidence intervals
between cases and deaths within the same type of outcome (columns).

COVID-19 Cases Incidence Rate Ratios (95% Confidence Interval)

COVID-19 Cases -

Predictors

% Age < 20
% Age > 80
% AIAN

% Black

% Latinx

% Uninsured
% Essential
LTCF Beds

% Undergrads
% Crowding
Housing Density

Phase 1
Total Cases
0.95 (0.91, 0.99)
1.01 (0.97, 1.05)"
1.02 (0.99, 1.04)
1.20 (1.16, 1.24)
1.37 (1.30, 1.44)
1.06 (1.03, 1.09)
1.08 (1.04, 1.11)
1.39 (1.35, 1.44)"
0.83 (0.80, 0.86)
1.01 (0.98, 1.04)
0.95 (0.91, 0.99)

Phase 1
Non-Inst. Cases
0.95 (0.92, 0.98)"
1.02 (1.00, 1.05)"
1.01 (0.99, 1.03)
1.22 (1.18, 1.25)
1.36 (1.31, 1.42)
1.05 (1.03, 1.08)
1.13 (1.10, 1.17)
1.02 (1.00, 1.04)
0.83 (0.81, 0.86)
1.00 (0.98, 1.02)
0.95 (0.92, 0.98)



COVID-19 Cases Incidence Rate Ratios (95% Confidence Interval) COVID-19 Cases
COVID-19 Deaths Incidence Rate Ratios (95% Confidence Interval) COVID-19 Deaths

Phase 1 Phase 1
Predictors Total Deaths Non-Inst. Deaths
% Age < 20 0.90 (0.82, 0.98) 0.82 (0.75, 0.89)"
% Age > 80 1.15 (1.06, 1.25)" 1.25 (1.16, 1.35)"
% AIAN 0.98 (0.92, 1.05) 1.00 (0.95, 1.06)
% Black 1.20 (1.11, 1.30) 1.32 (1.23, 1.41)
% Latinx 1.23 (1.11, 1.36) 1.28 (1.16, 1.41)
% Uninsured 0.99 (0.91, 1.07) 1.00 (0.93, 1.08)
% Essential 0.98 (0.90, 1.06) 1.03 (0.96, 1.12)
LTCF Beds 2.53 (2.33, 2.74)" 1.02 (0.96, 1.08)
% Undergrads 0.88 (0.81, 0.97) 0.92 (0.84, 1.01)
% Crowding 1.01 (0.94, 1.08) 1.01 (0.95, 1.07)
Housing Density 0.94 (0.85, 1.03) 1.02 (0.93, 1.11)

Figure 1. Incidence rate ratios (IRR) for census tract-level factors included in the regression models for
total cases (lighter blue, on left) and total deaths (darker blue, on right) by phase of the pandemic in
Massachusetts (Phase 1: March-June 2020, Phase 2: October 2020 — February 2021). Inset for LTCF Beds
variable provided to show IRRs for deaths, which are outside the scale of the other variables.

Community-Level Factors Associated with COVID-19

All Cases and Deaths in Massachusetts, USA
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Figure 2. Incidence rate ratios (IRR) for census tract-level factors included in the regression models for
non-institutional cases (lighter green, on left) and non-institutional deaths (darker green, on right) by phase
of the pandemic in Massachusetts (Phase 1: March-June 2020, Phase 2: October 2020 — February 2021).
Non-institutional cases and deaths are defined as confirmed COVID-19 cases and deaths geolocated to an
address not affiliated with a long-term care facility, prison, or shelter.
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Incidence Rate Ratios (IRR)

Community-Level Factors Associated with COVID-19

Non-Institutional Cases and Deaths in Massachusetts, USA
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