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Abstract

Background: Oral squamous cell carcinoma (OSCC) accounts for 90 % of oral cancers. If a necessary intervention before
tumorigenesis could be conducted, the current 60% 5-year survival rate would be expected to be majorly improved. This fact
motivates the search for developing a highly sensitive and specific in vitro diagnostic method to conduct rapid OSCC screening.
Method: Serum samples from 819 volunteers, consisted of 241 healthy contrast (HC) and 578 OSCC patients, were collected,
and their metabolic profiles were acquired using conductive polymer spray ionization mass spectrometry (CPSI-MS). Univariate
analysis was used to select significantly changed metabolite ions in the OSCC group compared to the HC group. Identities of
these metabolite ions were determined by MS/MS experiments and reconfirmed at the tissue level by desorption electrospray
ionization mass spectrometry (DESI-MS). The supporting vector machine (SVM) algorithm was employed as the machine
learning model to implement the automatic prediction of OSCC. Results: Through statistical analysis, 65 metabolites were
selected as potential characteristic marker candidates for serum OSCC screening. In situ validation by DESI-MSI revealed that
8 out of top 10 metabolites showed the same trends of change in tissue and serum. With the aid of machine learning, OSCC
can be distinguished from HC with an accuracy of 98.0 % by cross-validation in the discovery cohort and 89.2% accuracy in the
validation cohort. Furthermore, orthogonal partial least square-discriminant analysis (OPLS-DA) also showed the potential for
recognizing OSCC stages. Conclusion: Using CPSI-MS combined with SVM, it is possible to distinguish OSCC from HC in
a few minutes with high specificity and sensitivity, making this rapid diagnostic procedure a promising approach for high-risk

population screening.

Introduction

Oral cancer is one of the most common cancers in the head and neck region. There are around 377 713
new cases and 177 757 cases of death estimated worldwide in 2020 due to oral cancer.! Oral squamous cell
carcinoma (OSCC) contributes around 90 % of oral cancers. Tobacco use (smoked or chewed), alcohol con-
sumption, and human papillomavirus infection are regarded as high-risk factors for OSCC development.?The
diagnosis of OSCC includes a physical examination, radiography, computed tomography, magnetic resonance
imaging, and histopathological examination of tissue biopsies.> 4 However, changes in molecular distribu-
tion at the primary carcinoma site are difficult to track at early stages before the histological lesion can
be detected.’ In addition, there are still many cases not diagnosed until the advanced stage when distant
metastases have happened, thereby missing the best opportunity for treatment. If a necessary intervention
before tumorigenesis could be conducted, the current 60% 5-year survival rate is expected to be majorly
improved.*



Currently, tissue-based biopsy remains the gold standard in cancer diagnosis. It requires harvesting biospec-
imens by invasive procedures such as biopsies or needle aspirations. These procedures have common issues
such as patient discomfort and sampling inaccuracy caused by tissue heterogeneity. By contrast, liquid
biopsy has been increasingly considered as an alternative option for cancer detection because it can provide
cancer-associated molecular information in a minimally invasive manner. Liquid biopsy is conducted by
detecting tumor-associated markers in the circulating or excreted biological fluids such as saliva, urine, and
serum. Currently, the detecting markers were primarily focused on exosome, circulating tumor cells (CTCs),
and circulating cell-free tumor DNA (¢fDNA) which are shed into the bloodstream by cancer cells under-
going apoptosis or necrosis. Several DNA and mRNA species were reported to be associated with OSCC
progressions, such as Gal-1, Gal-3, Transgelin, miR-24, miR-181, miR-196a, miR-10b, miR~18, lincRNA-p21,
GAS5, and HOTAIR.6-13

Gene- or protein-based clinical diagnosis mainly relies on the use of several immunoassays that introduce
a hybrid probe or an antibody as a specific recognition element. This immune recognition-based multiplex
detection is inevitably restricted by cross-reaction and spectral overlap in the readout. The analytical period
and economic cost also increased with the introduction of more biorecognition probes.

In contrast to gene and protein molecular detection, metabolomics-basedin vitro diagnosis also has a con-
siderable promise because it provides the metabolic phenotype information that can not only precisely char-
acterize the oncometabolite distribution at different stages but also help to guide the necessary therapy.'*
Therefore, a highly sensitive and specific metabolomics-based approach is in urgent demand for preclinical
screening among the high-risk population.

In recent years, ambient ionization mass spectrometry has gradually gained interest in the field of clinical
diagnosis owing to its advantages in free from laborious pretreatment, wide coverage of metabolite species,
and high-throughput metabolome information monitoring among various biological samples. Combined with
machine learning for high-dimension data interpretation, it can be performed with comparable accuracy at
way less cost. 1°-20

In previous work we have reported the practical value of conductive polymer spray ionization mass spectrome-
try combined with machine learning (CPSI-MS/ML) in the discrimination of OSCC with premalignant lesion
(PML) and healthy contrast (HC).?! CPSI-MS/ML has shown its advantage in directly collecting hundreds
of metabolites abundance information from a trace dried biofluid spot within a few seconds under atmo-
spheric conditions,?? and in identifying key salivary metabolites and pathways involved in the progression
from the PML to OSCC stage. The characteristic metabolites previously discovered in saliva were mainly
narrowed to small molecules whose molecular weight is less than 500 Da.

Compared to saliva-based diagnosis, serum samples have advantages of a tightly controlled homeostatic
environment and less external interference. Serum is a more clinically available biofluid that not only
contains small metabolites but is also rich in lipid information. The minimally invasive nature of blood-
based samples, the sensitive feature of metabolites, and evidence of changes in metabolites during OSCC
initiation and progression, make blood-based metabolites attractive biomarker candidates.?® 24 Currently,
dozens of metabolites have been reported to be dysregulated with OSCC malignant progression, including
ketones, malonate, glutamine, propionate, valine, tyrosine, serine, methionine, and choline. 25-30

Given the hypothesis that the serum probably contains more OSCC-associated metabolic phenotype infor-
mation, there were two concerns that needed to be investigated in this study: (1) whether the previously
discovered salivary metabolites can still be significantly different among HC and OSCC in the serum to serve
for preclinical screening; and (2) whether the significantly different metabolites in the serum can be not only
used for discriminating OSCC from HC but also for discerning OSCC at different stages (T1, T2, T3, T4).
Therefore, the aim of this study was to develop panels of serum metabolite markers for OSCC screening.
The potential of serum metabolic profiling for staging was also preliminarily investigated. With the aid of
the CPSI-MS/ML approach, we believe that a low-invasive serum diagnosis can be realized to provide a
quick, accurate, cost-effective diagnosis of OSCC.Scheme 1 describes the general workflow that is followed.
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Scheme 1. Diagram of the serum metabolic profiling workflow by CPSI-MS/ML.

(A) Two cohorts of serum samples were collected from the OSCC and HC volunteers as the marker discovery
and validation sets, respectively. (B) One drop of dried serum spot (3 pL) was loaded onto a conductive
polymer tip. Once the extraction solvent was spiked, the high voltage was switched on to trigger the data
acquisition. (C) The high-dimension metabolic profiles of different groups were classified and visualized
under the constructed 3D features space by unsupervised machine learning model; (D) From a statistical
analysis, the discriminating metabolites were selected as features. (E) Given the data of the two cohorts as
the training and test sets, a machine learning model was applied; (F) The serum metabolite markers were
further validated at the tissue level and the combination was employed as the diagnostic panel.

Materials and Methods
Volunteers Recruitment

Two cohorts of volunteers were selected, a discovery group (254), and a validation group (565), both con-
taining individuals who have been diagnosed with OSCC prior to surgery or chemotherapy and individuals
diagnosed no OSCC, called healthy contrast (HC). Specifically, 154 individuals have OSCC and 100 are HC
in the discovery group, and 424 have OSCC and 141 are HC in the validation group. All human subject
research was conducted in compliance with the ethical guidelines established by the Nanjing Stomatological
Hospital, Medical School of Nanjing University. The race, gender, ages, and body weight index were strictly
matched between the two groups. More details about patients’ clinical demographics can be found in the
supplementary information (Table S1 ).

Specimen Collection and Preparation

Overnight 12 hours’ fasting is required before intravenous blood sampling in the morning. The blood with-
drawal volume is approximate 1 mL for generating 400 uL serum. The same brand of glass centrifuge tubes
(BD Vacutainer) was used for blood collection. To avoid the metabolite changes before preprocessing, blood
samples were temporarily stored at 4 until natural coagulation occurred. Serum was prepared by 2,000g cen-
trifugation for 10 minutes at 4 after blood clotting. All serum samples were saved under -80 for long-term
storage until use.

Metabolomic Profiling by CPSI-MS

A full description of the CPSI-MS instrumentation can be found in a prior publication.?!?2 After the serum



was thaw under ambient conditions, 3 pL serum and 1 pL 4-chlorophenylanine (internal standard, IS) were
transferred onto the tip of a conductive polymer to form a dried serum spot for data acquisition. Upon
addition of methanol-water (7:3, v/v, 3 uL) onto the dried serum spot for metabolites extraction, high voltage
(+4.5 kV) was applied to the conductive polymer tip to trigger the spray ionization process. Data were
recorded in the Department of Chemistry, Fudan University using an LTQ Orbitrap Velos mass spectrometer
(Thermo Scientific, San Jose, CA, US.). The full scan range was set at m/z 50-1000 under positive mode.
The data acquisition period for each sample lasts for 15 seconds. The intensity of each metabolite ion was
normalized with the IS intensity of each sample ([M+Na]t, m/2222.0292). Quality control (QC) samples
were prepared by pooling equal volumes of 20 HC and 20 OSCC serum samples. QC samples were analyzed
throughout the run to monitor the CPSI-MS system variation. OSCC and HC serum samples were run in
alteration with the QC samples evenly inserted into the entire sequence every 30 samples.

Tissue Validation by DESI-MSI

A commercial DESI system (Prosolia, Indianapolis, U.S) was employed for tissue imaging. N, N-dimethyl
formamide-acetonitrile (1:1, v/v) was used as the spray solvent with a flow rate at 1.0 pL/min and nebulizer
gas pressure at 1.6 MPa. The impact angle between sprayer and section mounting stage was 56°. High
voltage of +4.0 kV was provided by the mass spectrometer and applied onto the sprayer to generate the
electrospray for desorbing and ionizing the components across the tumor cryosection (12 ym). Target ion
image reconstruction was achieved using Massimager (Chemmind Technologies Co., Ltd, China).

Metabolomics Data Processing

All raw files were first converted into cdf format by the Xcalibur (Thermo Fisher Scientific, San Jose, CA, US.)
and then imported into MATLAB 2020a (Mathworks, Natick, MA, US.) for batch data preprocessing using
the self-programmed script. Each sample’s metabolomic profile was presented by averaging the mass spectra
over 10 continuous scans in the corresponding time window. There were 1518 peaks initially extracted
to characterize the metabolomic profile. A data matrix was constructed with each row representing one
case and each column representing one peak variable. To reduce the matrix data volume, the peaks that
possessing more than 50 % missing values among the first cohort of 254 samples were discarded. No missing
value imputation was conducted to avoid artifact statistical results in univariate analysis.>! Then, the matrix
goes through the IS normalization, natural log transform, zero-centering, and unit variance scaling before
univariate analysis, multivariate analysis, and machine learning modelling is applied. The data processing
was done at Fudan University and Stanford University.

Statistical Analysis

The unsupervised metabolic profile differentiation between OSCC and HC groups was first conducted with
the t-stochastic neighbor embedding (t-SNE) in the MATLAB program. Rank sum test was first implemented
separately among the two cohorts to search the OSCC and HC groups for significantly changed metabolite
ions. The false discovery rate (FDR) was estimated with Benjamini and Hochberg method to adjust p
value and assess the statistical significance.3? The ion will be selected if its FDR value is lower than 0.05.
Only ions that are significantly changed both in the discovery cohort and validation cohort will be regarded
as potential serum metabolite markers. Finally, a metabolite with fold change larger than 1.5 or smaller
than 0.67 will be included for further validation at the tissue section by DESI-MSI. Orthogonal partial
least squares discriminant analysis (OPLS-DA) was used for OSCC staging by aid of SIMCA-P (Umetrics,
Umea, Sweden). Variables with importance in projection (VIP) values higher than 1.5 were considered to
contribute strongly to the pattern recognition of different OSCC stages. Prism (GraphPad Software, USA)
was employed for preparing box plots, heatmaps, and receiver operating characteristic (ROC) curves.

Machine Learning Modeling

Two cohorts of OSCC and HC serum cases were recruited for the machine learning model development.
For the OSCC screening modelling, the first cohort (100 HC + 154 OSCC) was used for classification
model comparison and training. The 5-fold cross-validation was conducted in the first cohort to assess



the model training performance. The MATLAB in-built APP “classification learner” was employed to
select the optimal model for training and validation. A variety of classification models were investigated
including linear discriminant analysis (LDA), logistics regression, decision tree (DT), naive Bayesian (NB),
supporting vector machine (SVM), k-nearest neighbor (KNN), and ensemble method. A confusion matrix
was used to display the classification results and calculate the general accuracy, true positive rate (TPR),
and positive prediction value (PPV). The F1 score was used as the single metric to assess different models’
fitting performance. Finally, the second cohort (141 HC and 424 OSCC) was used as the validation set. The
area under curve (AUC), specificity and sensitivity were used as the metrics for comparing different machine
learning models’ generalization ability to give a fair assessment of the pretrained model performance on the
unseen data. For the OSCC staging study, the two cohorts of OSCC cases were combined to obtain sufficient
samples for each stage (T1, n=139; T2, n=167; T3, n=128; T4, n=144). Then the 5-fold cross validation
was used for evaluating the prediction accuracy.

Analyte Annotation and Marker Identification

Table S2 presents the annotated metabolite ions discussed in this study. The metabolite ions of interest were
first searched through HMDB (http://hmdb.ca) and Metlin (https://metlin.scripps.edu) with the 5.0 ppm
mass tolerance. The type of adduct ions included [M+H]", [M+Na]™, [M+K]|", [M-HoO+H]", [M+2Na-
H|*, [M+2K-H]*, and [M+NH4]". Only those candidates with a reported presence in humans were given
consideration. For those unknown significantly changed ions, MS/MS experiments were performed to match
the collision-induced dissociation (CID) fragmentation patterns either with given standards or recorded
MS/MS spectra in HMDB and Metlin.

Results
Serum Metabolic Profiling of OSCC

Collected 819 serum samples consisting of 241 HC and 578 OSCC were divided into a development cohort and
a validation cohort for serum marker discovery and confirmation. There were 367 ions selected to characterize
the global metabolic profiles of HC and OSCC. The average mass spectra of OSCC and HC are shown in Fig.
1A . From the average mass spectra, it can be clearly observed that the peaks atm/z 135.0029 (lactic acid,
[M+2Na-H| "), 203.0527 (glucose, [M+Na| 1), 304.2611 (oleamide, [M+Na|") were elevated in the OSCC
group compared to the HC group. More discriminative fingerprint peaks had to be found by statistical tests,
which are described later.

To visualize the difference between HC and OSCC metabolite patterns, an unsupervised machine learning
method, t-stochastic neighbor embedding (t-SNE), was introduced to reduce the high-dimensional metabolite
ions information into a three-dimensional (3D) feature space. In the constructed 3D feature space, serum
cases from the same group were well clustered whereas those cases from different groups can be separated
(Fig. 1B ). This result demonstrated there exists a substantial difference in serum metabolic profiles that
can be used for OSCC and HC prediction.
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Figure 1. Serum metabolic profiling of OSCC and HC by t-SNE clustering: (A) The mass spectrum
averaged from the HC (blue) and OSCC (red) groups, respectively. (B) metabolic profiling of first batch of
254 serum samples as the training dataset; and 565 serum samples as the test dataset.

Discovery and Validation of Serum Metabolite Markers

The rank sum test was employed to search for low abundance discriminating ions. In the development
cohort, there were 241 significantly changed ions in OSCC compared to the HC (FDR < 0.05). When the
same procedure was conducted in the validation cohort, 218 ions were found to have significant differences.
After overlapping the two batches of discriminating ions, 65 ions were confirmed to not only have statistical
significance but also to become upregulated or downregulated in the same direction (Fig. 2A ). After
removing ions that either were redundant or failed to meet the fold change criteria (larger than 1.5 or smaller
than 0.67), 39 metabolites were finally selected as potential characteristic marker candidates (Table S3 ).
A volcano graph highlighted the top 10 metabolites with the most obvious fold changes (Fig. 2B ), which
shows that lipid molecules are the predominant species in the serum including glycerophosphocholine (GPC),
lyso-glycerophosphocholine (Lyso-GPC), acyl carnitine, diacylglycerol (DG), sphingolipids (e.g., sphingosine-
1-phosphate). Figure 2C displays the relative expressions of these top 10 metabolites in the form of a
heatmap.
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Figure 2. Discovery and validation of the serum metabolite markers. (A) Venn graph displayed the number
of discriminating metabolite ions selected in the development and validation cohort and the number of
common ions; (B) The most significantly metabolite ions with the largest fold changes were highlighted by
a volcano graph; (C) The top 10 metabolites’ relative expression levels were visualized by a heatmap; (D)
Two typical serum lipids relative intensities in serum displayed by box plots. (E) Their spatial distribution
in the intact OSCC tissues were visualized and compared by DESI-MSI under guidance (F) of H&E staining
images.

In situ Validation of the Serum Metabolite Markers

The top 10 characteristic metabolites discovered in serum were further analyzed at the tissue level. Frozen
cryosections of intact OSCC tumor tissues were prepared for DESI-MSI analysis. Then the spatial distri-
bution of target metabolites across the resected OSCC tissues were mapped and compared. The in situ
validation by DESI-MSI revealed that 8 out of top 10 metabolites showed the same trends of change with
OSCC in tissue and serum. (Figure S1 ). Taking lysoPC(20:4) and PC(34:6) as examples, the former one
declined in the cancer region compared to the negative contrast region whereas the latter one was elevated
in the cancer region and can specifically delineate the cancer margin. The low expression of lysoPC(20:4)
and high expression of PC(34:6) in the cancer region were consistent with their trends in the serum cohort
analysis (Figs. 2D, 2E, and 2F ).

Expression of Salivary Metabolite Markers in Serum

Given the 106 characteristic metabolites previously studied in salivary metabolic profiling,'® the extent of
their changes in serum between OSCC and HC group were investigated. For this inter-specimen validation
purpose only, the serum samples from two cohorts were combined to implement the rank-sum test. As a
result, 52 out of 106 metabolites discovered in the previous saliva metabolomics were found to remain at
abnormal levels in serum (Table S4 ), although changes in serum for most of these metabolites were not
as obvious as those in saliva. Moreover, 33 out of these 52 metabolites in serum showed the same change
trends with these in saliva (OSCC vs HC). Altogether, there were 65 metabolites discovered to be changed in



OSCC compared to HC with statistical significance (FDR < 0.05)). These metabolites were treated as serum
marker candidates that have the potential discrimination powers for OSCC screening model development.

Feature Selection and Machine Learning Model Development

A variety of classification models were trained to determine the most suitable one for further development.
At the initial stage, all the selected metabolites in the univariate analysis were included as feature sets to
train models. As a result, although all models can achieve perfect performance in the first cohort of 254 cases
with an accuracy of no less than 90 % (Table S5 ), their performances on the second cohort (as the unseen
cases) differed from one to another. The SVM achieved the general accuracy at 86% with the maximum
area under curve (AUC) value at 0.86 (95% CI: 0.82-0.90). From the receiver operating characteristic (ROC)
curves, SVM also gains the highest diagnostic performance with a sensitivity and specificity both at 84 %
(Fig. 3A ). Therefore, SVM was selected as the optimal model for further tuning,.

Feature selection is a critical step to avoid overfitting by reducing the model complexity. Recalling that all
metabolite ions that have statistical significance between the two groups, there were various possibilities for
feature selection and combination for model development. To achieve a more robust machine learning model,
it is necessary to select the optimal set of metabolites as the characteristic. For this purpose, we choose
a wrapper-type feature selection strategy that evaluates the chosen machine learning model’s performance
after training with different candidate feature subsets.?? Briefly, the absolute weights of the 66 metabolite
ions in the initial SVM model were ranked to evaluate their discriminating powers. Then the training sets
with features consisting of the top 60, 50, 40, 30, 20, 15, 10, 5, 2 metabolite ions were composed and trained
in the first cohort. As is shown in Fig. 3B , the SVM model’s performance with different feature subsets
maintained stable behavior for the training set whereas the accuracy greatly dropped in the test set when
the numbers of features were less than 15.

The relative expression levels of these 15 metabolite ions in the test set are shown in Fig. 3C and Table S6
. These 15 metabolite ions also had statistical significance no matter in the development cohort or validation
cohort, proving their feasibility as the clinical markers. The classification result on the test set was visualized
in the dimension-reduced space composed of the first two principal components, in which it is seen that more
than 500 HC and OSCC samples can be ideally separated (Fig. 3D ). The confusion matrix showed that
the optimal SVM model can obtain a true positive rate at 94 % for OSCC detection (Fig. 3E ). The final
prediction accuracy reached 89.6 % on the test set (Table S7 ).
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Figure 3. The development of serum metabolomics-based machine learning model for OSCC diagnosis.
(A) Different machine learning models were initially investigated by comparing their diagnostic performance
on the test set. SVM was chosen as the optimal one; (B) The number of features was investigated by
sequential feature selection strategy. Fifteen features were sufficient for the SVM model to achieve the
optimal predicting accuracy on the test set. (C) The relative fold changes of these 15 metabolite ions on
the test set (OSCC vs HC) were visualized; (D) The distribution of two cohorts of HC and OSCC cases and
their decision boundary given by SVM were displayed in the feature space constructed with the first two
principal components; (E) The classification result of the test set was displayed in a confusion matrix. Here
TPR is the true positive rate and PPV is the positive prediction value.

Serum Metabolomic Profiling for OSCC Stages

We also investigated whether serum metabolomic pattern differences exist not only between HC and OSCC
but also among different stages (from stage T1 to stage T4). The OPLS-DA model visualized the distribution
of the OSCC cases in the development cohort (Fig. 4A ). It can be seen the OSCC at T1 and T2 stages
can be ideally separated from these samples at the T3 and T4 stages. Unfortunately, there was no obvious
separation between T1 and T2 or T3 and T4. The variables that made a high contribution to this T1/T2
and T3/T4 separation were searched according to their variable importance on projection (VIP) values.
The variables with VIPs large than 1.5 were picked (Table S8 ). After removing redundant ions, the top
50 metabolites were annotated and their relative contents in serum were displayed in a heatmap. It was
worth noting that 4 out of the top 10 metabolites discovered in the univariate analysis (DG(34:2), oleamide,
LPC(20:4), and nonanoyl carnitine) also contributed to this T1/T2 and T3/T4 stages discrimination (Fig.
4B ). As shown in Fig. 4C, the relative contents of these metabolites in the OSCC group (T1-T4) were
completely different from those in the HC group. Furthermore, they also showed increasing or decreasing
trends from T1 to T4. Unfortunately, none of these top 50 metabolites showed statistical significance among
the four stages by the analysis of one-way variance (ANOVA).
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Figure 4. The OSCC staging by OPLS-DA according to the serum metabolic profiles. (A) The score plots
of OSCC cases at different stages from T1 to T4. (B) The box plots for presenting the four lipid molecules’
relative abundance across HC and OSCC at different stages. (C) The average metabolite profiles of HC and
T1-T4 OSCC subgroups. The metabolites were selected by their VIP scores.

Discussion

This study has demonstrated several advantages of CPSI-MS/ML for OSCC diagnosis from serum sam-
ples. From the aspect of data collection efficiency, CPSI-MS realized quick collection of high-dimension
metabolomic data from each case directly with a timescale of seconds. The total analytical period for these
two cohorts of 819 serum samples took only 12 hours, which satisfies practical requirements for clinical
screening. CPSI-MS is quite suitable for the rapid, direct metabolomic profiling from a dried spot of bio-
logical fluid such as saliva, serum, or even whole blood. A basic methodology investigation was conducted
in this study. A series of serum samples were evenly distributed among the whole test sequence. Then, the
variations of the first two principal components (PC1-PC2) were analyzed. The relative standard deviations
(RSD values) of PC1 and PC2 fall into the acceptable levels at 18.7 % and 31.2 % (Figure S2 ), respectively,
meeting the basic requirement of qualitative analysis.?* This result is largely because data acquisition from
the whole cohort can be completed in one working day. The short period of single case analysis by CSPI-MS
could make the large cohort assay conducted more effectively. The number of QC samples introduced for
monitoring and normalizing the MS system variation was also reduced. This variation is a critical factor that
cannot be ignored, especially compared to data taken from traditional LC-MS or GC-MS systems. With
aid of a pre-trained machine learning model, the high-dimension metabolome data can be transferred into
accurate diagnostic information almost instantly without biased interpretation by practitioners, facilitating
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its practical value in precision medicine.

From the studies of serum metabolomics reported here and the previous saliva metabolomics, the OSCC-
associated discriminating metabolites were identified, respectively. The pathway enrichment analysis re-
vealed which metabolism pathways are influenced in serum and saliva (Table S9 ). The four representa-
tive metabolism pathways (histidine metabolism, arginine biosynthesis, arginine, and proline metabolism,
aminoacyl-tRNA biosynthesis) discovered in the saliva remained highlighted in the serum level, whereas
their impact or significance did not rank at the top. Instead, lipids-related metabolism becomes the ma-
jor pathways including glycerolipid (GL), glycerophospholipid (GPL), and sphingomyelin (SM) (Fig. 5 ).
According to the fold changes of these metabolites (Tables S3 and S4 ), the changes of many metabolites
become less obvious in serum, although the 57 discriminating metabolites discovered in the saliva study
still had abnormal abundance in serum. This was observed mostly among the metabolites located in the
histidine, arginine, and proline metabolism pathways. which were the major changed pathways in the saliva
of the OSCC group. In contrast, the GL, GPL, and SM molecules in serum become the major discriminating
markers (Figure S3 ).
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Figure 5. The OSCC-associated metabolism pathways and the involved major metabolites.

Because OSCC occurs in the oral cavity, cancer cells might scavenge nutrient supply either endogenously from
the local blood circulation or exogenously from the excretion of the salivary gland. In turn, the OSCC cells’
metabolic products will also be exchanged with the extracellular environment and transported through the
circulation system.?® Therefore, this inter-specimen derived difference in dysregulated metabolism pathways
might be attributed to the complex biomass transport and exchange differences between the oral environment
and endogenous circulation environment. Another possibility for explaining why salivary discriminating
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metabolites have diminished significance in serum might be caused by dilution in the global blood circulation.
This suggests the possible value of employing serum metabolome data complementary with the salivary
metabolome data for OSCC diagnosis based on serum lipid features.

It is known that cancer cells can utilize massive nutrients to support their uncontrolled proliferation.?¢ Car-
bohydrates, amino acids, nucleotides as well as fatty acids were all their target biomass not only as the basic
building blocks for proteins, glycans, nucleic acids, and bilayer lipids of membranes but also as the functional
agents such as energy fuels, signaling factors, and transport intermediates.?”3? The dysregulation in aminoa-
cyl tRNA biosynthesis pathway hints at enhancing protein synthesis.?> 4t The excessive energy consumption
was also observed by the abnormal levels of glucose, lactic acid, free fatty acids (e.g., palmitic acid, palmi-
toleic acid, caprylic acid, linolenic acid), mono-acyl glycerol [e.g., MG(14:0), MG(16:1), MG(16:0)], and acyl
carnitine (e.g., acetyl carnitine, nonanoyl carnitine, 6-keto-decanoylcarnitine, pentadecenoyl carnitine) for
glycolysis and 3-oxidation in the mitochondrion. GL, GPL and SPL are not only the critical constituents for
building the bilayer membrane systems but also served as the regulators for signaling.#? The abnormal SPL
metabolism (e.g., sphingosine 1-phosphate, sphinganine, and phytosphingosine) suggests cell proliferation
dysregulation.*® These dysregulated metabolite markers could not only serve as potential markers for OSCC
diagnosis but also might assist in roughly evaluating the OSCC stages.

Serum metabolome-based profiling and metabolites panel-based detection can serve as the molecular diagno-
sis approach complementary with the traditional tissue-based histopathology and routine visual examination.
More than half of serum discriminating metabolites can be traced to the primary lesion site of OSCC tissue
by the DESI-MSI confirmation, proving the feasibility of using serum metabolome information for OSCC
detection. As for the rest of the discriminating metabolites that failed in DESI-MSI detection, it might
be attributed to the limited sensitivity of DESI-MSI especially in these species with low abundance and
ionization efficiency. This possible explanation needs to be confirmed in the future with the aid of an LC-MS
or GC-MS system after tissue extraction and analyte enrichment process.

It was also found that the serum metabolome has the potential for roughly assessing OSCC stages (Fig.
4A ). Although so far, no inter-stage statistical significance was found among any single serum metabolite
(Fig. 4B ), a clear pattern difference appears especially when the OSCC stage was developed from T1
or T2 into T3 or T4 (Fig. 4C ). This result also emphasizes the fact that a single metabolite signature
is neither specific nor sensitive enough to indicate the OSCC occurrence and development compared to
the combination of characteristic metabolites in the form of a diagnostic panel. The criteria of traditional
hypothetical tests in univariate analysis (conventionally referred to P or FDR < 0.05) might be too cautious
to pick out important features in profiling-based prediction methods. In another aspect, it also implies the
importance of multivariate analytical method or even machine learning method in discerning these critical
feature variables for the profile pattern recognition.

Conclusion

We find that the serum metabolic profile obtained by CPSI-MS and analyzed using machine learning can
reflect oral cancer development. Most discovered significant metabolites in serum were also founded in saliva
and cancer tissue, demonstrating the potential of serum for in vitro molecular diagnosis of OSCC. By cohort
analysis using CPSI-MS, we found that histidine metabolism, arginine and proline metabolism, sphingolipid
metabolism, and aminoacyl-tRNA biosynthesis were present in serum. These findings provide potential
clinical markers for indicating OSCC tumorigenesis. We have demonstrated that CPSI-MS is a promising
ambient ionization mass spectrometry tool that offers cost-effective performance in monitoring hundreds of
biofluidic metabolites only with minor sample pretreatment. The combination of CPSI-MS with ML enabled
excellent molecular diagnosis (89.6 % accuracy). All these findings indicate that CPSI-MS/ML can be a
very useful tool for providing a simple, fast, affordable diagnostic method for OSCC screening.
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