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Abstract

The Fourier transform of Cartesian Gaussian functions product is presented in the light of positron scattering. The calculation
of this class of integrals is crucial in order to obtain the scattering amplitude in the first Born approximation framework for
an ab initio method recently proposed. A general solution to the scattering amplitude is given to a molecular target with no
restriction due to symmetry. Moreover, symmetry relations are presented with the purpose of identifying terms that do not
contribute to the calculation for the molecules in the D, point group optimizing the computational effort.

Keywords — Positron and electron scattering, Fourier transform of the Gaussian product theorem, McMurchie-Davidson

procedure, Obara-Saika procedure, linear molecules .

Introduction and Motivation

The modeling of many physical and astrophysical environments demand the knowledge of positron (or
electron) scattering cross sections by atoms and molecules. Electron cross sections are essential to model the
energy deposition in planetary (Gan & Cravens, 1992; Fox et al., 2008) and stellar atmospheres (Jeffrey et
al., 2019) for example. On the other hand, positrons show a crucial role in supernovae (missing citation) and
in the central region of the Milky Way (Johnson IIT et al., n.d.). Moreover, one of the main problems is the
electron and positron dynamics with biomolecules (Sanche, 2005) and biological environments (Champion,
n.d.; (missing citation) with emphasis on DNA basis (missing citation); Mokrani et al., 2020). Even the
positron thermalization dynamics with N9 gas is still an open problem (missing citation).

When a set o high energy positron (or electron) molecule cross sections are needed for some specific appli-
cation, the most basic way to attack the problem is through the Independent Atom Model (IAM) (Massey
et al., 1969). The IAM approach ignores multiple scattering and the chemical bond effects. Nonetheless, it
is an easy-to-implement method that allows one to learn the basics with no great computational effort.

If one wishes to go beyond the simplistic IAM approximation, an elastic scattering calculation in first Born
approximation (FBA) considering a genuine molecular wavefunction may be an adequate line of action. In
the elastic scattering process, there is only momentum transfer between target and projectile, with no change
in the quantum states. The FBA predicts reliable results at high energies where the target polarization is
expected to be negligible. In this context, electron and positron cross sections are expected to be the same
(Kauppila & Stein, 1989). The high energy region is also suitable for computational debugging since ab
initio, model potential and IAM calculations must provide the same results. In this context, once a model
for the molecular wavefunction is defined, the main issue is the non-central nature of the scattering potential.



Electron-molecule calculations performed in the FBA are definitely not new in literature. One can find
the rovibrational calculation of Carson (Carson, 1954) performed with a model potential, the elastic and
vibrational scattering calculation of Ford and Browne (Ford & Browne, 1973) where a Taylor expansion for
the momentum transfer is adopted in order to simplify the evaluation of the matrix elements, followed by
the works of Liu (Liu & Smith, 1973; Liu, 1985) using more sophisticated representations for the molecular
target. The closest work to the one presented here is the calculations of Rescigno et al. (Rescigno et al.,
1975) except for the fact that these authors treat the Born calculation as a correction scheme to the T-
matrix approach. This article is devoted to clarify, as the title propose, the matrix elements and symmetry
considerations involved in electron and positron scattering calculations by non-central potentials in the FBA
employing Cartesian Gaussian Functions (CGF’s). The main challenge in the calculation of the matrix
elements involves the incident particle and the spatial orbital of the molecular system integration, the last
one deserves spacial attention due to its mathematical representation.

In the quantum chemistry research, the mathematical description of atomic orbitals have been studied mainly
with the use of Slater (Slater, 1930; Bouferguene et al., 1996) and Gaussian functions (Gill, 1994; Fernndez
Rico et al., 2001; Magalhes, 2014). The Slater function has the correct cusp at the origin and the physical
exponential decay at long range (Kato, 1957; Liu, 2006), expected by the orbital representation, nevertheless,
when a many-electron system is taken into account, the matrix elements become very hard to calculate in
the coordinate space (Fernndez Rico et al., 2001). On the other hand, in the Gaussian representation, the
well known Gaussian product theorem allows one to reduce two Gaussian functions of different centers to a
single one with well defined new center. Moreover, the integrals involving this type of function have analytic
solution (Gill et al., 1989; Gill & Pople, 1991). Furthermore, the same accuracy in the representation of the
orbital can be expected when Gaussian functions are considered, however one might need to use a larger
number of them (Shaw, 2020).

There are several applications that involve the integration of molecular integrals with Gaussian basis func-
tions, for example, the calculation of magnetic field density (Cassam-Chena, 2001), structure factors in
quantum crystallography (Genoni, 2020), positron and electron scattering (Cérsky et al., 1996; Tachikawa,
2001; rsky, 2007) , molecular magnetic properties (Kiribayashi et al., 1999), density functional theory (Mazur
et al., 2016), relativistic quantum electrodynamics (Grant & Quiney, 2000) and electronic dynamics (Ku-
chitsu et al., 2009).

The computation of the Fourier transform of the Gaussian product has been investigated and several tech-
niques have been introduced throughout the years, nonetheless two main approaches became widely used
in literature. In the one based in the McMurchie-Davidson procedure (McMurchie & Davidson, 1978), the
integrand of the Fourier transform is written in terms of Hermite Gaussian functions. Then, the Fourier
transform is evaluated and the result can be expressed by a recurrence relation that involves the binomial
product and the Hermite polynomials (Johnson et al., 1991; Doll et al., 2001). Another important procedure
is the Obara-Saika approach (Obara & Saika, 1986; Obara & Saika, 1988) where the Fourier transform is
evaluated and a recurrence formula is elaborated with the intention of writing the integral as a function of
other ones of lower angular momenta (Bracken & Bartlett, 1997; Grabowsky et al., 2020).

Recently, we have developed an ab initio model to evaluate the elastic cross sections of diatomic homonuclear
molecules by positron and electron impact in the FBA framework. In this model, the molecular wavefunction
is obtained by the unrestricted Hartree-Fock (UHF) procedure, where the molecular spatial orbitals are
represented by a linear combination of CGF’s. At the moment, the interaction of the incident particle and
the molecular target is described by the electrostatic potential.

Due to the ab initio nature of the proposed model, combined with the non-central Coulomb potential, the
calculation of the scattering amplitude demands the evaluation of several matrix elements involving the
Fourier transform of product of Gaussian functions. A known fact is that with the increase of angular
quantum number of the Gaussian functions used, the number of terms from the Fourier transform (Reine
et al., 2012; Tian et al., 2021) rapidly grow. In the present work, we display the integration procedure
involving the calculation of the scattering amplitude using an approach close to the McMurchie-Davidson



one. The integral results are exhibited in an explicit manner in order to visualize useful symmetry properties
regarding the scattering amplitude. These are due to the product of the expansion coefficients of the
molecular wavefunction obtained in the UHF formulation with the Fourier transform output.

This paper is organized as follows: The scattering model is summarized in section to set the background of
the calculation; In section the CGF notation is given; The electronic scattering amplitude is discussed in
section for an arbitrary symmetry system; In section the symmetry properties for the diatomic homonuclear
molecules are presented and discussed; In section we acknowledge our final comments and conclusions.
Atomic units (a.u.) are used in this paper unless stated otherwise.

Basic Mathematical Definitions of the Scattering Model

Since the focus of this paper is the evaluation of the matrix elements involving CGF, the scattering model
will be briefly described in order to exclusively bring the necessary information to understand the scope of
this work. The physical background of the proposed model and results are addressed in a dedicated paper.

From the quantum scattering theory, the scattering amplitude in the FBA is given by
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where the homogeneous solution in the Born-Oppenheimer approximation, S; = @g“C(é 4) ® ¢o(Sn) ® E,
includes the nuclear (®7%¢(R 4)), electronic (¢o(5y)) and incident particle (k) wavefunctions. The interacting
potential is the electrostatic one, which is given in atomic units by V = qZ%:l Iffilf%ﬂ — quV:l ﬁ =
Vauwe + Velee-  With these considerations, it is possible to evaluate the nuclear and electronic scattering
amplitudes separately. The scattering amplitude regarding the electronic part is the focus of this work, since
the Gaussian functions do not appear in the nuclear counterpart. That being considered, it is possible to
write the electronic amplitude for positron scattering as:
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where the position vectors & and 7 are related to the positron and the molecular electrons, respectively. The
incident wave vector is represented by k; and the scattered one by ky. The molecular wavefuction, obtained
by the UHF calculation, is expressed by the molecular orbitals 1), where the u label stands for the occupied
orbital.

It is important to notice that the 7 space integral in the amplitude (2) resembles a trivial electron repulsion
integral (ERI) commonly found in molecular structure. However, the Coulomb potential involves the incident
particle coordinate . Therefore, common techniques for the evaluation of ERI do not apply.

The Coulomb potential can be rewritten using the following (Taketa et al., 1966) relation:
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The expression (3) enables one to split the dependence in 7 and & of the interacting potential. On the other
hand, a new integration arises related to the auxiliary vector p. This vector has no physical meaning and it
is only a mathematical tool to support the calculation of the integral.

When the equality (3) is applied in the scattering amplitude (2), the definition of the Dirac delta function
appears in the integration of the positron coordinates z:
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Rearranging the terms of the amplitude, the sifting property of the delta can be applied considering the
integration in the auxiliary vector. Therefore, the resulting amplitude takes the form:
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In order to obtain a solution to the amplitude, the integration over the spatial orbitals must be evaluated.
Thus, a suitable mathematical representation to these molecular orbitals is desired. An interesting fact
about this expression is that the entire term in the sum of v can be related to the well known form factors
(Hubbell et al., 1975; Frishberg, 1986) found in literature.

Cartesian Gaussian Functions as Spatial Orbitals and notation

With the purpose of representing the molecular wavefunction, the linear combination of atomic orbitals
(LCAO’s) is employed (Mintmire, 1979). In a molecule, the T-th atomic center has space coordinate Rr.
Since we use Gaussian functions to represent each atomic orbital, these will also be centered at Ry. Within
the LCAQ’s framework, the molecular orbital 1, can be represented by

In this expansion the p label represents any general type of Gaussian function. In addition, each S, P, D
and F type CGF is related to the Greek letters o, II, A and ¢, respectively.

The molecular wavefunction used in this model is obtained by the UHF method procedure, such that the
expansion coefficients {C .} in the spatial orbital (??) are optimized values to represent the ground state



of the molecule. Such coefficients must not be confused with contraction ones, after all, at the moment, we
are using uncontracted CGF’s.

The normalized CGF are generally written (Taketa et al., 1966; Gill & Pople, 1991) as

G(Rp;7) = N(e, l,m,n) (x — X7) (y = Yo)™ (2 — Zp)" o€l Fr|? ,
(6)

where g(ﬁT;F) is centered at ET = X7% + Y7y + Zrz and has angular quantum number £ = [+ m + n.
The normalization N is a function of the Gaussian exponent € and the angular momentum quantum number
components:

N|=
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Since we are using CGF, the angular quantum number gives us information about the symmetry of the
Gaussian-type orbital (GTO). For S type functions the angular quantum number is equal to zero (£ = 0),
and there is only one combination of [, m and n that leads to this result. Therefore, each S type Gaussian
function generates only one orbital, and such orbital has spherical symmetry. It could be said that a S-type
function, due to the fact that £ = 0, has only one projection which is a S-GTO.

In the case of P type functions, where the angular quantum number is equal to one (£ = 1), there are
three different combinations of I, m and n, i.e. , three projections. Hence, each P type Cartesian Gaussian
function produces three distinct GTO with axial symmetry referred here as 1I,, II, and II,. With that in
mind, it makes more mathematical and computational sense to rewrite the labels related to the Gaussian
type incorporating their projections explicitly:
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The same procedure is applied to higher angular quantum numbers, as shown in table 1 with the respective

% projections. Thus, using the summation to distinguish the projections related to the specific angular

quantum number of each CGF the spatial orbital is represented by:



Table 1: Notation of the spatial orbitals with the projections of the Cartesian Gaussian function explicitly
written, considering the summation in the index i, j and k related to the Cartesian components, i.e., 1 = x,
2=yand3==z.

Angular quantum number Projection Notation Normalization relation
S type (£ =0) o oc—o N
3
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The aforementioned observations are important in order to simplify the integral solutions and are helpful to
a computational implementation. This procedure allows one to identify the coefficients that produce terms
that do not contribute to the scattering amplitude. It is important to notice that, even these terms cancel
each other, in the calculation, they are evaluated, and depending of the complexity of the systems, it might
consume time and computational power.

It is important to observe that the normalization (7) is also separate in order to reflect the related projection
of the functions. In a few cases the normalization of the projections have the same value, however for D and
F type functions some differences arise, as shown in table 1.

scattering amplitude in the first born approximation

With the purpose of solving the electronic amplitude (5), one must consider the spatial orbital (??) along
with its complex conjugate. Consequently, several integrals will arise due to the product of these spatial
orbitals,

/ B7 e G (R ) Go(Bos ) |
9)

where { =k - l_c; is the momentum transfer vector, used here to simplify the notation, and p and v are
employed to represent a generic type of CGF. One of the reasons to apply these functions (instead of slater
ones) is the Gaussian product theorem (Shaw, 2020), as commented before. In the light of this theorem, two
non-concentric CGF can be written as a new CGF centered at a point between the two original functions.

To set up a general line of reasoning, let us consider a Gaussian function g#(ﬁT; 7) as defined in (6). In the

same manner, a second CGF G, (EQ; 7) localized at ﬁQ = Xq& + Yoy + ZgZz and with all other properties
denoted by the v index. The product of these CGF’s yields a new one centered at

E#ET + EDRQ
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and the product has the form:

The polynomial product (z — X)) (x — Xg)! can be expressed considering the binomial theorem. It allows
one to rewrite such product as a function of (x — P,) being suitable to the evaluation of the integral. In
order to do so, the position vector P of the new CGF must be embedded in the polynomial product. It can
be done simply expressing the terms as: (z — X7)! = ((x — P,) + (Py — X7))' = (z— Pp) + (ﬁ)z)l This
will result in one term that does not depend on the integration coordinate 7 and other one, called B, that is
a function of known quantities. This is,
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= Bb +b/ (l/u(PT)ﬂm Vv(PQ) ) (If P, )b o
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Considering the polynomial product (11), the Cartesian Gaussian product (??) can be expressed in a general
way for any angular quantum numbers. Besides, this approach leads to well known analytic integrals. It
is straightforward to see that one can take advantage of using CGF’s and separate the three dimensional
integral (9), considering the Gaussian product theorem, into the product of three integrals of Cartesian
coordinates that are completely analogous. Such expression has the form:

The integration in the expression (?7) can be written as a trivial Fourier transform of a Gaussian function
and is found in a few works in literature (Taketa et al., 1966; Cérsky et al., 1996; Genoni, 2020). One can
disregard the polynomial considering the derivative in the quantity £&. In addition, an exponential arise due



to a change in coordinates needed to perform the calculation. The result of the integration is connected to

the generating function of the physicist’s Hermite polynomial H,(z) = (—1)" v’ %e‘xz. Therefore,

It is worth noting that this procedure swaps the dependency from Cartesian Gaussian functions to Hermite
Gaussian functions (Genoni, 2020). With the result of (??) extended to all Cartesian coordinates, one can
write the integral (?7?) in its full form,

The expression (?7), which is the general solution for (9), can be applied to the electronic scattering amplitude
(5) in order to obtain a expression that has no restriction regarding the number of atomic centers and the
level of CGF. For this reason, the present solution is suitable for the calculation of the scattering amplitude,
consequently enabling one to obtain the differential cross section in the FBA for any molecular system.
Moreover, it is possible to verify its validity to the special case of atoms, where all the CGF’s are trivially
centered at the origin.

the effect of symmetry in the scattering amplitude

For the purpose of observing the effect of symmetry in the calculation of the scattering amplitude, it makes
sense to split the result of integral (??) in a few quantities to ease the visualization of the results. Thus, the

quantity T:? = Tl”m”"”Q(é €y Rriey, EQ) is introduced,
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where it is important to notice that the dependence in the Gaussian centers is in the entity 5. In the special
case where the Gaussian functions are in the same center, a commutation in the column index yields a
LT%:ZZ? = ;:‘ZZ:Z:?, i.e. , the l,, m, and n, are interchangeable to [, m,,
and n, respectively. Looking back to the result of the Fourier transform (?7?), the exponential with explicit
dependence in the Gaussian coordinate vector is represented by

symmetry to this expression, T
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With these considerations, the integral (??) can be rewritten simply as:
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The representation (13) of the Fourier transform of the Gaussian product deserves some attention regarding
symmetry. If both CGF’s are in the same center, the exponential function E? (€u, Ry €y, Rg) will not
contribute, no matter the symmetry of the system, since Ej(‘g oro =1

From now on, diatomic homonuclear molecules will be considered, however, some comments may be high-
lighted regarding other symmetry groups. In this class of systems, the CGF’s centers are symmetric and
belong to the du.;, point group. As consequence, the Gaussian position vectors can be represented by Ry
and Rs with the following properties: |ﬁ1| = \R2| = R and Ry = —R, . Because of that, the exponential
function will always yield the result

E?—Fl = __v g2 _f.
2 eXp|: €H+€V

In order to visualize the symmetry properties in a clear and concise manner, we will only demonstrate the
calculation with S and P type CGF’s. Nonetheless, comments on the high angular momentum calculations
will be given in the text.

Let us consider the scattering amplitude (5) and the spatial orbital expansion (??) up to P type functions:

The first term in the amplitude (??), only dependent in the S type function T,_,, can be expressed by the
previous definition (13) simply as:

2 2 #S #S
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where the T term can be expressed in both notations nggg or TZ,TQ. One may use the first one to explicitly
visualize the angular quantum number projections or use the second one for the sake of simplicity. In
equation (15), apart from the Fourier transform, the expansion coefficients C' also carry the Gaussian center
information by the labels T" and ). Therefore, these quantities need crucial attention in the analysis of
symmetry for the scattering amplitude. Likewise, the center information is encapsulated in the exponential
term e~¢"F | more specifically in the P vector.

The position vector of the Gaussian product P is defined as the weighted average (10) of the vectors Rr
and Rg. Recalling the properties |R1| = |Rz| = R and Ry = — Ry, due to the fact that there are 2 possible
centers (ﬁl and Rg), represented by the sum in 7" and @, there are three possible scenarios here:

e both Gaussian functions in the same center (R, or Ry)
I A =

}%1 = 1%1 =R or }3

/
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e Gaussian function defined by €, in ﬁl and the one with exponent €/ in ﬁg
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where the term €77 =

has been introduced to simplify the notation ;

e Gaussian function with exponent €/ in R, and the one related to the exponent €, in R

js _ Eg]§2 + 6;1%1 _ —€o *‘Eg,}i _ €r — 6; j% _ ——600/ —
€s + € € + € € + € R
(18)

Considering the exponential definition (14), for Gaussian exponents of S type functions it has the represen-
ege;

p—— R? ] In addition with the consideration (16), (17) and (18) , the first term (15)
of the scattering amplitude can be expressed as,

tation E,p = exp [f
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As stated before, the expansion coefficients from the UHF calculations play an important role in the analysis
of symmetry, in fact their product allows one to simplify the equations. Observing the product of the
coefficients for S type CGF we have: C. C! _, = C2_C?_, and C}_ C?_, = C2_C!_, . Moreover,
for the special case of diatomic homonuclear molecules, if the Gaussian functions are in the same center,
TZ% =77 2. Thus, the exponential functions in (??) can be rewritten as cosine functions throw the Euler’s
formula 2 cos(z) = €™ + e~ hence

#S #S
TU_U = 22 Z [C;UC% o’ Tg/ll Ccos (g E) + O’iacﬁ o’/ Eo’a’ TZ;Q COS (g.éeaa/) :| .

o=1 o’'=1

For the second term in the scattering amplitude (?7?), the previous comments regarding the vector P are
valid. nevertheless, one must pay attention to the projections that arise from the P type Gaussian functions,
already commented in previous sections. These projections, mathematically embedded in the expression as
a sum in the index i, i.e. , the sum Zle, will affect the expansion coefficients C' and the term Y defined in
(7?). So,
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Using the compact notation above, due to simplicity, the term (20) can be treated considering the sum in
the Gaussian centers. One can rewrite T, _g as,

The product of the coefficients C' for S and P type CGF have the following symmetry: C}
_Cz G‘CZ II; and C& 002 o, — _CIQL UCQIL II;

u

1 —
Cu I, —

Apart from the special case of S type Gaussian functions, the T quantity has real and imaginary parts.
Therefore, it is useful to define T;? = Re (TZ ?) + 7 Im (T; E‘,%) The terms related to angular quantum

number sum of the Gaussian functions (L, M and N) are subjected to symmetry due to the binomial theorem
(11) and the imaginary component of the Fourier transform (??). This is applicable observing their upper
limits: if the upper limit is odd the real part is antisymmetric to change of center and the imaginary part

is symmetric, i.e. , Re (Tgif) = —Re (T}él) and Im (Tgif) = Im (Tgi21); if the upper limit is even,
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regarding the change of center, the real part is symmetric and the imaginary one is antisymmetric, i.e.
Re (Tg’f) = Re (TEgl) and Im (Tgilz) = —Im (Tgi21).

In addition, in the scenario where both Gaussian functions are in the same center, the analysis is straight-
forward from the Fourier transform (??). So, for angular quantum number sum (L, M and N) odd the T

term is purely imaginary Tfj% =4 Im (T‘;} . On the other hand, with the upper limits even, it is purely
real T | = Re (T’; })

From these observations, in the term considering S and P type Gaussian functions it is possible to observe
that

Re (TE”’IZ) = —Re (Tg’él) and Im (Tgilz) =Im (TE’;) .

(21)

Thus, one can rewrite the term related to S and P Gaussian functions T, _p taking the exponential functions
in evidence:

Considering the Euler’s formula 2cos(z) = € + ¢~ and 2isin(z) = e — ¢~ this expression can be

displayed with dependence to the trigonometric functions:

The third term in the scattering amplitude (?7?) involves only P type functions. This kind of Gaussian
function has three projection (II,, II, and II,) and as consequence there would be nine distinct term from
these projections. Further, due to the permutation in the centers T and (), and the fact that these terms
have real and imaginary components, the total of sixty four terms could arise from each P function pair. In
a compact notation it is written as:

12



Observing the expansion coefficients C for the Do, since it is a linear group: C- HiC’fn,‘ = 0;; . Likewise, the
J

product of these coefficients allow one to observe that they are symmetric by change of center: C} ;. Ci o =
i j

2 2 1 2 _ 1
Cum, Cun;. and C,, , Cy I, =Chm, O, -

Regarding the function T, since the angular quantum number sum is even, in the scenario when the Gaussian
. . e . . I 1 I 1
functions are in the same center, it is a pure real quantity, i.e. , T’ ; = Re (TH? 1). Also, as commented

before, in the case of even upper limit, by the change of center the real part is symmetric and the imaginary
one is antisymmetric.

Rearranging the terms and considering the Fuler’s formula, it is possible to express 71—y in terms of
trigonometric functions:

Therefore, with the application of the symmetries of the functions, specially the product of the expansion
coefficients C| it is possible to reduce from the original sixty four terms of T;_y1 to nine (considering the
sum in the index 7).

With the use of the presented properties, one can evaluate the electronic scattering amplitude taking into
account the symmetry of the system with a compact expression that disregard a few terms. Along with its
nuclear counterpart, the scattering amplitude for the proposed system can be readily obtained.

This procedure can be extended to higher angular quantum numbers as commented before. In that case,
the part of the T}, expression where the Gaussian functions are in the same center is quite trivial and will
generate only one term per p — v pair. This component can always be written as a trigonometric function,
as noted in the previous equations.

With the increase of the angular quantum numbers more terms will arise in the sector where the Gaussian
functions are in separate centers, leading to real and imaginary terms. However, these can be expressed as a
function of sine and cosine functions with real and imaginary components, always considering the symmetric
relations commented in the text.

In order to summarize the symmetry relations regarding the expansion coefficients from the UHF calculation,
the product of these quantities is given in table 2. The S, P, D and F type Gaussian functions are represented
by o, II, A and ¢, respectively. In each cell, the product symmetry of the coefficients C' is given considering
the g — v pairs. Below the product symmetry, in each cell of the table, a few conditions to identify the non-
vanishing values are also pointed out in the form of Kronecker delta, i.e. , the index must be in accordance
to the delta in order to obtain nonzero values, further, the ones with arrow indicates special conditions
observed in this symmetry group. All this operations can be extended to the symmetry group Do, paying
attention to the index T and Q.

13



Table 2: Symmetry relations involving the expansion coefficients from the unrestricted Hartree-Fock calcu-
lation, more specifically, the symmetry of the product of the coefficient. Also, relations that enable one to
verify the non-vanishing values is given with the Kronecker delta. These relations are applicable to diatomic
homonuclear molecules, nonetheless they can be extended to all systems in the D, symmetry point group.
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Conclusions

In this work, we have presented Fourier transform of Gaussian functions related to a recently proposed
positron-molecule scattering model. More precisely, the model enables one to evaluate the scattering ampli-
tude of diatomic homonuclear molecules considering the electrostatic potential in the FBA framework. The
molecular wavefunction is described by a superposition of CGF and it is obtained by an UHF calculation.

The Fourier transform terms are directly connected to the Gaussian product, from the UHF procedure, and
the exponential function that represents the scattered particle. The appearance of these classes of integrals
are also caused by the non-central potential that describes the interaction of the particle with the molecular
system. We have employed a similar procedure to the McMurchie-Davidson one (McMurchie & Davidson,
1978) in order to evaluate the integrals, however, in this manuscript, the integrals are exhibited in a more
explicit manner with the intention to highlight the terms that are more relevant to the scattering process.
With these results, the method of calculation of the scattering amplitude can be easily extended to molecules
belonging to any symmetry group.

Apart from the general solution, we have studied the symmetry properties that arise from the product of
the expansion coefficients (from the UHF calculation) with the integral results. Such analysis enables one
to disregard terms that would be calculated but do not contribute to the scattering amplitude. With this
approach it is possible to reduce considerably the number of terms that must be taken into account in the
computational calculation. The symmetry properties are conceived for diatomic homonuclear molecules, but
they can be readily extended, paying attention to the atomic centers, to any system belonging to the D,
point group.

The relations that comes from the analysis can be used to ease the calculation of future ab initio scattering
methods for this class of molecules. Moreover, these considerations combined with new computational
techniques (Mazur et al., 2016) may be useful in the investigation of larger molecules with D, symmetry.
The extension to the Cp point group can be considered recalculating a few terms in the model.
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