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Abstract

Porcine Deltacoronavirus is a newly emergent enteric pathogen affecting swine farms worldwide. It has been detected in several

countries in Europe, Asia and North America; yet, it has not been reported in South America. In November 2019, an enteric

disease outbreak in a pig farm located in San Martin, Peru; was reported along with submission of three intestinal samples

from pigs who succumbed to the disease. Samples were processed for molecular detection by qRT-PCR, viral isolation and

further sequencing analysis. A taqman-based RT-PCR was performed to differentiate among the most relevant swine enteric

coronaviruses described to date. All samples were positive to Porcine Deltacoronavirus with a cycle threshold (Ct) value between

9-14, revealing a high viral load, while testing negative to Porcine Epidemic diarrhea and Transmissible Gastroenteritis viruses.

Following detection, viral isolation was performed using PK-15 and Vero cell lines. After 5 days of inoculation, no cytopathic

effect was observed. A second blind passage allowed the observation of cytopathic effect on PK-15 cells, while it remained absent

in Vero cells. A fluorescence test using an anti-N monoclonal antibody confirmed viral replication. One sample was processed

for whole genome sequencing (NGS). In short, raw reads were imported into CLC genomics and assembled de novo. Out of

479k reads generated from the sample, 436k assembled into a 25501 bp contig which was 99.5% identical to a reference Porcine

Deltacoronavirus strain from US within the North American phylogroup. Yet, there are relevant differences at the nucleotide

and amino acid levels compared to previously described Porcine Deltacoronavirus strains. Altogether, our findings represent

the first report of Porcine Deltacoronavirus in South America, its genomic characterization, which provides information of its

evolutionary origin. Thus, this study offers new insights into the molecular epidemiology of Porcine Deltacoronavirus infections

in the swine industry.

First isolation and whole genome characterization of Porcine Deltacoronavirus from pigs in
Peru

Short running title: Porcine Deltacoronavirus in Peru

Juan A. More-Bayona1, Mercy Ramirez-Velasquez1, Ben Hause3, Eric Nelson2, Hermelinda Rivera-
Geronimo1

1Laboratory of Virology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima,
Peru, 15081

2Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
57007

3Cambridge Technologies, Worthington, Minnesota, USA, 56187

Corresponding authors:

1



P
os

te
d

on
A

u
th

or
ea

16
N

ov
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
63

70
90

67
.7

89
52

57
1/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. Juan More-Bayona, Laboratory of Virology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de
San Marcos, Lima, Peru 15081. Email: jmoreb@unmsm.edu.pe

Mercy Ramirez-Velasquez, Laboratory of Virology, Faculty of Veterinary Medicine, Universidad Nacional
Mayor de San Marcos, Lima, Peru 15081. Email: mramirezv@unmsm.edu.pe

Abstract

Porcine Deltacoronavirus is a newly emergent enteric pathogen affecting swine farms worldwide. It has
been detected in several countries in Europe, Asia and North America; yet, it has not been reported in
South America. In November 2019, an enteric disease outbreak in a pig farm located in San Martin,
Peru; was reported along with submission of three intestinal samples from pigs who succumbed to the
disease. Samples were processed for molecular detection by qRT-PCR, viral isolation and further sequencing
analysis. A taqman-based RT-PCR was performed to differentiate among the most relevant swine enteric
coronaviruses described to date. All samples were positive to Porcine Deltacoronavirus with a cycle threshold
(Ct) value between 9-14, revealing a high viral load, while testing negative to Porcine Epidemic diarrhea and
Transmissible Gastroenteritis viruses. Following detection, viral isolation was performed using PK-15 and
Vero cell lines. After 5 days of inoculation, no cytopathic effect was observed. A second blind passage allowed
the observation of cytopathic effect on PK-15 cells, while it remained absent in Vero cells. A fluorescence test
using an anti-N monoclonal antibody confirmed viral replication. One sample was processed for whole genome
sequencing (NGS). In short, raw reads were imported into CLC genomics and assembled de novo . Out of
479k reads generated from the sample, 436k assembled into a 25501 bp contig which was 99.5% identical
to a reference Porcine Deltacoronavirus strain from US within the North American phylogroup. Yet, there
are relevant differences at the nucleotide and amino acid levels compared to previously described Porcine
Deltacoronavirus strains. Altogether, our findings represent the first report of Porcine Deltacoronavirus in
South America, its genomic characterization, which provides information of its evolutionary origin. Thus,
this study offers new insights into the molecular epidemiology of Porcine Deltacoronavirus infections in the
swine industry.

Keywords: Porcine Deltacoronavirus, Peru, diarrhea, whole genome sequencing, PDCoV isolation. Emerg-
ing diseases, Veterinary epidemiology

Introduction

Coronaviruses comprise a large group of single-stranded, positive-sense RNA viruses that infect a broad range
of species such as avian and mammals, including humans. Coronaviruses belong to the orderNidovirales ,
family Coronaviridae , subfamilyCoronavirinae . These enveloped viruses are the largest RNA viruses
identified to date ranging from 24-32 kb. Members of the subfamily coronavirinae have been recently grouped
into four genus as Alphacoronaviruses , Betacoronaviruses ,Gammacoronaviruses and Deltacoronaviruses by
the International Committee for Taxonomy of Viruses (ICTV) (Lefkowitz et al., 2018; Woo et al., 2010).
Interestingly, it appears that the first two groups have originated from bats, while the latter two emerged
from wild birds (Woo et al., 2012).

Porcine deltacoronavirus (PDCoV) is an emergent virus that causes gastrointestinal disease such as diarrhea,
vomiting, dehydration and death in young piglets representing a major threat to swine industry (Jung et
al., 2015; Li et al., 2019; Zhang, 2016; Zhao et al., 2019). Although PDCoV by itself causes enteric disease,
co-infections with other coronaviruses such as Porcine Epidemic Diarrhea Virus (PEDV) and Transmissible
Gastroenteritis Virus (TGEV) or other viruses are commonly found (Dara et al., 2018; Feng et al., 2017;
Marthaler et al., 2014; Niederwerder, 2018; Song et al., 2015). In this context, PDCoV shows indistin-
guishable clinical signs from other forms of enteric disease such as PED, TGE and Swine Acute Diarrhea
Syndrome (SADS). Thus, proper differential diagnostic relies on genetic detection-based assays that offers a
highly sensitive and specific method.

PDCoV has a unique genomic organization. Starting from 5’-end, PDCoV has a 5’ untranslated region
(UTR), replicase (ORF 1a/b), spike (S), envelope (E), membrane (M), non-structural 6 (NS6), nucleocapsid
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. (N), NS7 genes and 3’-UTR (Woo et al., 2010; Zhang, 2016). Interestingly, PDCoV lacks ORF3 and NS1,
present in other well-known coronaviruses (Si et al., 2020). From these genes, S gene encodes a highly
glycosylated protein responsible for binding, cell attachment and entry into target cells, and therefore highly
immunogenic. Thus, S gene is commonly used for phylogenetic analysis and vaccine development.

The first identification of PDCoV dates back to 2012 in Hong Kong by Woo et al, followed by multiple
outbreaks in the US (Homwong et al., 2016; Marthaler et al., 2014; Wang et al., 2014). Later, PDCoV was
reported in Canada (Niederwerder, 2018), Korea (Jang et al., 2018; Lee et al., 2016; Lee & Lee, 2014), Japan
(Suzuki et al., 2018), Thailand (Lorsirigool & Adthakorn, 2017; Saeng-Chuto et al., 2016) and Vietnam (Le
et al., 2018; Saeng et al., 2019). More recently, PDCoV was detected in Mexico (Pérez-Rivera, et al., 2019).
In South America, coronavirus infections in porcine are commonly reported. For instance, multiple studies
revealed that PEDV and TGEV are present in several countries such as Colombia (Piñeros & Mogollón
Galvis, 2015), Ecuador (Barrera et al., 2017) and Peru (Castro-Sanguinetti et al., 2017). However, PDCoV
has never been reported in South America. Hence, we report the first isolation and whole genome sequencing
of PDCoV in Peru, providing new insights into the molecular epidemiology of this emerging disease in swine.

Materials and methods

2.1. Samples and RNA extraction:

In November 2019, a report of an enteric clinical disease outbreak in a farm located in San Martin, Peru
(see Figure 1C) was made by a local veterinary professional to the National animal health authorities
(SENASA). The report indicated high morbidity in young piglets. Intestinal samples were submitted by the
farm professionals to the Laboratory of Virology in the Faculty of Veterinary Medicine at the Universidad
Nacional Mayor de San Marcos in Lima, Peru; for testing and detection of PEDV, TGEV and PDCoV by
qRT-PCR. Intestinal content (1 ml) was processed accordingly. In short, samples were diluted in 5ml of
phosphate buffer solution (PBS) and centrifuged at 250 g for 5 minutes. Following centrifugation, 1 ml of
supernatant was processed for RNA extraction using the QIAmp viral RNA mini kit (Qiagen), following
manufacturer’s specifications.

2.2. PCR differentiation and detection

Samples were assayed by qRT-PCR to differentiate three main enteric coronaviruses affecting pigs as PEDV,
TGEV and PDCoV. Thus, we used the EZ-PED/TGE/PDCoV MPX 1.1 kit (Tetracore) following manu-
facturer’s specifications.

2.3. Viral isolation

For viral isolation, we tested two different cell lines known to support coronavirus replication. We used PK-15
and Vero cells which were plated in 24-well plates at 90% of confluence. PK-15 cells were kindly provided by
Dr. Jhon Pasick from the Canadian Food Inspection Agency (Ontario, Canada) and Vero cells by the Naval
Medical Research Unit Six (NAMRU-6). Briefly, 100 μl of intestinal content was filtered and treated with
TPCK-trypsin (10 μg/ml) to allow ligand cleavage for further virus attachment to cell receptors. Treated
samples were inoculated and incubated for 1 h, followed by replacement of maintenance media with trypsin.
Cells were incubated for 5 days at 37 °C with 5% CO2, with a second blind passage. Cytopathic effect was
evaluated daily, and pictures recorded under light microscopy (Leica Microsystems) using a Leica MC170 HD
camera (Leica Microsystems). Following isolation, we performed an immunofluorescence test using a PDCoV
anti-nucleoprotein monoclonal antibody (SD55-197), kindly provided by Drs. Eric Nelson and Steven Lawson
from the South Dakota State University (South Dakota, US), to confirm the presence of the PDCoV.

2.4. Whole genome sequencing

Viral RNA was purified from one sample and processed for next generation sequencing (Illumina, Inc), follo-
wing manufacturer’s specifications. Reads were imported into CLC genomics and assembled de novo.Whole
genome and ORF 1a/b sequences of PDCoV were obtained from GenBank (n=23) for phylogenetic analysis.
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. For analysis based on S gene, we also included those from Mexico (n = 27). General information of nucleotide
sequences used is listed in Table 1.

2.5. Phylogenetic analysis

The PDCoV whole genome, ORF 1a/b and S nucleotide sequences in this study, were aligned using ClustalW
from MegaX software (Kumar et al., 2018). We used PDCoV genome sequences obtained from GenBank
isolated in the US (n = 13), China (n = 5), Japan (n = 1), Vietnam (n = 2) and Thailand (n = 2). We
included sequences from Mexico (n = 4) for phylogenetic analysis of S gene. A general time reversible (GTR)
nucleotide substitution model with gamma distribution among site rate variation was used, with a maximum
likelihood estimation model for phylogenetic reconstruction. Bootstrap analysis was carried out on 1000 data
sets. The percentage of nucleotide sequence identity was also calculated.

Results

3.1. Molecular detection confirms the presence of PDCoV genome in intestinal samples of pigs
suffering from an enteric disease outbreak in Peru

We took advantage of a widely used qRT-PCR assay that allows accurate differentiation of most common
enteric coronaviruses in swine such as PEDV, TGEV and PDCoV. qRT-PCR results confirmed the presence
of PDCoV RNA in all (n=3) samples analysed, which tested negative to PEDV and TGEV. In addition to
its qualitative feature, this assay allows relative quantification. Thus, the viral load was quantified through
the amount of genetic target of PDCoV amplified during the process. Samples had low Ct values to PDCoV
(Ct = 9-14) which indicated a high PDCoV viral load. From these results, we inferred that PDCoV was
involved in the enteric disease with high viral titers.

3.2. PDCoV replicated in PK-15 while Vero cells did not allow PDCoV propagation

Following PDCoV detection, our objective was to isolate in vitrousing PK-15 and Vero cell lines. Despite
the high viral load detected by PCR, we did not see evidence of cytopathic effect during the first 5 days
following inoculation in any of the cell line tested. Thus, we performed a second blind passage to evidence
viral replication. Interestingly, 48 h post inoculation, cytopathic effect was observed in PK-15 cell line, but
morphological changes in Vero cell line were absent. These findings were also confirmed by qRT-PCR. Within
the major cellular changes observed are: pyknosis, cell rounding, monolayer disruption, cell detachment, which
correspond to typical coronavirus cytopathic effect previously described (see Figure 1A). Furthermore, the
immunofluorescence test in PK-15 infected cells, confirmed the presence of PDCoV (see Figure 1B). Following
isolation, a sample was selected and prepared for genome sequencing.

3.3. Whole genome and ORF 1 a/b sequencing analysis indicates that Peruvian PDCoV isolate
originated from an US PDCoV strain

The nucleotide sequence of Peruvian PDCoV isolate, identified as PDCoV/Peru/isolate/2019, was submitted
to GenBank under the accession number MT227371. Our Peruvian PDCoV genome follows similar patterns
with other PDCoV genome sequences deposited in GenBank. Thus, this isolate is 25,501 nt in length and
consists of, excluding the polyA tail: 5’-UTR (1-480 nt), ORF1a/b (481-11368 nt, 11368-19283 nt), S (19265-
22747 nt), E (22741-22992 nt), M (22985-23638 nt), NS6 (23638-23922 nt), N (23943-24971 nt), NS7 (24037-
24639 nt) and 3’-UTR (24972-25501 nt). A graphical representation of the characterized PDCoV isolate is
shown in Figure 2.

Phylogenetic analysis has typically been performed using key major genes of any organism of interest.
However, this analysis tends to limit the analysis to a certain gene or group genes. Conversely, whole genome
sequencing offers a more complete and deeper genetic characterization compared to partial approaches. In
our study, we took advantage of next generation sequencing of our PDCoV isolate to track its evolutionary
origin. Our results indicated that our Peruvian strain belongs to the North American phylogroup and is
closely related to a PDCoV strain from the US isolated in 2015 (99.5% of nucleotide identity). Genetic
distance of the Peruvian PDCoV strain with other PDCoV analysed reveals high similarity between 97.1
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. and 99.5%. Compared to the US strains, the Peruvian PDCoV has a nucleotide identity between 99.45 -
99.51%. Percentages range from 98.6 to 98.74% when compared to the Chinese strains. Finally, nucleotide
identity is 97% and 97.5% for Thai and Vietnamese strains, respectively. A summary of nucleotide identity
is shown in Table 2. Further analysis based on ORF 1 a/b showed identical topology to the whole genome
sequence phylogenetic tree. Altogether, these results indicate that the virus detected in Peru has emerged
from a North American ancestor (see Figure 3A and 3B). Similarly, PDCoV protein sequence analysis
resembled the topology of the nucleotide analysis.

3.4. Phylogenetic analysis of Peruvian PDCoV S gene shows close relationship to the Mexican
PDCoV within the North American phylogroup

S gene is one of the most variable genes among coronaviruses. This is due to its function in cell attachment
and viral replication. This high polymorphism makes the S gene a powerful tool to estimate the evolutionary
relationship among virus strains belonging to the same genetic group. Hence, we performed a phylogenetic
analysis using the PDCoV S nucleotide sequences publicly available with our Peruvian S nucleotide sequence
to evaluate their evolutionary distance (see Figure 4A). Our results indicate that our PDCoV isolate has
close relationship to the Mexican PDCoV strains (98.65 – 99.21 % of nucleotide identity) within the North
American phylogroup. Similarly, S protein phylogenetic analysis reveal similar evolutionary relationship
among strains analysed. Yet, S phylogenetic analysis evidence that Peruvian PDCoV has a certain degree of
divergency from the North American phylogroup.

3.5. Peruvian PDCoV Spike amino acid sequence reveals unique substitutions compared to
other PDCoV strains

As we observed multiple changes at the nucleotide level in the S gene, we were interested in evaluating
whether these changes represent modifications at the protein level. Thus, we found multiple changes in the
S protein sequence (see Figure 4B). Most relevant changes are K96R, G552E, A630V and V1052A that
represent unique variations compared to other PDCoV strains. Other amino acid changes have been also
found in Chinese strains such as P38L and A137V. We also detected F530L, like the one found in the
Vietnamese strains. Furthermore, the Peruvian strains have a Q642K, like those in Vietnamese and Thai
strains. These results provide evidence that PDCoV has undergone to unique changes that indicate a degree
of genetic diversity in the Peruvian PDCoV strain. Based on previous studies of PDCoV Spike protein
characterization (Shang et al., 2018), amino acid substitutions observed here are located randomly across
both S protein subunits (S1 and S2) but none of them is located in the RBD region (S1-CTD).

Discussion

PDCoV is one of the most recent and relevant coronaviruses of swine industry. It represents a major threat
for swine productivity, and it is responsible for large economic losses worldwide. Yet, PDCoV remains poorly
studied despite major efforts made recently. In Peru, multiple cases of enteric disease have occurred, however,
these cases are not properly addressed and frequently misdiagnosed. Hence, this study represents the first
report, isolation and phylogenetic characterization of a Peruvian PDCoV isolate using the whole genome
sequence and its major S protein, revealing unique aspects compared to other PDCoV strains.

Our viral isolation findings contrasted with those detected by qRT-PCR. This provided evidence that a large
proportion of viral particles were unable to replicate into a cell line support. This has also been reported by
others indicating that low viral isolation rates might be attributed to sample degradation and viral viability
(Hu et al., 2015). On the other hand, multiple authors have shown that successful viral isolation are due to
other factors such as cell line permissibility and enzyme treatment (Yang et al., 2020; Zhao et al., 2019). In
our study, it remains unclear whether trypsin concentration (10 μg/ml) might have played a role in the lack
of viral replication in Vero cells. Additional studies, at different trypsin concentration, will elucidate Vero
cell line permissibility to PDCoV. Interestingly, we did not observe cell toxicity in our assays, as that was
absent following the first 5 days of inoculation and PDCoV cytopathic effect was evidenced in the second
passage. These results contrast with other claims that cell toxicity is common during PDCoV isolation using
intestinal content or fecal samples (Hu et al., 2015). Nevertheless, further studies are required to clarify the
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. implications of cell permeability to PDCoV in viral replication and its effects on clinical presentation.

Whole genome analysis revealed that our isolate was closely related to North American strains. The close
relationship within the Peruvian and the North American strains indicate they share a common phylogenetic
ancestor and revealed that the Peruvian isolate emerged from a US strain. In 2016, Perez-Rivera et al.
reported the first phylogenetic analysis of PDCoV in Mexico, focusing the analysis on the S gene nucleotide
sequence, and no report of PDCoV whole genome sequence was made (Pérez-Rivera et al., 2019). Thus,
we were unable to evaluate the phylogenetic relationship using the whole genome sequence of PDCoV from
Peru and Mexico. We believe that this would add deeper understanding about its appearance in Peru and
contribute to its epidemiology in South America.

Due to its high variability, S gene nucleotide sequences have been used to estimate the genetic relationship
of PDCoV strains worldwide. Perez-Rivera et al. demonstrated that Mexican PDCoV formed two clades: the
group including strains isolated in 2015, and those PDCoV isolated in 2017 (Pérez-Rivera et al., 2019). In
our study, phylogenetic analysis using S gene nucleotide sequences reveals that Peruvian PDCoV grouped
closely to the Mexican strain isolated in 2015 within the North American phylogroup. This indicates a close
relationship among PDCoV strains from Mexico, the US and Peru, sharing a common ancestor and evidencing
a dissemination route of PDCOV from North America to South America. Interestingly, multiple non silent
mutations were found in the Peruvian PDCoV strain compared to other genomes. Even though some these
mutations have been described in other PDCoV strains, some are unique to the Peruvian isolate revealing
that this isolate has undergone phenotypical changes after its emergence in North America. Although these
substitutions were not located in critical regions of glycosylation sites nor in the RBD region (S1-CTD),
they might have influence in ligand/receptor interaction. Further studies are required to clarify whether
these modifications have implications in the pathobiology and development of the clinical disease.

To date, it is unclear how PDCoV was introduced in Peru. However, there is a long history of commerce
between Peru and North American countries that has expanded in recent years. The National Service of
Animal Health in Peru (SENASA) reported the import of a large number of purebred animals (˜ 150 tons)
during the 2014 and 2018 period. Furthermore, Peru imports feed ingredients for swine farms mainly from
the US (MINAGRI, 2020). Altogether, this might explain the possible routes for PDCoV entrance into
the country, similar to that described for other viruses of importance for swine industry (Dee et al., 2018;
Ramı́rez et al., 2019). Interestingly, there is no report of PDCoV in other South American countries so the
introduction from those is unlikely. Nevertheless, further studies are needed to understand the epidemiology
of this disease in Peru and its relationship to other countries.

In conclusion, Peruvian PDCoV strain was successfully sequenced, isolated and phylogenetically analysed
demonstrating that this isolate has been derived from a US strain. To our knowledge, this is the first report
of a PDCoV strain detected in South America and offers new insights about the epidemiology of PDCoV
worldwide.
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. Data availability

The data that support the findings of this study were submitted to the GenBank database (htt-
ps://www.ncbi.nlm.nih.gov/genbank/) with accession number MT227371 for the Peruvian strain of PDCoV
obtained.
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Full name Short name Country Length (nt) Accession number

1 Porcine deltacoronavirus strain USA/NorthCarolina452/2014, complete genome PDCoV/USA/NorthCarolina452/2014 USA 25394 KR265858.1
2 Porcine deltacoronavirus strain USA/Minnesota/2013, complete genome PDCoV/USA/Minnesota/2013 USA 25394 KR265853.1
3 Porcine deltacoronavirus strain USA/Illinois449/2014, complete genome PDCoV/USA/Illinois449/2014 USA 25394 KR265852.1
4 Porcine deltacoronavirus strain USA/Minnesota159/2014, complete genome PDCoV/USA/Minnesota159/2014 USA 25401 KR265859.1
5 Deltacoronavirus PDCoV/USA/Illinois134/2014 from USA, complete genome PDCoV/USA/Illinois134/2014 USA 25404 KJ601778.1
6 Porcine deltacoronavirus strain USA/Nebraska210/2014, complete genome PDCoV/USA/Nebraska210/2019 USA 25404 KR265861.1
7 Porcine deltacoronavirus genomic RNA, complete genome, strain: YMG/JPN/2014 PDCoV/JPN/YMGstrain/2014 Japan 25362 LC260044.1
8 Porcine deltacoronavirus strain USA/Michigan448/2014, complete genome PDCoV/USA/Michigan448/2014 USA 25394 KR265850.1
9 Porcine deltacoronavirus strain USA/Michigan447/2014, complete genome PDCoV/USA/Michigan447/2014 USA 25393 KR265849.1
10 Deltacoronavirus PDCoV/USA/Ohio137/2014 from USA, complete genome PDCoV/USA/Ohio137/2014 USA 25404 KJ601780.1
11 Porcine deltacoronavirus strain USA/Indiana453/2014, complete genome PDCoV/USA/Indiana453/2014 USA 25394 KR265851.1
12 Porcine deltacoronavirus strain USA/Minnesota455/2014, complete genome PDCoV/USA/Minnesota455/2014 USA 25394 KR265855.1
13 Porcine deltacoronavirus strain USA/Minnesota454/2014, complete genome PDCoV/USA/Minnesota454/2014 USA 25394 KR265854.1
14 Porcine deltacoronavirus strain USA/Arkansas61/2015, complete genome PDCoV/USA/Arkansas61/2015 USA 25398 KR150443.1
15 Porcine deltacoronavirus strain SHJS/SL/2016, complete genome PDCoV/SHJS/SL/2016 China 25414 MF041982.1
16 Porcine deltacoronavirus strain CH/SXD1/2015, complete genome PDCoV/CH/SXD1/2015 China 25419 KT021234.1
17 Porcine deltacoronavirus strain CHN-LYG-2014, complete genome PDCoV/CHN-LYG/2014 China 25370 KU665558.1
18 Porcine deltacoronavirus isolate PDCoV/CHJXNI2/2015, complete genome PDCoV/CHJXNI2/2015 China 25438 KR131621.1
19 Porcine deltacoronavirus isolate CHN-AH-2004, complete genome PDCoV/CHN-AH/2004 China 25420 KP757890.1
20 Porcine deltacoronavirus strain PDCoV/Swine/Vietnam/HaNoi6/2015, complete genome PDCoV/Vietnam/HaNoi6/2015 Vietnam 25406 KX834351.1
21 Porcine deltacoronavirus strain PDCoV/Swine/Vietnam/Binh21/2015, complete genome PDCoV/Vietnam/Binh21/2015 Vietnam 25406 KX834352.1
22 Porcine deltacoronavirus strain PDCoV/Swine/Thailand/S5015L/2015, complete genome PDCoV/Thailand/S5015L/2015 Thailand 25405 KU051649.1
23 Porcine deltacoronavirus strain PDCoV/Swine/Thailand/S5011/2015, complete genome PDCoV/Thailand/S5011/2015 Thailand 25405 KU051641.1
24+ Porcine deltacoronavirus isolate YUC/UICMPR/2015 spike glycoprotein (S) gene, complete cds PDCoV/Mexico/YUC/UICMPR/2015 Mexico 3483 MK478381.1
25+ Porcine deltacoronavirus isolate MEXICO/OAX/UI1253CMPR/2017 spike glycoprotein (S) gene, complete cds PDCoV/Mexico/OAX/UI1253CMPR/2017 Mexico 3483 MK478383.1
26+ Porcine deltacoronavirus isolate EDOMEX/UI202CMPR/2017 spike glycoprotein (S) gene, complete cds PDCoV/Mexico/UI202CMPR/2017 Mexico 3482 MK478382.1
27+ Porcine deltacoronavirus isolate QRO/UI689CMPR/2017 spike glycoprotein (S) gene, complete cds PDCoV/Mexico/QRO/UI689CMPR/2017 Mexico 3482 MK478380.1

Table 1. Porcine Deltacoronavirus nucleotide sequences used for phylogenetic analysis
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.

+ Nucleotide sequences included for phylogenetic analysis of S gene.

Table 2. Genetic distances of PDCoV nucleotide sequences (percentages) with the Peruvian PDCoV strains

Whole genome ORF 1a/b S E M NS6 N NS7

USA 99.45 - 99.51 99.56 - 99.63 99.15 - 99.30 99.6 99.38 - 99.85 99.29 - 99.65 99.21 - 99.61 98.99 - 99.67
China 98.60 - 98.74 98.72 - 98.86 97.65 - 98.38 98.36 - 98.78 98.26-99.07 98.93 - 99.29 98.10 - 98.91 98.12 - 98.99
Japan 99.5 99.61 99.24 99.6 99.85 99.29 99.51 99.67
Thailand 97.10 - 97.11 97.27 - 97.28 95.51 - 95.54 99.19 98.26 98.57 96.83 97.04
Vietnam 97.46 - 97.5 97.50 - 97.53 95.95 - 96.05 99.6 98.91 98.93 98.61 98.12
Mexico - - 98.65 - 99.21 - - - - -

Figure legends

Figure 1. PDCoV isolation in PK-15 cells and geographical map indicating locations where
the outbreak was reported

Following PDCoV detection, intestinal content was filtered, and TPCK-trypsin treated for isolation in cell
lines known to be permissible for PDCoV replication. Following 5 days of inoculation, no cytopathic effect
(cpe) was evidenced under light microscopy in both cell lines. A second passage evidenced cpe after 24 h,
with initial cell rounding and monolayer disruption in PK-15 cells but absent in Vero cells. Following 48 h
of second passage, cpe was evidenced in almost 70 % of cell monolayer, characterized by cell rounding, cell
detaching, pyknosis in PK-15 cell lines but no cytopathic effect was detected in Vero cell lines (A). Moreover,
an immunofluorescence test with a PDCoV nucleoprotein monoclonal antibody confirmed viral replication in
PK-15 infected cells (B). A representative map of South America (blue) highlighting Peru (orange) is shown
in the upper right side. Additionally, a geographical map of San Martin department (yellow) located in the
north of Peru (light green) is represented below (C).

Figure 2. Genomic organization of the Peruvian PDCoV isolate.

Whole genome sequence of the Peruvian PDCoV isolate was performed by next generation sequencing (NGS).
PDCoV whole genome sequence is 25501 nt. Starting from 5’ end, the genome is structured as follows: 5’-
UTR, ORF 1a/b, S, E, M, NS6, N, NS7 and 3’-UTR (A). Genomic regions, nucleotide sequence range, and
nucleotide and protein lengths are depicted at the bottom (B).

Figure 3. Whole genome and ORF 1a/b phylogenetic analysis of Peruvian PDCoV strain
reveals its evolutionary origin from a North American PDCoV strain

For both whole genome and ORF 1a/b, the evolutionary history was inferred by using the Maximum Like-
lihood method and General Time Reversible model. The percentage of trees in which the associated taxa
clustered together is shown next to the branches. A discrete Gamma distribution was used to model evo-
lutionary rate differences among sites. The tree is drawn to scale, with branch lengths measured in the
number of substitutions per site. This analysis involved 24 nucleotide sequences. Evolutionary analyses were
conducted in MEGA X.

Figure 4. Phylogenetic analysis of S gene reveals that Peruvian PDCoV strain has a close
relationship with a Mexican strain within the North American phylogroup.

The evolutionary history was inferred by using the Maximum Likelihood method and General Time Re-
versible model. The percentage of trees in which the associated taxa clustered together is shown next to the
branches. A discrete Gamma distribution was used to model evolutionary rate differences among. The tree is
drawn to scale, with branch lengths measured in the number of substitutions per site. This analysis involved
28 nucleotide sequences. Evolutionary analyses were conducted in MEGA X (A). Schematic representation
of the Porcine Deltacoronavirus S protein highlighting the amino acid substitutions found in the present
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. study. Black arrows represent the site of these substitutions. A multiple amino acid sequence alignment of
S protein was performed using ClustalW in MEGA X. Eight amino acid modifications were detected within
the Peruvian sequence compared to others (B).
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