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Abstract

Quantifying habitat quality is dependent on measuring a site’s relative contribution to population growth rate. This is chal-
lenging for studies of waterbirds, whose high mobility can decouple demographic rates from local habitat conditions and make
sustained monitoring of individuals near-impossible. To overcome these challenges, biologists have used many direct and in-
direct proxies of waterbird habitat quality. However, consensus on what methods are most appropriate for a given scenario is
lacking. We undertook a structured literature review of the methods used to quantify waterbird habitat quality, and provide
a synthesis of the context-dependent strengths and limitations of those methods. Our structured search of the Web of Science
database returned a sample of 398 studies, upon which our review was based. The reviewed studies assessed habitat quality by
either measuring habitat attributes (e.g., food abundance, water quality, vegetation structure), or measuring attributes of the
waterbirds themselves (e.g., demographic parameters, body condition, behaviour, distribution). Measuring habitat attributes,
although they are only indirectly related to demographic rates, has the advantage of being unaffected by waterbird behavioural
stochasticity. Conversely, waterbird-derived measures (e.g., body condition, peck rates) may be more directly related to de-
mographic rates than habitat variables, but may be subject to greater stochastic variation (e.g., behavioural change due to
presence of conspecifics). Therefore, caution is needed to ensure that the measured variable does influence waterbird demo-
graphic rates. This assumption was usually based on ecological theory rather than empirical evidence. Our review highlighted
that there is no single best, universally applicable method to quantify waterbird habitat quality. Individual project specifics
(e.g., time frame, spatial scale, funding) will influence the choice of variables measured. Where possible, practitioners should
measure variables most directly related to demographic rates. Generally, measuring multiple variables yields a better chance of
accurately capturing the relationship between habitat characteristics and demographic rates.

Introduction

A core aim of conservation management is optimising habitat quality for focal species (Johnson, 2005,
McComb, 2016). For management to be truly optimised, a measurable understanding of what constitutes
habitat quality is required (Marzluff et al., 2000). The ultimate measure of habitat quality for an individual
is the individual’s relative contribution to the growth rate of the population when inhabiting a given habitat
(Johnson, 2007). There are two components of this measure: survival and reproduction. By defining habitat
quality in terms of population growth rate, habitat quality can be assessed on a continuous temporal scale.
For example, habitat quality can be measured instantaneously or as a life-time measure of habitat quality akin
to the individual’s fitness. There are many components that combine to influence survival and reproductive
output including food availability, predation risk, habitat structure and configuration, and the presence of
disturbances (e.g., human foot traffic) (Johnson, 2007).

Quantifying demographic rates (survival and reproductive output) is a challenging task (Stephens et al.,
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2015), as it requires sustained monitoring of individuals of known-identity. Studies that do achieve this are
often conducted either on sessile organisms (e.g., Ma et al., 2014, Wang et al., 2012, Zhao et al., 2006) or
large-bodied organisms that are restricted to a small geographic area (e.g., islands: (Kruuk et al., 1999,
Richard et al., 2014); natal colony: (Baker and Thompson, 2007, Le Boeuf et al., 2019)). Demographic rates
are also financially costly to measure (Knutson et al., 2006, Pidgeon et al., 2006), and the long time-frames for
data collection can mean that research extends beyond typical funding cycles and research project lifetimes,
particularly for research on long-lived species (Le Boeuf et al., 2019). Despite these challenges, there have
been studies that successfully monitor survival (Valdez-Juarez et al., 2019) and reproductive performance
(Pérot and Villard, 2009, Pidgeon et al., 2006, Zanette, 2001) of birds in relation to habitat quality. Outputs
from these studies are often very applied with actionable recommendations for conservation decision-makers.

Waterbirds are a particularly challenging group to obtain habitat quality estimates for because multiple
factors can confound the relationship between site habitat conditions and resultant demographic rates.
Many waterbirds are highly dispersive and track ephemeral habitat conditions at local, regional, or even
continental scales (Cumming et al., 2012, Pedler et al., 2014, Roshier et al., 2006), creating the potential
for mismatches between the scale of monitoring and the scale at which demographic processes are governed.
Habitat quality at a particular wetland may be high relative to other points in time, yet waterbirds do not
capitalise on these favourable conditions because there are other areas of high quality habitat in the landscape
(behavioural choice impacts) (Cumming et al., 2012). Consequently, habitat quality assessments based on
abundance, density, or occupancy for the particular site may be decoupled from theoretical predictions if data
from the broader landscape are unavailable. The distribution of many waterbird species is also influenced
by social attraction (Gawlik and Crozier, 2007). As a result, areas of high quality habitat may go unused
because waterbirds newly arriving in an area are drawn to sites with existing waterbird presence (Gawlik
and Crozier, 2007).

Many waterbirds are also migratory. Consequently, demographic parameters in one part of the range may
be decoupled from the habitat conditions experienced at that time due to carry-over effects from previous
seasons (Aharon-Rotman et al., 2016a, Sedinger and Alisauskas, 2014, Swift et al., 2020). For example,
survival during the breeding period and breeding success may be higher in individuals that depart their non-
breeding grounds in better condition (Swift et al., 2020). Furthermore, breeding performance in one part of
the range may influence parameters including abundance and population age structure on the non-breeding
grounds, irrespective of the local conditions on the non-breeding grounds (Rogers and Gosbell, 2006). In
addition to carryover effects, survival data may be particularly sensitive to pinch points of low-quality
habitat along the migratory flyway (Piersma et al., 2016, Studds et al., 2017).

Due to the difficulties of obtaining waterbird demographic data in a given area, an array of methods have
been used as proxies to measure habitat quality (Ma et al., 2010). The use of proxies also helps to overcome
budget limitations of management agencies by allowing snapshot estimates of habitat quality to be made
without the need for extended periods of data collection in space and time (Osborn et al., 2017). However,
the many different options available for measuring habitat quality can be bewildering for research scien-
tists and conservation practitioners (Pidgeon et al., 2006). There is little consensus on which method, or
combination of methods, produces the most meaningful estimate of waterbird habitat quality, and in some
cases, it is unclear as to whether particular proxies meaningfully reflect underlying habitat quality from the
perspective of direct impact on population processes (Johnson, 2005, Johnson, 2007, Van Horne, 1983). For
example, density of individuals may not reflect underlying habitat quality if the population does not follow
the ideal free distribution (Van Horne, 1983), and time spent foraging may not reflect underlying habitat
quality if individuals are constrained by prey handling time or digestive bottlenecks (Van Gils et al., 2005).
Furthermore, the spatial scale at which proxies are measured may have implications for their relevance to
managers (Pidgeon et al., 2006, Stephens et al., 2015).

In this review, we seek to catalogue the methods that have been used to quantify waterbird habitat quality
and provide a synthesis of the conditions under which each may provide meaningful measures of habitat
quality in future waterbird studies. Outputs from this review are intended to guide environmental managers
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on the types of data they should be collecting when attempting to quantify waterbird habitat quality. This
will ensure that decisions on how to manage habitat to optimise habitat quality are based on meaningful
information.

Methods

For the purposes of this review, we followed the definition of waterbirds used by Wetlands International
(2012). This covers all species within 32 bird families that are ecologically dependent on wetlands. The
most familiar of these families are the Anatidae (ducks, geese and swans), Laridae (gulls and terns), Ar-
deidae (herons and egrets), Scolopacidae (sandpipers), and Charadriidae (plovers). Other representatives
include the Rallidae (rails and crakes), Podicipedidae (grebes), Threskiornithidae (ibises and spoonbills),
and Recurvirostridae (stilts and avocets).

Systematic reviews require defining the question elements ‘subject’, ‘intervention’, ‘outcome’, and ‘compa-
rator’ (Pullin and Stewart, 2006). The diverse nature of the waterbird habitat quality literature meant that
many waterbird habitat quality studies lack one or more of these elements (e.g., most studies are descriptive
rather than measuring the outcome of a management intervention relative to a control case). Consequently,
conducting a formal meta-analysis was not possible. Hence, we used the ‘narrative synthesis’ approach re-
commended by Haddaway et al. (2020) for synthesising heterogeneous literature. To obtain a representative
sample of the literature for synthesis, we used a structured approach to identify relevant information sources
(published literature, reports, and grey literature) and use these sources to make qualitative assessments of
the various methods that have been used for measuring waterbird habitat quality.

We searched the Web of Science (all databases) on 17 December 2020 to obtain a set of papers on which to
base this review. The following search string, in which TS means ‘Topic Search’, was used:

TS = (waterbird* OR shorebird* OR wader* OR ”wading bird*” OR waterfowl) AND TS = (”habitat quality”
OR ”habitat condition” OR ”environment* quality” OR ”environment* condition” OR ”wetland quality” OR
”wetland condition”)

This returned 411 search results (398 after removing duplicates) upon which the following synthesis is based
(See Table S1 for list of returned results).

Synthesis of reviewed studies

Our structured search returned studies that undertook waterbird habitat quality assessments in two main
ways: studies that measured some biophysical attribute(s) of the habitat; and studies that measured some
attribute(s) of waterbirds themselves to infer underlying habitat quality (Table 1). Studies that measured
attributes of waterbirds themselves could be further broken down into four sub-categories: studies that
directly measured waterbird demographic characteristics; studies that measured waterbird body condition;
studies that measured waterbird behaviour; and studies that measured waterbird distribution (Table 1).
There were also studies that used methods from a combination of these categories.

Table 1. Catalogue of methods used to assess waterbird habitat quality in studies reviewed as part of the
structured literature review. For each method, examples of studies that used the method are given along with
an indication of the support or lack thereof for the given method. A ‘—’ symbol in the Supporting evidence and
contradictory evidence columns indicates that no data for these cells were found in the reviewed papers. The
spatial (site, region, flyway) and temporal (instantaneous, within-season, annual) scales that data collection
pertains to are also given.
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Supporting
evidence

Contradictory
evidence

Relevant spatial
and temporal
scales

Direct habitat
measures
Food availability Prey animal

biomass (Atiénzar
et al., 2012,
Deboelpaep et al.,
2020, Herring and
Gawlik, 2013,
Holopainen et al.,
2014, Hunt et al.,
2017, Parks et al.,
2016, Schultz et al.,
2020) Plant-derived
food density or
abundance (Arzel et
al., 2015, Atiénzar
et al., 2012, Dugger
and Feddersen,
2009)

Birds behaviourally
track sites with
highest prey
biomass and density
(Rose and Nol,
2010) Prey
availability has a
positive influence on
reproductive
performance
(Herring et al.,
2010) Chick
condition is related
to local prey
abundance (Hunt et
al., 2017)

Predicts occupancy
but not abundance
(Gillespie and
Fontaine, 2017)
Sites with high food
densities are not
always the favoured
foraging sites (Hagy
and Kaminski,
2015) The seeds of
different plant
species consumed
by waterfowl have
different energy
content (Dugger et
al., 2007) Different
food items can
result in different
mass gain even
when fed ad libitum
(Jorde et al., 1995)
Waterbirds may
forage selectively on
larger size-class prey
items meaning that
overall prey density
is not reduced
through waterbird
foraging even
though waterbirds’
preferred prey size
has been
significantly
depleted (Fonseca
and Navedo, 2020)

Site/region – In-
stantaneous/within
season/annual

Primary
productivity

Normalised
Difference
Vegetation Index
(NDVI) (Tang et
al., 2016, Zhang et
al., 2017) Enhanced
Vegetation Index
(EVI) (Guan et al.,
2016)

— The method
provides an indirect
indication of
habitat quality with
at least one further
transitional state
before primary
productivity
influences waterbird
energy intake rate
(Zhang et al., 2017)

Site/region/Flyway
– Instanta-
neous/within
season/annual
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Supporting
evidence

Contradictory
evidence

Relevant spatial
and temporal
scales

Predation pressure Predator track
density (Cohen et
al., 2009) Index of
predator
reproduction
(Trinder et al.,
2009) Proportion of
radio-tracked
individuals predated
(Kenow et al., 2009,
Swift et al., 2020)
Proportion of real
or fake nests
predated (Pehlak
and Lõhmus, 2008,
Swift et al., 2020)
Alternate prey
density (Holopainen
et al., 2014)

Predation can be
the leading cause of
waterbird nest
failure (Riecke et
al., 2019) Predation
risk is evaluated by
waterbirds and
trade-offs made that
may reduce other
components of
fitness (e.g.,
foraging rate)
(Fernández and
Lank, 2010)

Nest predation rate
was not a function
of predator
abundance or the
availability of
alternate prey
species (Mach́ın et
al., 2019) The
influence of
predation can differ
depending of the
waterbird
population density
(Lebeuf and Giroux,
2014)

Site/region – In-
stantaneous/within
season/annual

Vegetation structure Vegetation height
(Barati et al., 2011)
Vegetation
cover/abundance
(Atiénzar et al.,
2012, Hamza et al.,
2015, Hierl et al.,
2007, Nyman and
Chabreck, 1996)
Vegetation
community
composition
(Benedict and
Hepp, 2000, Dugger
and Feddersen,
2009) Presence of
invasive plants
(Khan, 2010,
Tavernia and Reed,
2012)

Vegetation
structure has
implications for the
suitability of a site
for nest placement
(Barati et al., 2011)

Dense vegetation
may increase prey
abundance but
reduce prey capture
efficiency (Lantz et
al., 2011)

Site/region – In-
stantaneous/within
season/annual
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y. Method Metrics

Supporting
evidence

Contradictory
evidence

Relevant spatial
and temporal
scales

Wetland spatial
attributes

Connectivity to
neighbouring
wetlands
(Sebastián-González
et al., 2010b) Pond
area (Atiénzar et
al., 2012, He et al.,
2009, Merendino
and Ankney, 1994)
Shoreline
irregularity
(Merendino and
Ankney, 1994)

Pond size and
distance to the
nearest
neighbouring
wetland are
important
determinants of
waterbird habitat
selection
(Sebastián-González
et al., 2010b)

Cycles of
hydrological stress
(drought/non-
drought) can
influence waterfowl
habitat preferences,
with birds seeking
relatively deeper
water bodies during
drought irrespective
of other habitat
variables that are
influential in wet
years (Atiénzar et
al., 2012)

Site/region – In-
stantaneous/within
season/annual

Water level Drawdown (Herring
and Gawlik, 2013,
Townsend et al.,
2006); Water level
variability (Collazo
et al., 2002)
Availability of
shallow water
(Collazo et al.,
2002, Gawlik and
Crozier, 2007, Lantz
et al., 2011)
Landscape depth
heterogeneity
(Beerens et al.,
2015)

Wading birds
preferentially
selected ponds that
had been
experimentally
manipulated to have
shallow rather than
deep water (Gawlik
and Crozier, 2007)
and waterbird
species richness and
density correlates
with the availability
of shallow water
habitats (Wang and
So, 2003) Water
level recession rate
was a key influence
on physiological
condition of two
species of
waterbirds (Herring
and Gawlik, 2013)

Water level
variability did not
influence habitat
selection of wading
birds (Gawlik and
Crozier, 2007)

Site/region – In-
stantaneous/within
season/annual
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y. Method Metrics

Supporting
evidence

Contradictory
evidence

Relevant spatial
and temporal
scales

Disturbance Distance to
footpaths, roads, or
railways (Burton et
al., 2002, Hu et al.,
2016, Li et al., 2019)
Human settlements
(Li et al., 2019)

The presence of
people and vehicles
nearby ([?]50 m)
reduces foraging
rates (Maslo et al.,
2012) Likewise, time
spent foraging and
flock density were
reduced at a highly
disturbed site (Swift
et al., 2020)

Human activities
(e.g., clam
harvesting) may
have positive effects
on waterbirds,
especially shorebirds
(Hamza et al., 2015)

Site/region – In-
stantaneous/within
season/annual

Foraging substrate Sediment grain size
(Reurink et al.,
2015, Rose and Nol,
2010) Organic
carbon content
(Hamza et al., 2015,
Reurink et al.,
2015) Mud content
(Hamza et al., 2015)

Prey biomass is
strongly predicted
by physical
environment
conditions including
organic content and
particle sizes of the
sediments (Rose
and Nol, 2010)

— Site/region – In-
stantaneous/within
season/annual

Land use Proportion of
agricultural land
use (Austin et al.,
2001, Duncan et al.,
1999) Mariculture
(Li et al., 2019)
Mining (Li et al.,
2019)

Changing land use
can cause ecological
traps if agricultural
landscapes appear
similar to natural
landscapes (e.g.,
grasslands) but offer
lower habitat
quality (Buderman
et al., 2020)

Factors such as
traditional site use
by waterbirds can
confound the signal
of change in
response to
changing land use
(Tombre et al.,
2005)

Site/region – In-
stantaneous/within
season/annual
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y. Method Metrics

Supporting
evidence

Contradictory
evidence

Relevant spatial
and temporal
scales

Water chemistry Colour/turbidity
(Atiénzar et al.,
2012, Merendino
and Ankney, 1994)
pH (Merendino and
Ankney, 1994,
Walsh et al., 2006)
Conductivi-
ty/salinity
(Atiénzar et al.,
2012, Merendino
and Ankney, 1994)
Dissolved nutrients
(Merendino and
Ankney, 1994,
Pöysä et al., 2001,
Walsh et al., 2006)
Chlorophyll-α
concentration
(Atiénzar et al.,
2012)

Prey biomass is
influenced by
salinity (Rose and
Nol, 2010) Water
chemistry variables
including pH,
salinity, and
nitrogen and
potassium
concentration can
be a predictor of
occurrence of
breeding ducks
(Walsh et al., 2006)

— Site/region – In-
stantaneous/within
season/annual

Bird-derived
estimates
Demographic
measures
Reproduction Clutch size/volume

(Hunt et al., 2017,
Mallory et al., 1994,
Powell and Powell,
1986) Number of
fledglings (Powell
and Powell, 1986)

A direct contributor
to the per capita
rate of population
increase, the most
proximate indicator
of habitat quality

— Site/region – In-
stantaneous/within
season/annual

Survival Adult survival
(Alves et al., 2013,
Rice et al., 2007,
Swift et al., 2020)
Brood survival
(Aubry et al., 2013,
Cohen et al., 2009,
Hunt et al., 2017,
Owen and Pierce,
2014, Simpson et
al., 2007, Swift et
al., 2020)

A direct contributor
to the per capita
rate of population
increase, the most
proximate indicator
of habitat quality

— Site/region – In-
stantaneous/within
season/annual

Distributional
measures

8
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Supporting
evidence

Contradictory
evidence

Relevant spatial
and temporal
scales

Density or
abundance

Abundance
(Castillo-Guerrero
et al., 2009, Dugger
and Feddersen,
2009, Ganzevles and
Bredenbeek, 2005,
Hickman, 1994, Liu
et al., 2006) Species
richness (Dugger
and Feddersen,
2009, Hickman,
1994) Density
(Loewenthal et al.,
2015, Swift et al.,
2020) Abundance of
breeding pairs
(Arzel et al., 2015,
Austin et al., 2001,
Sebastián-González
et al., 2010a)

The density of
breeding pairs
increased much
faster than could be
explained by
population growth
rates following
habitat
management that
resulted in greater
food availability
(Loewenthal et al.,
2015) This was
attributed to
previously
subordinate adults
taking up breeding
territories as
territory size of
existing pairs
contracted
(Loewenthal et al.,
2015)

Can be confounded
by site fidelity
(O’Neil et al., 2014),
lags in response to
change in condition
(Loewenthal et al.,
2015, Meltofte,
2006), dispersal
barriers or costs,
and imperfect
knowledge of
habitat (Lewis et
al., 2010) Local and
regional weather
influences habitat
use (Kelly, 2001,
Schummer et al.,
2010) Reproductive
output is not
correlated with
population density
(Cohen et al., 2009)
Reduction in food
availability can
increase shorebird
density as they are
concentrated into
the remaining
suitable patches
(Kosztolányi et al.,
2006) Disturbance
by human activity
and farming rather
than habitat quality
(availability of
foraging areas)
more strongly
influences waterbird
species richness and
abundance (Quan et
al., 2002) Requires
birds to correctly
perceive habitat
cues, which may not
always be the case
(e.g., agricultural
land uses may
resemble native
grasslands, but have
much lower
reproductive
output) (Buderman
et al., 2020)

Site/region – In-
stantaneous/within
season/annual
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Supporting
evidence

Contradictory
evidence

Relevant spatial
and temporal
scales

Phenology Length of breeding
period (Raquel et
al., 2016) Residence
times on
non-breeding or
stopover sites
(O’Neal et al., 2012,
Rice et al., 2007,
Williams et al.,
2019)

— Spring migration
stopover duration
can decrease as a
function of Julian
day of the year
(Williams et al.,
2019)

Site/region –Within
season/annual

Age class
distribution

Age class
distribution
(Fernández and
Lank, 2010)

Adult shorebirds
occupy sites with
greater prey
availability and
lower predation risk
than immature
birds (Fernández
and Lank, 2006)

— Site/region – In-
stantaneous/within
season

Hunting records Harvest numbers as
an indicator of
present and past
habitat quality
(Merendino et al.,
1992)

— — Region – Annual

Individual
condition
measures
Morphological
variables

Abdominal profile
index (Swift et al.,
2020) Body mass
(Herring and
Gawlik, 2013, Hunt
et al., 2017) Body
condition index
(Aubry et al., 2013,
Parks et al., 2016)
Chick growth rate
(Hunt et al., 2017,
Owen and Pierce,
2014)

Abdominal profile
index on the
non-breeding
grounds was
correlated with
breeding ground
return rates, and
subsequent nest
survival and chick
fate (Swift et al.,
2020) Chick growth
rates and adult
body mass were
positively correlated
with invertebrate
abundance in
breeding Piping
Plovers (Hunt et al.,
2017)

— Site/region –Within
season/annual
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Supporting
evidence

Contradictory
evidence

Relevant spatial
and temporal
scales

Physiological
variables

Stress markers
(Aharon-Rotman et
al., 2016b, Herring
and Gawlik, 2013,
Thomas and
Swanson, 2013)
Immune response
markers (Buehler et
al., 2009) Foraging
metabolites (Lyons
et al., 2008, Thomas
and Swanson, 2013)

Birds that occupy
sites with higher
fueling rates have
lower concentration
of physiological
markers of stress in
their blood
(Aharon-Rotman et
al., 2016b)

Different species
with different
foraging strategies
can have different
blood physiology
responses to
changing
availability of prey
(Herring and
Gawlik, 2013)

Site/region –Within
season/annual

Parasite burden Intestinal helminth
load (Conner
England et al.,
2018)
Haemosporidian
parasite infection
(Aharon-Rotman et
al., 2016b)

— Parasite burden
negatively
correlated with
foraging habitat
quality for some
parasite taxa, but
not significantly for
all parasite taxa
(Conner England et
al., 2018)

Site/region –Within
season/annual

Ptilochronology Feather growth rate
(Swift et al., 2020)

Width of feather
growth bands was
positively correlated
with an index of
body condition
(abdominal profile
index) and feeding
rates (Swift et al.,
2020)

— Site/region –Within
season/annual

Behavioural
measures

11
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Supporting
evidence

Contradictory
evidence

Relevant spatial
and temporal
scales

Foraging
parameters

Peck/probe rate
(Castillo-Guerrero
et al., 2009, Mander
et al., 2013) Success
rate
(Castillo-Guerrero
et al., 2009, Swift et
al., 2020) Step rate
during foraging
(Mander et al.,
2013) Energy intake
rate (Yu et al.,
2020)

Positively correlated
with prey density
and biomass and at
productive sites
may not be affected
by interference
competition (Rose
and Nol, 2010) Peck
rate is correlated
with defecation rate
indicating that peck
rate is a meaningful
proxy for intake
rate (Rose and Nol,
2010)

Capture success can
be influenced by
conspecifics, with
increases in capture
success occurring
until conspecific
density becomes
high enough to
induce interference
competition (Stolen
et al., 2012) Peck
rate also reaches an
upper asymptote, so
may not be a true
indication of habitat
quality in very high
productivity
landscapes (Rose
and Nol, 2010)
Pecking rate can be
significantly higher
than probing rate
for an equivalent
energy return
(Kuwae et al., 2010)

Site/region – In-
stantaneous/within
season/annual

Time budgets Proportion of time
spent foraging
(Castillo-Guerrero
et al., 2009, Dugger
and Feddersen,
2009, van der Kolk
et al., 2019)
Proportion of time
in non-foraging
behaviours (e.g.,
vigilance,
disturbance)
(Castillo-Guerrero
et al., 2009, Maslo
et al., 2012, Yu et
al., 2020)

Oystercatchers that
spent longer
foraging had lower
inferred survival
(van der Kolk et al.,
2019)

Time budgets may
vary within an
individual period of
the annual cycle
(e.g., between
breeding stages, or
within the
non-breeding
period)
(Castillo-Guerrero
et al., 2009, Mallory
et al., 1999) or due
to the presence of
conspecifics
(Kosztolányi et al.,
2006, Mallory et al.,
1999)

Site/region – In-
stantaneous/within
season/annual

12
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Supporting
evidence

Contradictory
evidence

Relevant spatial
and temporal
scales

Anti-predator
behaviours

Vigilance rates
(Fernández and
Lank, 2010) Flight
initiation distance
(Gunness et al.,
2001)

At sites where
vigilance rates were
higher, waterbirds
maintained lower
body mass
(Fernández and
Lank, 2010)

— Site/region – In-
stantaneous/within
season/annual

Individual
movements

Home range size
(Herring and
Collazo, 2005)
Commuting
distance (Custer et
al., 2004)

— — Site/region – In-
stantaneous/within
season/annual

Flight speeds Flight speeds
between foraging
patches (Reurink et
al., 2015)

Birds fly faster
when heading to
patches of high prey
abundance because
the greater expected
returns are able to
offset the greater
flight costs of
choosing to fly
faster (Reurink et
al., 2015)

Requires the birds
to have perfect
knowledge of the
resource
distribution
available (Reurink
et al., 2015), which
may not always be
the case (Lewis et
al., 2010)

Site/region – In-
stantaneous/within
season/annual

3.1 Methods of habitat quality assessment

Measuring demographic parameters

By definition, the quantification of habitat quality depends on estimating a site’s contribution to survival
and reproduction. Therefore, any method that directly measures one or both of these parameters will be free
from error propagation caused by imperfect correlation between a measured attribute and these variables.
However, cautious interpretation is still required when only one of these attributes is measured, because
sites with similar reproductive output can have divergent population trajectories if the population size is
governed by adult survival, and vice versa (Cohen et al., 2009). Similarly, emigration or immigration at a
site may also obscure the signal arising from measures of reproduction and survival (Cohen et al., 2009).
Measuring demographic rates can be a lengthy, costly, and logistically challenging process. In waterbird
research, directly measuring a site’s contribution to survival and reproduction may be unachievable owing
to the mobility of waterbird populations. Although our structured search returned examples of studies that
did quantify survival (e.g., Alves et al., 2013, Rice et al., 2007, Swift et al., 2020) and/or reproduction (e.g.,
Hunt et al., 2017, Powell and Powell, 1986, Swift et al., 2020), most studies used proxies for one or both of
these measures.

Estimating food abundance and availability

Many of the proxies in the reviewed studies assumed that a high-quality habitat provided waterbird individ-
uals with a high net energy intake rate. The corollary assumption was that high net energy intake results
in increased survival and reproductive performance. Methods used to infer net energy intake rate included
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measures of prey abundance, prey accessibility, and waterbird physiology or morphology as an indicator
of past foraging returns (Table 1). Habitat quality assessments that are based on habitat attributes are
appealing because results are independent of variation in bird behaviour caused by factors unrelated to local
habitat quality (e.g., current wind and rain conditions can determine which sites waterbirds use at very local
scales (Kelly, 2001) and these short term changes are not typically useful for managers). For this reason,
measuring the abundance or biomass of food was used widely in the reviewed studies to assess waterbird
habitat quality. There is support for this method being an appropriate proxy for habitat quality because
waterbirds preferentially forage at sites with the highest prey biomass and density (Guerra et al., 2016, Rose
and Nol, 2010). Moreover, prey availability has a positive influence on reproductive performance and survival
(Herring et al., 2010, Holopainen et al., 2014, Swift et al., 2020). However, there are also situations where
prey biomass at a site can be a poor indicator of habitat quality. For example, sites with high prey biomass
are not always favoured foraging sites (Hagy and Kaminski, 2015), and although these sites might have high
occupancy, they do not necessarily support high waterbird abundance (Gillespie and Fontaine, 2017). This
suggests that factors such as predation risk, forager condition, and prey accessibility modulate the effect
of prey biomass on habitat quality (Hagy and Kaminski, 2015). Such a relationship is also dependent on
waterbirds having a perfect knowledge of the distribution of prey resources (Reurink et al., 2015), which may
not always be the case (Lewis et al., 2010), and relies on researchers correctly identifying dietary preferences
and requirements of focal species.

The presence of suitable water levels and variation in water levels was also used as a proxy for habitat quality
in the reviewed studies. These habitat attributes can influence accessibility of prey and foraging energetics
(Ma et al., 2010). In some cases only a small proportion of a wetland provides suitable water levels for
waterbirds to access prey (Collazo et al., 2002). This suggests that there is value in quantifying either prey
biomass or the amount of suitable habitat through water level measurements. However, the two attributes
will interact to influence the net rate of energy intake possible at a site meaning studies that measure
both variables may have a greater likelihood of teasing apart meaningful habitat quality relationships and
informing appropriate management (Herring and Gawlik, 2013). Similarly, remotely sensed measures of
primary productivity (e.g., NDVI) are expected to be correlated with prey abundance. Yet, the relationship
between net energy intake rate and primary productivity is dependent on changes in primary productivity
causing changes in prey abundance (e.g., invertebrates, seeds, tubers) as well as those prey items being
available to feeding waterbirds (Guan et al., 2016, Zhang et al., 2017). This suggests there is a hierarchy in
the ability of proxies to provide precise habitat quality estimates based on how direct the link between the
variable being measured and net energy intake rates is (Figure 1).

Estimating food intake rate

The behaviour and habitat use patterns of waterbirds themselves were often used in the reviewed studies to
infer underlying patterns of habitat quality (Table 1). Indicators of prey intake rate (be it current, past or
expected future foraging returns) were frequently used metrics of habitat quality. Variables including peck
rate, capture success rate, and the proportion of time a bird spent foraging were commonly measured to
assess the current rate of energy intake supported by a habitat. Defecation rate is significantly correlated
with peck rate in a visually foraging shorebird, supporting the assumption that peck rate represents a valid
indicator of intake rate (Rose and Nol, 2010). Likewise, sites with a higher peck rate or probe rate had a
higher rate of successful prey captures in a study where capture success could be visually verified (Kuwae et
al., 2010). However, different prey items have different energy content and different processing costs within
the digestive system (Dugger et al., 2007, Jorde et al., 1995). This means that the net rate of energy intake
will depend on the prey type consumed. This may not be an issue in studies of diet specialists, but it may
confound the interpretation of peck rate and capture success data for diet generalists. In situations where the
diet of the population being studied is not well understood, investigating the prey community composition
to determine prey encounter rates, or dietary studies (e.g., metabarcoding of prey DNA sequences in faecal
samples) will inform whether differences in peck rate between sites or across time genuinely reflect changes
in energy returns.
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Intake rates over the recent and more distant past were inferred from a variety of variables including body
condition, blood metabolites, and indicators of feather growth rate. These have the advantage that they
reflect assimilated energy rather than gross intake including energy lost via excretion or through processing
costs. However, the longer timeframe of integration meant that studies using these methods were rarely
site-specific, rather they tended to assess habitat quality at regional scales (e.g., Aharon-Rotman et al.,
2016b). In cases where individuals use only a small geographic area (e.g., when nesting constrains move-
ments, or individuals have strong residency patterns) these measures may provide insights into site-specific
habitat quality. For example, Swift et al. (2020) found that visually-scored body condition of non-breeding
Hudsonian Godwits Limosa haemastica was correlated with pecking rate at individual non-breeding sites.
This suggests that these birds were resident at sites long enough to integrate site-specific habitat quality
information in the form of body condition. Importantly, birds with higher body condition had higher survival
and reproductive output the following breeding season, indicating that body condition reliably influenced
demographic rates (Swift et al., 2020).

Predation pressure

Given the direct link between predation pressure and survival, it was surprising that predation pressure
was estimated relatively infrequently in the reviewed studies. This is perhaps reflective of the difficulties
of censusing predator populations due to predators of waterbirds typically occurring at low density and
predation events on adult waterbirds being rare. Where predation pressure was quantified, these studies
often focused on nest predation (e.g., Kenow et al., 2009, Pehlak and Lõhmus, 2008, Trinder et al., 2009).
Most studies that inferred an influence of predation pressure on habitat quality assumed that the abundance
of predators was correlated with predation rate without explicitly testing this assumption, which may be
problematic when generalist predators are involved. Some studies also assessed predation pressure by using
vigilance or escape behaviours of waterbirds (Fernández and Lank, 2010, Gunness et al., 2001). This has the
advantage of integrating information on the degree of lost foraging time as a result of predation pressure
because lost foraging opportunities will affect reproductive performance as well as survival (Castillo-Guerrero
et al., 2009).

Physical habitat attributes

Many of the reviewed studies measured various physical and/or chemical attributes of waterbird habitats
to infer habitat quality. The attributes measured were purported to influence habitat quality via their
contribution to supporting viable prey populations (e.g., water pH, water conductivity, sediment grain size),
enabling access to sufficient quantities of food (e.g., water area, pond density in the local area and vegetation
composition, as well as water level which we discussed previously), or providing shelter from predators (e.g.,
vegetation structure). In most cases, these environment attributes are linked indirectly to demographic rates
(Figure 1) and the mechanisms governing their effects may be difficult to disentangle (Raquel et al., 2016).
Nonetheless, physical attributes of the habitat may provide waterbirds with visual cues as to the quality of a
site and play a role in determining patterns of site use, which can have flow-on effects on demographic rates
(Buderman et al., 2020).

Other methods

A variety of other methods were used infrequently in the reviewed studies (Table 1). These included estimates
of levels of human disturbance, individual movement data (e.g., home range size), and the spatial distribution
of individuals in different age classes. Despite their infrequent use, these methods may provide meaningful
habitat quality information. Factors such as the cost of obtaining the data or the difficulty of obtaining the
data (e.g., challenges distinguishing between age classes in the field) probably contributed to their infrequent
use.
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Combination of methods

Many of the reviewed studies recorded data on multiple proxies for habitat quality. Multiple lines of evidence
allowed researchers to tease apart complex relationships among various parameters in their respective study
systems and provide powerful insight to conservation managers (Cohen et al., 2009, Hunt et al., 2017, Swift
et al., 2020). In these studies, it was often possible to pinpoint factors that were limiting habitat quality,
providing managers with priorities to address in order to improve habitat quality. For example, Cohen
et al. (2009) recommended that restoring Piping Plover, Charadrius melodus, habitat adjacent to bayside
intertidal flats would improve habitat quality by increasing the number of breeding pairs that could occupy a
site. However, this action must be carried out in conjunction with predator management in order to achieve
the desired increase in reproductive output.

Factors influencing the choice of variables to measure

Staying within the project’s scope

Our synthesis of the habitat quality literature indicates that there is a hierarchy of data quality from directly
monitoring demographic rates to measuring parameters that are increasingly indirectly linked to demography.
Yet, practitioners typically face a trade-off between the need for accuracy of the habitat quality estimate
and their particular study’s aims and constraints. If it is feasible, measuring demographic rates directly
generally involves extended field time, individually marked birds, limited spatial scale, and substantial costs
(Buderman et al., 2020). Other factors may also influence the suitability of a proxy for the habitat quality
assessment at hand including ethical considerations (Hunt et al., 2013), and the availability of appropriately
trained personnel. Physiological and morphological measurements used in the reviewed studies typically
required birds to be handled (but see the abdominal profile index method; Swift et al., 2020), which imposes
stress on the study subjects (Karĺıková et al., 2018), and capturing a large sample size of birds can be
time-consuming. This may mean that methods requiring birds to be handled, including individually marking
birds for quantifying demographic rates, are not feasible within the scope of a project.

Spatial and temporal scales of assessments

Another consideration that must be made prior to implementing a study on habitat quality is whether the
habitat quality measure being used returns data at a relevant spatial and/or temporal scale. For example,
prey abundance measures typically provide very local scale (both spatial and temporal) information on
habitat conditions, but may not be representative of habitat quality across the entire wetland or extended
timeframes (e.g., the entire non-breeding period). For example, Fonseca and Navedo (2020) reported a 43%
reduction in invertebrate prey biomass as a result of shorebird foraging in study plots over the course of
three days. Consequently, habitat quality assessments either side of this three-day period could yield vastly
different inferences about local habitat quality and neither may be representative of habitat quality over an
extended timeframe. The accuracy of these methods in terms of returning habitat quality data at time-scales
meaningful for management will therefore be increased by repeated sampling (Murray et al., 2010). This
was reflected in a number of the reviewed studies, especially those aimed at specifying management regimes,
repeating sampling both spatially, and intra- and inter-annually (e.g., Gillespie and Fontaine, 2017). Whereas
methods that relied on measuring attributes of the habitat typically provided snapshot estimates of habitat
quality, methods reliant on waterbird body condition or physiology (e.g., abdominal profile index or red
blood cell heat shock protein concentrations) often provide information integrated over longer timeframes
(Herring and Gawlik, 2013). They may therefore be unsuitable for site-specific and/or instantaneous habitat
quality questions, but may be applied to questions informing management of a regional wetland complex
over broader timeframes. Similarly, remotely sensed measures of primary productivity offer the potential to
rapidly and cost-effectively monitor habitat conditions at large spatial and temporal scales. For example,
Wen et al. (2016) used remotely sensed primary productivity data to inform an assessment of waterbird
habitat quality across a 810,000 km2 study area in multiple years.
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There is no rule that governs whether the spatial or temporal scale of a particular proxy is appropriate for a
particular application because even labour-intensive or costly methods that return site-specific information
may be suitable for large-scale projects if the budget enables sufficiently widespread sampling (e.g., sites
and time points). We provide some recommendations as to the spatial and temporal scales that methods
for habitat quality assessments are typically carried out at (Table 1). Readers may also find papers such as
Behney and colleagues’ (2014) guide to determining the optimum number of benthic core samples to collect
useful for planning how much field effort is likely to be involved when planning a sampling regime.

What makes for a good habitat quality assessment?

Measuring habitat quality enables conservation managers to assess the need for or effectiveness of manage-
ment actions (e.g., Schultz et al., 2020). The ultimate objective of conservation management is to influence
demographic parameters of conservation targets to improve conservation status. Therefore, assessments of
habitat quality inherently must determine a site’s contribution to survival probability and/or reproductive
output. This requires there to be a link between the variable, or combination of variables, used to measure
habitat quality and demographic rates (Figure 1). Before commencing an assessment of habitat quality, the
researcher must carefully consider whether the selected measure does actually influence demographic rates.
For example, quantifying the time budgets of waterbirds is a commonly used method for inferring differences
in habitat quality (Dugger and Feddersen, 2009, van der Kolk et al., 2019). However, the inferences derived
from time budget comparisons may not actually reflect changes in underlying habitat quality. Time budgets
can be flexible to buffer intrinsic changes in requirements (Mallory et al., 1999). For example, this may be
due to individuals dedicating more time to foraging to meet the metabolic demands of producing a clutch of
eggs (Mallory et al., 1999), or dedicating more time to feeding to fatten up for migration (Castillo-Guerrero
et al., 2009). That is not to say that time budgets are unsuitable for quantifying habitat quality, but care
must be taken to ensure that appropriate comparison groups are being used (e.g., sampling at the same time
of year).

Researchers must also be aware that inferences made about populations that are not at equilibrium may
depart from theoretical relationships underpinning many habitat quality proxies. For example, populations
that have been reduced below carrying capacity by historical or offsite factors may not show any temporal
differences in various local habitat quality proxies (e.g., foraging success, stress markers, body condition,
and time budgets) because individuals are easily able to meet their resource requirements even if local
habitat quality is declining. Similarly, there may be differences in the relevance of some habitat quality
proxies depending on whether the conservation target is a resident population, or a dispersive or migratory
population (Loewenthal et al., 2015). Abundance and density are clearly linked to local habitat quality for
resident populations, but may not be truly reflective of local habitat quality for populations that undertake
large-scale movements exposing individuals to factors that limit population size elsewhere in the range. For
example, Jia et al. (2018) reported declines in abundance of migratory shorebirds at a migratory staging
site, but none of the measured proxy variables for habitat quality could explain these declines. They suggest
that factors in other parts of the migratory range may be responsible for driving the observed declines in
abundance rather than changes in habitat quality at their study site.

Many of the habitat quality proxies identified in this review assume individuals have perfect knowledge of
the resource distribution at a site and behave such that the net rate of energy gain is being maximised at any
given time (Reurink et al., 2015). Several factors can result in waterbirds using their habitat in ways that do
not conform to these assumptions. The choice of foraging site for many waterbirds is strongly influenced by
conspecific attraction (Gawlik and Crozier, 2007, Herring et al., 2015, Smith, 1995). This is also true for the
selection of nest sites (Sebastián-González et al., 2010c). Furthermore, fidelity to areas that have provided
favourable habitat conditions in the past may decouple patterns of waterbird habitat use from current
habitat conditions (O’Neil et al., 2014). Waterbird habitat requirements may also change with breeding
stage (Holopainen et al., 2014), and during less energetically demanding parts of the annual cycle, such as
the non-breeding period, individuals may be less selective in their habitat use decisions (Sebastián-González

17



P
os

te
d

on
A

ut
ho

re
a

8
D

ec
20

21
|T

he
co

py
ri

gh
t

ho
ld

er
is

th
e

au
th

or
/f

un
de

r.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

us
e

w
it

ho
ut

pe
rm

is
si

on
.

|h
tt

ps
:/

/d
oi

.o
rg

/1
0.

22
54

1/
au

.1
63

89
92

88
.8

43
17

04
1/

v1
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

et al., 2010b).

Most of the reviewed studies provided a relative assessment of habitat quality (i.e., they compared waterbird
habitat quality at a site to previous points in time, or made comparisons between sites). These studies allow
researchers to determine habitat quality trends or identify the best and worst sites in a landscape, but do
not enable managers to determine whether the habitat quality is sufficient to maintain viable waterbird
populations. There were some studies that sought to determine whether the habitat quality at a site was
sufficient to support population growth or whether the site represented a sink habitat (e.g., Roy et al., 2019,
Sabatier et al., 2010). These studies do enable managers to determine whether management intervention is
necessary rather than arbitrarily setting a reference site as the standard against which to decide whether
management is warranted. In particular, studies seeking to identify whether a site had sufficient habitat
quality to support population growth tended to focus directly on reproductive output or survival data (Roy
et al., 2019, Weiser et al., 2018), or in some cases focused on energetic demands relative to prey resources
(West et al., 2005).

Together, the potentially confounding factors mean that there is no universally applicable habitat quality
proxy. Yet, with careful consideration and a detailed understanding of the ecology of the study system,
waterbird researchers and management practitioners can derive meaningful measures of habitat quality.

Conclusions

This review of the literature comprising almost 400 articles strongly suggests that there is no one broadly
accepted method for assessing waterbird habitat quality. Directly measuring breeding success and survival
rate are the most reliable measures, but it is unfeasible to obtain these data in many cases. A variety of
proxy measures are available, but their interpretation requires substantive contextualisation and a good
understanding of their appropriateness to a specific project aim.

In general, if it is not possible to measure direct demographic parameters, projects should consider the
suite of available proxy measures (Table 1) and consider which are most suitable to their site, budget and
timeframe. Often, developing a protocol based on multiple proxies will increase confidence in results over
the use of a single proxy. For example, studies investigating the comparative habitat quality of multiple sites
could use a combination of waterbird abundance, behaviour and body condition coupled with a measure of
prey availability to gain insight into which site(s) are providing better food resources. Studies assessing if
a single site is profitable for waterbirds from an energy perspective (i.e. habitat quality is sufficiently high
to support population growth) could use a combination of waterbird behaviour and available energy density
to assess whether daily energy requirements are being met at the site. All studies using proxy measures
should be mindful of the potential for interactions between features of the habitat (e.g., prey abundance
and prey accessibility) to influence the direction of the relationship between habitat conditions and resultant
demographic rates.
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Appendix

Table A1. List of the results returned by the Web of Science search using the search string TS=(waterbird*
OR shorebird* OR wader* OR ”wading bird*” OR waterfowl) AND TS=(”habitat quality” OR ”habitat
condition” OR ”environment* quality” OR ”environment* condition” OR ”wetland quality” OR ”wetland
condition”).
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Hassab et al. 2020 Alexandria Journal of Veterinary Sciences 63 1-9
Howell et al. 2020 Ibis 162 535-547
Jia et al. 2020 Ecological Indicators 114 106330
Moon et al. 2020 Ocean and Polar Research 42 21-31
Mullins & Craig 2020 Ostrich 91 182-187
Patton et al. 2020 Wetlands 40 2041-2054
Schultz et al. 2020 Wetlands 40 2025-2040
Swift et al. 2020 Journal of Animal Ecology 89 2043-2055
van der Kolk et al. 2020 Behavioral Ecology 31 371-382
Wang et al. 2020 Integrative Zoology 15 595-602
Yu et al. 2020 Environmental Science and Pollution Research 27 18843-18852
Zhou et al. 2020 Science of the Total Environment 737 140190
Ali et al. 2019 International Journal of Environmental Science and Technology 16 3557-3564
Bai et al. 2019 Huanjing Kexue Yanjiu 32 1001-1011
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Pierce et al. 2019 Wilson Journal of Ornithology 131 502-513
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Lee et al. 2018 Bird Conservation International 28 238-250
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