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Abstract

Global change is altering patterns of community assembly, with net outcomes dependent on species’ responses to the envi-
ronment, both directly and mediated through biotic interactions. Here, we assess alpine plant community responses in a
15-year factorial nitrogen addition, warming and snow manipulation experiment. We used a dynamic competition model to
estimate the density-dependent and independent processes underlying changes in species-group abundances over time. Density-
dependent shifts in competitive interactions drove long-term changes in abundance of species-groups under global change.
Density-independent processes were important when counteracting environmental drivers limited the growth response of the
dominant species. Furthermore, competitive interactions shifted with environmental change, primarily with nitrogen, and drove
non-linear abundance responses across environmental gradients. Our results highlight that global change can either reshuffle
species hierarchies or further favor already dominant species; predicting which outcome will occur requires incorporating both

density-dependent and independent mechanisms and how they interact across multiple global change factors.

Introduction

Global change is altering plant community dynamics, yet impacts are often difficult to predict and can vary
across multiple, interacting drivers (Valladares et al. 2015). Understanding the net outcomes of global
change on local plant community structure is challenging because it requires integrating both direct effects
of changing environmental conditions on individual species as well as shifts in the magnitude and types
of biotic interactions (Gotzenberger et al.2012; Kraft & Ackerly 2014; Vandvik et al. 2020). Global change
can cause complete restructuring of plant communities via species turnover and/or reshuffling of competitive
hierarchies (Brown et al. 1997; Smith et al. 2009; Dovrat et al. 2020). Alternatively, global change may further
favor already dominant species within a community, reducing species diversity via competitive exclusion or
decreased evenness (Sheil 2016; Regina et al. 2018). These dynamics can take years to play out, especially in
long-lived and slow-growing systems, as short term responses may not fully encompass both environmental
effects and shifts in biotic interactions (Komatsuet al. 2019). To meet these challenges, approaches that
assess both density-independent and density-dependent mechanisms over long time periods are essential.

Adding to this complexity, both the type (e.g. climate change, nutrient pollution, land use change) and
the number of drivers can have differential effects on plant communities (Komatsu et al. 2019). Warming



temperatures and altered precipitation regimes, can shift species hierarchies through changes in competitive
interactions under novel climate conditions (Hoover et al. 2014; Valladares et al. 2015). This has been
shown to reshuffle species dominance in field studies (Evans et al. 2011; Cavin et al. 2013; Mariotteet
al. 2013), particularly in response to drought, given the well-established trade-off between dominance and
stress tolerance (Gilman et al. 2010). On the other hand, nutrient pollution, such as atmospheric nitrogen
deposition, is likely to reduce niche differentiation by homogenizing habitats and may lead to competitive
exclusion by dominant species (McKinney & Lockwood 1999; Smart et al. 2006). Reduced species richness and
increased production of one or a few species under nitrogen deposition is common, particularly in grassland
ecosystems (Zavaleta et al. 2003; Borge et al.2004). In most natural systems, these different global change
drivers occur simultaneously, and thus their net outcomes on community structure are often unclear.

While global change is altering plant community dynamics worldwide, alpine tundra ecosystems are parti-
cularly vulnerable, as elevation dependent warming often amplifies the rate of temperature increase in high
versus low elevation systems (Pepin et al. 2015). Additionally, shifts in winter precipitation and snow pack
and atmospheric nutrient pollution from nearby urban and agricultural areas also pose a serious threat to
the stability and diversity of alpine plant communities often finely adapted to local gradients of soil moisture
and nutrients (Roth et al. 2013; Gobiet et al.2014; Little et al. 2016). However, while there is high confidence
that alpine regions will continue to warm at a rate faster than the global average (IPCC 2018), predictions for
changes in snow and nutrient pollution are much more uncertain, and vary considerably by region, latitude,
and land use history (Hock et al. 2019). Thus, correctly attributing changes in alpine tundra plant commu-
nities to warming temperatures, versus co-occurring changes in snow and nutrient dynamics, is an ongoing
challenge. What’s more, how these interacting global change drivers influence both density-independent and
density-dependent processes is an important knowledge gap in our understanding of rapidly shifting tundra
plant communities.

Recent emphasis has been placed on understanding how dominant species within a community respond to
global change, given their high abundances, and disproportionate influence on ecosystem functions (Winfree
et al. 2015; Wohlgemuth et al. 2016; Hillebrandet al. 2018; Avolio et al. 2019). Determining the mechanisms
that allow species to dominate under novel environmental conditions can serve as proxies for whole communi-
ty and ecosystem responses to global change (Avolio et al. 2019). In fact, the idea that “super-dominants,” or
overabundant populations of native species, may have similar impacts as non-native invasive species on com-
munity and ecosystem function has begun to gain traction (Reginaet al. 2018; Zhao et al. 2021). Conversely,
deciphering pathways by which dominant and subordinate species become more evenly distributed is critical
for predicting long term maintenance of biodiversity and the preservation of rare species (Csergo et al.2013;
Felton & Smith 2017). Broadly, viewing changes in plant community structure from an abundance-based
rather than species or trait lens, has shown to be a powerful way to make general predictions across systems
(Suding et al. 2005).

Here, we present a 15-year fully factorial warming, snow manipulation, and nitrogen (N) addition experi-
ment with corresponding shifts in alpine plant community composition at Niwot Ridge, Colorado, USA. We
estimate the influence of multiple global change drivers on the density-independent growth responses and
density-dependent interactions of groups of dominant, subdominant, moderate and rare plant species over
time using gjamTime, a dynamic, biophysical competition model (Clarket al. 2020). We use these model
estimates to inform changes in relative abundance of each species group observed in experimental field plots.
Furthermore, we estimate the net effects of density-independent and dependent factors on steady-state (ie.
equilibrium) abundances of each species group across both ambient and experimentally manipulated envi-
ronmental gradients. We asked: 1) What global change scenarios lead to further favoring dominant species
versus reordering species hierarchies? 2) How do density-independent and dependent mechanisms influence
the net outcomes of changes in plant community structure over time? 3) How do density-dependent shifts
influence community stability under global change?

Materials and methods

Study design



The study site is a moist meadow habitat within the alpine tundra at Niwot Ridge Long Term Ecological
Research (LTER) site in the Front Range of the Rocky Mountains, Colorado, USA (40°03’ N, 105deg35’ W).
The experimental design of this study is described in detail in Smithet al. (2012) and Farrer et al. (2014).
Briefly, experimental plots (1m?) were established in 2006 with a fully factorial deployment of warming
(using passive, open-top plexiglass chambers), nitrogen (N) addition (using slow release fertilizer), and snow
manipulation treatments (using snow fences) (See supplementary methods).

Our study focuses on warming, as this is the most consistent global change driver in alpine tundra ecosystems
(Hock et al. 2019). While we assess community responses to all three global change drivers: warming, snow
addition and N addition, we restrict our analyses to only the treatments that include experimental warming
either alone or in combination with snow and N addition (n=40 plots). Thus, we compare the following four
experimental treatments and contrast them to full control (ambient conditions): 1) warming only (W), 2)
N addition and warming (NW), 3) snow addition and warming (SW) and 4) snow, N addition and warming
(SNW). In addition to warming, altered snowpack is another crucial impact of global change in alpine
ecosystems (Gobiet et al. 2014). While many regions, particularly at lower elevations and latitudes, are
experiencing a decrease in snowpack with climate change, winter precipitation in the alpine at Niwot ridge
has increased since the 1950s due to shifts in upper-air circulation patterns across the Continental Divide
(Kittel et al. 2015). Finally, while atmospheric N emissions have decreased in many parts of the world, they
are still increasing in highly developing areas and impacts on sensitive alpine ecosystems can be long-lasting
with limited recovery of plant communities on decadal time scales (Bowman et al. 2018).

Plant community surveys

Plant community composition was measured in each plot annually from 2006-2020 during the peak of the
growing season with pre-treatment data collected in 2006. A point-intercept method was used to estimate
species presence at 100 points per plot in the field and these raw species counts were used in subsequent
modeling with a censoring term of the total number of vegetative hits (i.e. excluding rock, litter, non-vascular
species) in a plot in a given year (mean=90). Thirty-three unique plant species were present in control plots
across all years, however we only included species (n=20) with at least total 20 observations in control plots
across all years.

For our modeling approach (see below), we summed the cover data of these 20 species into four species
groups based on natural breaks in their relative abundance in control plots over time. First, the ‘dominant’
species, Deschampsia cespitosa (grass) had an average of 42 +- 1.2 (SE) plot hits (range: 20-67) in ambient
conditions (control plots) forming a standalone group. Three ‘subdominant’ species were combined into
one group: Geum rossii (forb), Artemisia scopulorum(forb), and Carex scopulorum (sedge) which had an
average of 10 +- 0.8 plot hits (range: 14-44) in ambient conditions. Four species were combined into one
‘moderate’ group: Gentiana algida (forb), Trifolium parryi (legume), Bistorta bistortoides (forb), and Caltha
leptosepala (forb) which had an average of 3 +- 0.3 plot hits (range: 3-29) in ambient conditions. Finally,
we placed the remaining 12 species into one ‘rare’ group which had an average of 0.4 +- 0.2 plot hits (range:
0-10) in ambient conditions (Fig S1). Raw cover of all species over time in all treatment and control plots
are shown in Fig S2.

We calculated changes in relative cover (plot hits) of each species group (Dominant, Subdominant, Moderate,
and Rare) with respect to the pretreatment (2006) data for each year over the 15 year period within each
experimental treatment using the abundance_change function in the package CODYN in R (Hallett et al.
2016). We then modeled these values using a linear mixed model with a fixed 3-way interaction and a global
intercept (0+ time (years since 2006) x species group x treatment) and a random intercept of (calendar)
year to determine whether each group increased, decreased, or did not change in relative plot cover over the
time period within a given treatment. Models were run using the Imer function in package lme4 in R (Bates
et al. 2014; R Core Team 2020).

Generalized joint attribute modeling

Environmental predictors



We used a generalized joint attribute model for dynamic data (below) to assess how density-dependent and
independent factors contribute to the observed changes in relative abundance of species groups over time and
their steady-state predicted abundances across multiple global change drivers (Clark et al. 2020). We jointly
estimated the influence of snow depth, nitrogen deposition and temperature on the density-independent
growth rates of dominant, subdominant, moderate and rare species groups both in experimentally ma-
nipulated and control plots over time. We incorporated continuous annual environmental data as model
predictors, following the approach of Farrer et al. (2014), as environmental data were not available at the
plot level for the entirety of the study (See supplementary methods).

Model specifications

Joint responses of species groups to environmental predictors, interactions among species groups, and
the combination of these processes were estimated using the gjamTime model as described in Clarket
al (2020) via the package gjam (Clark et al. 2017) with the gjamTime supplemental functions
https://github.com/jimclarkatduke/gjam /blob/master /gjamTimeFunctions.R?raw=True.

Relative abundances of species groups were modeled as raw counts (‘hits’) of the a priori dominant, sub-
dominant, moderate and rare species groups in each plot-year combination censored by the total number
of vegetative hits within the same plot-year with a maximum of 100 hits per plot (see Plant community
surveys). This censoring value reflects the observation effort term as described in Clark et al (2020) and we
used the ‘DA’ (discrete abundance) data type specification for count data. Censored response data are then
stored as a latent vector (ws) with a joint multivariate normal distribution with a mean of pg, which is a
length s mean vector, and an error ¥, which is an s x s covariance matrix. In other words:

ws ~ MV N (ug, ¥) (eq. 1).

Changes in population density of each species group over time is modeled using a Lotka-Volterra (LV) model
specification from which the gjamTime model is derived:

dwg

g =(w, z X)ps + (w, x wy)as + £4(eq. 2).

The first term defines the density-independent growth rate of a species group (ps.) multiplied by the density
of species groups and the environmental impact (ws x X). The second term defines the species-group’s
density-dependent growth rate o which is modified by the density of two interacting species-groups s and
s’ (wg X wy). Finally, the last term encompasses residual species group error (gs) (eq. 2).

Because this is a community of functionally similar herbaceous plant species competing for limited resources
during a short growing season, we set model priors for o parameters to allow for negative (-1, 0) species
group interactions (i.e. competition) only. For p intercepts, we set wide model priors from (-1, 1) to allow
for species groups to increase or decrease by a maximum of 100% of their cover in a given time step (1 year).
We set priors on p coefficients as (-0.5, 0.5) to allow a 50% change (positive or negative) in p in response to
a given environmental driver at each time step.

Equation 2 is then reorganized as the discrete-time version of the LV model (eq 2.1) for model fitting:
Awg = Plog + A ugy + 21/25St(eq. 2.1)

where Awg; is the growth increment for population abundances of s species group, P and A are sparse
matrices which reorganize p and o coefficients respectively to optimize posterior simulation and allow for
direct sampling (see Clark et al 2020 SI Appendix S2.9, 2.10), vg is a length-V vector where V is a block
matrix of all possible combinations of species abundanceswg, and ¢ environmental variables (wgx Xq), Ust
is a length-U vector where U is a block matrix of all possible combinations of species group interactions
(wst X Wyrt), Est 1s a random vector and Y2 g a square root matrix for thes x s process error covariance.

Finally, steady-state abundance distributions, i.e. probabilistic predicted equilibrium abundances of species
groups, were estimated by numerical integration of the modeled parameter estimates of environmental effects
on growth rates and interactions among species groups allowing for interactive and non-linear responses to



emerge across environmental gradients (i.e. Environment x Species interactions- ESIs, Clark et al 2020).
For each model output, we simulated 100 equilibrium abundance values for each species group at 10°3
discrete steps (10 steps for each covariate x covariate combination) across observed gradients of snow depth,
N deposition and temperature, calculating a mean and standard deviation of the w} estimates for each set
of 100 simulations (See supplementary methods).

We chose to run models at the species group level (dominant, subdominant, moderate and rare) rather
than at the individual species level to improve model predictions and to address broad questions about
shifts in community structure under global change. This species-group approach captures rare species’ joint
contribution to community dynamics in a biologically meaningful way, and allows for conceptual comparisons
across multiple global change scenarios that would be too complex using the entire species set (n=20). The
species-grouping model also better predicts the data (Fig S1), in particular for species with moderate and
rare coverage, thus increasing parameter estimate confidence.

Model outputs

Models were run in a (state-space) hierarchical Bayesian framework, with model fitting by Markov chain
Monte Carlo for 10000 iterations with a burn-in period of 2000 using the function ‘gjam’ in the package gjam
(Clark et al. 2017). Model convergence was confirmed by visual assessment of the mixing of chains as well
as model-fit diagnostic plots generated in the gjamPlot function of the gjam package (Fig S6 a-e). We ran
models separately for each of the four treatment types (W, NW, SW, SNW), as well as the control (CTL),
to compare the influence of global change drivers on growth rates and biotic interactions over time. Because
the current gjamTime model does not test the influence of environmental covariates on density-dependent
interactions, we ran a separate gjamTime model for each treatment type and then compared estimated
species interaction matrices between models of each global change treatment versus control plots.

The effects of environmental drivers on density-independent growth rates (ps) were assessed via the mean
and 95% Bayesian credible intervals of parameter estimates. For density-dependent interactions of species
groups (o), we calculated the difference in the mean estimates («,) between control plots and each global
change treatment type for all species group pairs (i.e. Aoas). We then summed all changes in interspecific
competition on a given species group and combined the interspecific and intraspecific Aas to estimate the net
change in competition on each species group within each treatment type. We discuss predicted steady-state
distributions when one or more species groups showed non-linear patterns in equilibrium abundances over a
given environmental gradient (see Clark et al. 2020).

Finally, to assess community stability, we used eigenvalue analysis from modeled interaction matrices; com-
munities are considered stable if all real eigenvalues are negative (Allesina & Tang 2012). We also compared
the rightmost (highest) real eigenvalues to compare stability across communities whereby lower (more neg-
ative) rightmost real eigenvalues denoted higher stability (Carpentier et al. 2021).

Results
Net outcomes: changes in cover

Fifteen years of experimental manipulations resulted in distinct changes in community structure based on the
patterns of relative cover change in species groups. Most often, global change treatments led to an increase of
the already dominant species within the community (i.e. ‘Dominant increase’), while in one scenario global
change lead to the reshuffling of species hierarchies (i.e. ‘Competitive reshuffling’). In contrast, in ambient
conditions (CTL), net changes strongly overlapped across species groups and were highly variable between
years, indicating little directional change over time. We describe each outcome below.

Dominant increase

In all the global change treatments except for warming only (W), the dominant species, Deschampsia ce-
spitosa increased its relative cover compared to control plots, while subdominant and moderate species
decreased their relative cover and rare species did not change. While most of the global change scenarios



shared this pattern, the increase in dominance at the expense of subdominant and moderate species was the
strongest in SNW plots, followed by the SW plots and then NW plots (Fig 1, Table 1).

Competitive reshuffling

The nature of community dynamics differed in the W global change treatment. Instead of increased dom-
inance and a decline in evenness, species groups reshuffled in abundance whereby the dominant species
declined in cover over time, while subdominant and rare species increased, and the cover of moderate species
did not change (Fig 1, Table 1). Furthermore, this was the only treatment where we observed a change in
the relative abundance of the rare species group over time.

Ambient

We can contrast these two broad types of shifts in community structure under global change manipulations
to the patterns observed under ambient conditions (CTL), which showed little directional change over time.
The cover of dominant and subdominant species did not change, while the abundance of moderate species
decreased and rare species slightly increased (marginally significant) (Fig 1, Table 1). Given that different
global change treatments resulted in distinct shifts in community structure, we then ask whether density-
independent responses to the environment or density-dependent species interactions best explain these shifts.

Density independent processes

All three environmental drivers (snow, N, and temperature) influenced the density-independent growth rates
of species groups with varying consistency and magnitude across treatments (Fig 2, Table S1). Drivers often
had counteracting effects, reducing the benefits of enhanced resource availability (water, N, and temperature)
on density-independent growth rates. In addition, rare species had very few responses to environmental
drivers (Fig S7), consistent with the limited change in cover of this group over time.

Dominant increase

In plots where dominance increased, environmental effects on density-independent growth rates were not
always consistent with changes in species group abundance over time. For example, in the SNW plots,
only the dominant species had a positive effect of added N, which is consistent with its increase over time
(Fig 2, Table S1). However, in SNW plots, subdominant and moderate species groups also strongly decline,
suggesting that other density-dependent mechanisms are at play.

In SW plots, where we observed the second highest increase in dominance, temperature and snow depth
had counteracting (but weak) effects onDeschampsia growth rates. In contrast, snow addition and ambient
N deposition increased subdominant growth rates while warming decreased subdominant and (to a lesser
extent) moderate species growth rates (Fig 2, Table S1). For moderate species, the negative effects of warming
in SW plots were consistent with their decline over time. However, counteracting (neutral) environmental
effects on dominant and subdominant species do not explain their strong directional shifts in abundance.

In NW plots, where we observed the weakest increase in the dominant species, Deschampsia growth rates
were positively influenced by N addition and strongly negatively influenced by warming (Fig 2, Table S1),
suggesting that counteracting influences of nitrogen and warming muted the dominant increase over time.
In addition, warming had a positive effect on the growth rates of moderate species, dampening the weaker
negative effect of N addition, which may have reduced their magnitude of decline in these plots over time
compared to other treatment types. However, subdominant species had no clear effects of the environment
despite their decline in abundance.

Competitive reshuffling

In the W plots, where we observed species reshuffling, warming had no effects on density-independent
growth rates. Instead, ambient snow depth had a positive effect on the dominant species growth rate and
ambient N had a positive effect on subdominant and moderate species and a negative effect on the dominant
species growth rates (Fig 2, Table S1). This supports the observed pattern of community reshuffling in



that subdominant and moderate species growth rates increased while contrasting positive and negative
effects cancelled out any benefit of the environment for the dominant species. Rare species had no effect of
environmental drivers in W plots despite their increase over time (Fig ST7).

Ambient

In CTL plots where we observed weak or no directional changes over time, ambient snow depth had a
negative effect on moderate species growth rates (Fig 2, Table S1), which may have influenced the decline in
this species group over time. Ambient snow depth also had a positive effect on the dominant species growth
rate (Fig 2, Table S1), yet no change was observed in the dominant species over time.

Density dependent processes

Incorporating density-dependent shifts in competitive interactions more fully explained the directional
changes in species group cover over time (Fig 3, Table S2, S3). Broadly, global change treatments shifted
intraspecific and interspecific competition in ways that reduced net competition for the dominant species
but increased net competition for subdominant and to a lesser extent, moderate and rare species (Fig 3, S8).
The major exception to this pattern was in the W plots, where we observed an increase in net competition
for the dominant species. In addition, density-dependent species interactions shifted along environmental
gradients, primarily N, leading to non-linear abundance distributions for subdominant species.

Dominant increase

Models revealed several changes in species interactions consistent with observed declines in evenness. First,
competitive effects on the dominant species declined in all plots where Deschampsiaincreased over time
(SNW, SW, and NW) (Fig 3, Table S3). In SNW and NW plots, this was driven primarily by reduced
interspecific competition, while in SW plots this was driven primarily by reduced intraspecific competition of
the dominant species on itself (Fig 3, Table S3). The dominant species increased its intraspecific competition
in plots with added N (SNW, NW), consistent with the positive effect of N addition on its density-independent
growth rates (Fig 2). Furthermore, net competitive effects increased in SNW and SW plots for subdominant
and (to a lesser extent) moderate species, primarily driven by increased interspecific competition with each
other, reflecting higher-order interactions that benefit the dominant species, and contribute to their decline
in these treatments over time.

In the NW treatment, competitive effects declined for all species groups (except rare) (Fig 3, Table S3).
Reduced competition, in combination with density-independent patterns observed, help explain the lower
magnitude of moderate and subdominant species declines in NW compared to SW and SNW treatments.
However, this pattern was more pronounced for moderate than subdominant species, likely due to a strong
reduction in the competitive effect of the dominant on moderate species (Fig S8c). In addition, predictive
steady-state distributions revealed a non-linear (left-skewed) distribution of subdominant species across the
observed N gradient in NW plots, suggesting that subdominant species only benefits from competitive release
at low N levels, after which the dominant takes over (Fig 4).

Competitive reshuffling

In W plots, where we observed competitive reshuffling, competitive effects strongly increased for the dominant
species, mostly driven by the subdominant species group (Fig 3, S8, Table S3). This enhanced competitive
pressure on the dominant species was not present in any other global change treatment (Fig 3, Table S3).
Competitive effects also increased on the subdominant species, driven by enhanced competition from the
moderate species group (Fig 3, S8, , Table S3). Predictive steady-state distributions show that this was
likely driven by competition for ambient N, as both moderate and subdominant species respond positively to
ambient N in W plots (Fig 2). Thus at higher levels of ambient N, the subdominant species are outcompeted
by the moderate species (Fig 4). Finally, net competition weakened slightly in W plots for rare species (Fig
3, Table S3), via reduced competition from the dominant species (Fig S8), consistent with the increase of
rare species in these plots over time.



Ambient

Intraspecific competition was high for dominant, subdominant, and moderate species groups in CTL plots,
indicating negative frequency dependence under ambient conditions (Table S2, Fig S8). There was also
a relatively high competitive effect of moderate species on dominant species, while competition between
dominant and subdominant and moderate and subdominant species was relatively low, indicating niche
partitioning between these groups (Table S2, Fig S8). Rare species had neutral intraspecific and interspecific
competition in as is expected due to low abundances (Table S2, Fig S8).

Community stability

Three out of four global change treatments (SNW, NW, W) and CTL communities were stable based on
eigenvalue analysis, while SW communities were unstable (Table 2). Out of the stable communities, NW and
W communities were more stable, while SNW communities were less stable than CTL, suggesting treatments
with lower magnitude shifts in species group abundance are more stable over time.

The SW treatment was the only unstable community, likely due to a lack of self-limitation (intraspecific
competition) of the dominant species (Table S2). We can further see this in that the maximum equilibrium
abundance of the dominant species is lower in SW versus other global change plots (Fig S9). Thus, the strong
rate of increase over the last 15 years suggests that the dominant species has likely overshot its carrying
capacity in SW plots and will ultimately to decline again to regain community stability.

Discussion

Global change is influencing plant community structure by leading to shifts in species dominance and compet-
itive hierarchies. Determining the co-occurring density-independent and dependent mechanisms underlying
these changes is critical to accurately predict net outcomes for community structure and biodiversity main-
tenance over long time scales. While this concept is not new to community ecology, few studies (to our
knowledge) have fully parameterized the density-dependent and independent components of species changes
over long time scales under multiple scenarios of global change.

Our work highlights the importance of density-dependent mechanisms, including shifts in intra- and inter-
specific competitive strengths, in driving long-term changes in the abundance of species groups under global
change. We show that these competitive interactions can shift with the environment, in our system primarily
with N, and drive non-linear species responses across environmental gradients further influencing community
structure. Furthermore, despite significant shifts in community structure under global change, community
stability can persist, or even increase, given that the dominant species maintains negative density-dependence.

Overall, our results provide a clearer understanding of how global change can lead to either community
reshuffling and varying degrees of diversity decline through reduced evenness of species groups, and that
only considering density-independent responses to the environment fails to or only partially explains these
outcomes. It is well supported that that direct (i.e. density-independent) species responses to the environ-
ment insufficiently predict how communities will be restructured under global change (Suttle et al. 2007;
Liancourt et al.2013; Alexander et al. 2015). Yet many species distribution modeling (SDM) approaches
continue to utilize only climatic or environmental constraints when predicting future species distributions
(Davis et al. 1998; Swab et al. 2015; Roe et al.2021). Our work suggests that while this approach may inform
changes for some species groups under certain global change scenarios, such as dominant species responses
to N, it is limited in understanding community-level responses to multiple global change drivers, which is
critically needed for the maintenance of biodiversity (CITE).

Finally, our approach of utilizing species groups based on dominance rather than estimating species specific
patterns proved highly useful for predicting changes in community structure over time. Initial abundance
rather than the functional mechanisms of a species were shown to be a strong predictor of species losses
under atmospheric N deposition across ecosystem types (Suding et al. 2005). In addition, a recent study
of plant responses to climate change in the Arctic tundra suggest that commonness itself may be a strong
predictor of response types, as rates of change in taxa over time were related to the baseline commonness



of species early in the experiment (Postet al. 2021). Rarity and dominance within a community are only
informative at local to regional scales; these designations are based on the species pool in which the species
exists, as well as the mechanisms driving its local dominance vs. rarity, making global scaling difficult. In
addition, what formally defines dominant vs rare species in a spatiotemporal setting is still somewhat elusive,
and considering both the relative abundance and frequency of a species as well as its ecological impacts on
the community is critical (Avolio et al.2019). Despite these caveats, understanding how and why patterns of
dominance will shift with global change is of critical importance for predicting novel community assemblages
and corresponding changes in community diversity and stability.
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Fig. 1 Net Changes in Cover . Changes in cover of species groups at the plot level with respect to
pre-treatment values (2006) for each year (2007-2020). Points show the change in cover (i.e. ‘hits’) versus
2006 for a given plot by each species group within each year (n=6 plots per treatment x 4 groups x 14 years).
Lines reflect modeled estimates of cover change by treatment type, species group, and duration of treatment
(number of years since 2006) with a random effect of calendar year with 95% confidence intervals plotted
around line estimates (Table 1).
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image2.emf available at https://authorea.com/users/454378/articles/552003-global-change-
re-structures-alpine-plant-communities-under-15-years-of-warming-nitrogen-and-snow-
addition-disentangling-density-independent-and-dependent-effects

Fig. 2 Density Independent mechanisms. Posterior parameter estimates for responses of density-
independent growth rates (ps) to standardized environmental covariates (Temp-average summer air temper-
ature (°C), Snow depth-mean April snow depth (cm), N dep-average summer nitrogen deposition (g/m?/yr).
Points show mean estimates and error bars show 95% Bayesian credible intervals. We set wide priors on p
coefficients (-0.5, 0.5) to allow a 50% change (increase or decrease) in ps in response to a given environmental
covariate at each time step and estimates here reflect posterior sampling across all time steps. Rare species
showed weak DI responses to environmental variables (Fig S7). Estimates are standardized by treatment
as models were run separately for each treatment, thus the magnitude of parameter estimates and credible
intervals should be compared between species groups within a treatment but not across treatments (colors).
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image3.emf available at https://authorea.com/users/454378/articles/552003-global-change-
re-structures-alpine-plant-communities-under-15-years-of-warming-nitrogen-and-snow-
addition-disentangling-density-independent-and-dependent-effects

Fig. 3 Density Dependent mechanisms. Changes in the mean competitive interactions (Aas) of each
species group in each global change treatment versus control. Intraspecific (Intra) shows the mean change in
competition of a species group on itself (i.e. self-limitation). Interspecific (Inter) shows the sum of the mean
changes of all other species groups on that group. Net is the combination of intra and interspecific changes
within each treatment and species group. Values to the left, right of the dotted zero line signify that that
competition on a species group became stronger, weaker in global change vs control conditions respectively.
Raw pairwise a and Aavalues shown in Tables S2; S3, and Fig S8 (a-d).
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Fig. 4 Competitive interactions drive non-linear responses to ambient and added N. Estimated
steady-state abundance distributions (relative plot proportions) for each species group across the observed
gradients of ambient (left) and added (right) N deposition (zero centered + /- two standard deviations) in NW
and W global change plots (See Fig S9 for all treatments). Points show simulated equilibrium abundances
(100 at each value of x). Dotted lines show best model fit from a general additive model in the geom_smooth
function in ggplot2 (Wickham 2009)..

Table 1. Changes in species group cover over time

Estimated lmer modeled slopes of changes in cover (‘plot hits’) of species groups with respect to pre-treatment
(2006) cover per year over the 15 year period. Mixed models predicted the change in plot cover per year
with a fixed interaction term of species group x treatment type x treatment duration (years since 2006) with
a random intercept of calendar year and a global intercept of zero to determine if changes were positive or
negative over time. P values were estimated using the package lmerTest in R (Kuznetsova et al. 2017)with
0.109 SE and 937.7 df for all species groups and treatments.

Species group Treatment Estimate t value P value
Dominant Snow + N + Warming 2.287 20.953 0.000
Subdominant Snow + N + Warming -1.667 -15.270  0.000
Moderate Snow + N + Warming -0.665 -6.096 0.000
Rare Snow + N + Warming 0.000 0.002 0.998
Dominant Snow + Warming 1.732 15.866 0.000
Subdominant Snow + Warming -1.371 -12.563  0.000
Moderate Snow + Warming -0.523 -4.790 0.000
Rare Snow + Warming 0.148 1.358 0.175
Dominant N 4 Warming 0.872 7.985 0.000
Subdominant N + Warming -1.223 -11.201  0.000
Moderate N 4 Warming -0.251 -2.296 0.022
Rare N + Warming 0.145 1.328 0.185
Dominant + Warming -0.751 -6.876 0.000
Subdominant + Warming 0.234 2.142 0.032
Moderate + Warming -0.062 -0.572 0.567
Rare + Warming 0.330 3.020 0.003
Dominant Control -0.145 -1.327 0.185
Subdominant Control 0.017 0.155 0.877
Moderate Control -0.287 -2.627 0.009
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Species group Treatment

Estimate

t value

P value

Rare

Control

0.202

1.850

0.065

Table 2. Community stability eigenvalues

Real and imaginary coordinates of community eigenvalues from modeled interaction (o) matrices from gjam-
Time (Clark et al. 2020) for each treatment (plot type). The number of eigenvalues from each matrix is
equal to the number of members in a community, here 4 species groups (dominant, subdominant, moderate,
and rare). Communities are considered stable if all real eigenvalues within that community are negative
(Allesina & Tang 2012). The rightmost real eigenvalue shows the highest (least negative/ most positive) real
eigenvalue within each treatment (i.e. community) whereby lower (more negative) rightmost real eigenvalues

denote higher stability (Carpentier et al. 2021).

Treatment Real Imaginary Rightmost real Stability Stability rank (1-4)
Snow + N + Warming -2.118 0.000 -0.008 Stable 1
Snow + N + Warming -0.495 0.000 -0.008 Stable 1
Snow + N + Warming -0.082 0.000 -0.008 Stable 1
Snow + N 4+ Warming -0.008 0.000 -0.008 Stable 1
Snow + Warming -2.150  0.000 0.049 Unstable 0
Snow + Warming -0.358 0.000 0.049 Unstable 0
Snow + Warming -0.099 0.000 0.049 Unstable 0
Snow + Warming 0.049  0.000 0.049 Unstable 0
N + Warming -1.994  0.000 -0.150 Stable 4
N + Warming -0.561  0.000 -0.150 Stable 4
N + Warming -0.150 0.148 -0.150 Stable 4
N + Warming -0.150 -0.148 -0.150 Stable 4
+ Warming -2.223  0.000 -0.110 Stable 3
+ Warming -0.285 0.011 -0.110 Stable 3
+ Warming -0.285 -0.011 -0.110 Stable 3
+ Warming -0.110  0.000 -0.110 Stable 3
Control -2.085 0.000 -0.072 Stable 2
Control -0.575 0.000 -0.072 Stable 2
Control -0.168 0.000 -0.072 Stable 2
Control -0.072  0.000 -0.072 Stable 2
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