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Abstract

eDNA metabarcoding is an effective method for studying fish communities but allows only an estimation of relative species
abundance (density / biomass). Here, we combine metabarcoding with an estimation of the total abundance of eDNA amplified
by our universal marker (teleo) using a qPCR approach to infer the absolute abundance of fish species. We carried out a 2850 km
eDNA survey within the Danube catchment using a spatial integrative sampling protocol coupled with traditional electrofishing
for fish biomass and density estimation. Total fish eDNA concentrations and total fish abundance were highly correlated. The
correlation between eDNA concentrations per taxon and absolute specific abundance was of comparable strength when all sites
were pooled and remained significant when the sites were considered separately. Furthermore, a non-linear mixed model showed
that species richness was underestimated when the amount of teleo-DNA extracted from a sample was below a threshold of
0.65.106 copies of eDNA. This result, combined with the decrease in teleo-DNA concentration by several orders of magnitude
with river size, highlights the need to increase sampling effort in large rivers. Our results show a comprehensive description of
longitudinal changes in fish communities and underline our combined metabarcoding/qPCR approach for biomonitoring and
bioassessment surveys when a rough estimate of absolute species abundance is sufficient.

Title and Authors

Quantitative monitoring of diverse fish communities on a large scale combining eDNAmetabar-
coding and qPCR
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Abstract

eDNA metabarcoding is an effective method for studying fish communities but allows only an estimation
of relative species abundance (density / biomass). Here, we combine metabarcoding with an estimation of
the total abundance of eDNA amplified by our universal marker (teleo) using a qPCR approach to infer the
absolute abundance of fish species. We carried out a 2850 km eDNA survey within the Danube catchment
using a spatial integrative sampling protocol coupled with traditional electrofishing for fish biomass and
density estimation. Total fish eDNA concentrations and total fish abundance were highly correlated. The
correlation between eDNA concentrations per taxon and absolute specific abundance was of comparable
strength when all sites were pooled and remained significant when the sites were considered separately.
Furthermore, a non-linear mixed model showed that species richness was underestimated when the amount of
teleo-DNA extracted from a sample was below a threshold of 0.65.106 copies of eDNA. This result, combined
with the decrease in teleo-DNA concentration by several orders of magnitude with river size, highlights the
need to increase sampling effort in large rivers. Our results show a comprehensive description of longitudinal
changes in fish communities and underline our combined metabarcoding/qPCR approach for biomonitoring
and bioassessment surveys when a rough estimate of absolute species abundance is sufficient.

Key Words

Environmental DNA, Fish Community, Rivers, Quantitative Monitoring, qPCR, Metabarcoding

Introduction

In recent years, the use of extra-organismal DNA has become a widespread method of monitoring vertebrate
organisms in freshwater, brackish water and marine ecosystems (Lynsey R. Harper et al., 2019; Masaki
Miya, 2022; Sigsgaard et al., 2020; Wang et al., 2021). Among a compilation of 358 vertebrate studies in
aquatic environments using environmental DNA (eDNA) methodologies (Supplementary Data 1), fish were
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the most targeted group, followed by amphibians, mammals, reptiles, and birds (73.3, 17.4, 5.1, 2.3 and
1.8%, respectively).

When targeting only one species (taxon_specific studies), conventional PCR allows the detection of species
(Ficetola, Miaud, Pompanon, & Taberlet, 2008; Jerde, Mahon, Chadderton, & Lodge, 2011), whereas quan-
titative real-time PCR (qPCR) and droplet digital PCR (ddPCR) are the main eDNA methodologies for
increasing the species detection sensitivity and quantifying the abundance of DNA sequences (Olsen, Lewis,
Massengill, Dunker, & Wenburg, 2016; Takahara, Minamoto, Yamanaka, Doi, & Kawabata, 2012), enabling
the indirect estimation of absolute species abundance (Wilcox et al., 2016; Yates, Glaser, et al., 2021). Spe-
cies assemblages can be identified by metabarcoding after amplification via PCR of one or more genomic
regions provided that the appropriate species reference database is available (Miya et al., 2015; Valentini et
al., 2016). The number of reads per species is used as a proxy of the relative abundance of species (Di Muri
et al., 2020; Goutte, Molbert, Guerin, Richoux, & Rocher, 2020; Pont et al., 2018). Metabarcoding is less
frequently used than taxon-specific studies (117 from a total of 358 publications) and is mainly used for fish
(86% of papers) in marine and river ecosystems (36% and 37% of papers, respectively, Supplementary Data
1).

Both taxon-specific and metabarcoding approaches are in general more efficient than traditional sampling
methods for detecting species (Czeglédi et al., 2021; Hanfling et al., 2016; McElroy et al., 2020; Pont et al.,
2018; Valentini et al., 2016), even if the scale of inference in space and time for an eDNA sample must be
better defined (Deiner et al., 2017). Comparisons between taxon-specific and metabarcoding approaches are
scarce. Additionally, the taxon-specific method has been reported to be both more robust and sensitive than
metabarcoding (Bylemans, Gleeson, Hardy, & Furlan, 2018) and equivalent to metabarcoding (Harper et al.,
2018). Depth sequencing, number of technical replicates and occupancy modelling are also key factors that
can improve the robustness of metabarcoding (Ficetola et al., 2015; Harper et al., 2019).

The number of eDNA copies in a sample obtained by taxon-specific studies (qPCR) is a significant proxy
for both density and biomass (Doi et al., 2015; Takahara et al., 2012; Wilcox et al., 2016) but remains a
rough estimate of aquatic vertebrates (Ushio et al., 2018) Ninety percent of a compilation of 63 studies iden-
tified significant relationships between eDNA concentrations and the abundance or biomass of target species
(Rourke et al., 2021). However, this relationship is generally of medium strength due to the huge numbers of
factors affecting the production, degradation, transport, sedimentation, and detectability of eDNA particles
in relation to ecological/physiological species characteristics, advection/diffusion processes, temperature, pH
or bacterial activities (Deiner et al., 2017; Rourke et al., 2021; Yates, Cristescu, & Derry, 2021). A meta-
analysis based on 19 studies (Matthew, Yates, Fraser, & Derry, 2019) showed that the correlation is higher in
controlled experiments than in the field (82% and 51% of the total variance explained, respectively), partly
due to the uncertainties associated with the field estimation of organism abundance by the conventional
sampling method (Di Muri et al., 2020).

Metabarcoding provides only the number of reads per taxon that are not related to the amount of correspon-
ding eDNA extracted from the water sample. The relative number of reads is a good proxy for the relative
abundance of species when the amplification efficiency is comparable for the different species. Comparison
with traditional sampling methods highlights the capacity of eDNA to roughly describe the structure of a
vertebrate community (Di Muri et al., 2020; Pont et al., 2018; Sard et al., 2019). Many technical factors
can affect the capacity of metabarcoding to deliver “relative” quantitative results (Lamb et al., 2019), but
the choice of primers, template competition and the characteristics of the mixture of species are among the
most important (Piñol, Senar, & Symondson, 2019; Taylor M. Wilcox et al., 2020). Some discrepancies are
related to the bias of conventional sampling methods, especially in large water bodies (Boivin-Delisle et al.,
2021; Pont et al., 2018).

Several technical options have been tested to circumvent the limitation of metabarcoding to deliver absolute
quantitative multiple taxa abundance. Some authors have proposed combining eDNA and animal counts
(Chambert, Pilliod, Goldberg, Doi, & Takahara, 2018). Multiplex real-time PCR enables the simultaneous
detection of several fishes (Jo, Fukuoka, Uchida, Ushimaru, & Minamoto, 2020). HT-qPCR systems have
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. been tested on fish species and validated by comparison with qPCR (Wilcox et al., 2020). Simultaneous
quantification of the eDNA from fish species with qSeq gives results strongly correlated with those obtained
with microfluidic ddPCR (Hoshino, Nakao, Doi, & Minamoto, 2021). Another possibility (MiqSeq) is the
enrichment of the sample with known quantities of DNA fragments from fish species absent from the water
sample to estimate the copy number from the number of reads of local species obtained by metabarcoding
(Ushio et al., 2018; Hoshino et al., 2021). To date, however, these experiments have only quantified a small
number of species simultaneously and have not been tested on species-rich communities.

In this study, we propose a more direct method for inferring the absolute abundance of fish species from
multiple sampling locations by combining eDNA metabarcoding with qPCR analysis, which assesses the
total abundance of eDNA amplified by the universal marker used for metabarcoding. Fish-specific eDNA
concentrations are then calculated from the ratios of fish species-specific read counts over the total read
count of a sample (metabarcoding) multiplied by the total eDNA concentration estimated with qPCR (van
Bleijswijk et al., 2020).

The effectiveness of this procedure was tested in a fish eDNA metabarcoding survey implemented along
the Danube River from source to mouth (2850 km) and its major tributaries (Fig. 1). Water samples were
collected from shore to shore to provide integrative sampling of the river cross section. Among the 47
sites sampled, 18 were also investigated with a conventional sampling method (traditional electrofishing,
TEF) to estimate fish species abundance expressed in density or biomass per ha (Supplementary Tab. 1).
We performed an eDNA metabarcoding workflow previously described (Pont et al., 2018) using the 12S
mitochondrial primer for fish ”teleo” (Valentini et al., 2016). The total abundance of eDNA amplified with
”teleo” (teleo-DNA) was estimated by qPCR analysis. Our main objectives were (1) to verify the efficiency
of our eDNA sampling strategy to correctly describe the fish communities and the ecological significance of
longitudinal taxa profiles, (2) to evaluate the strength of the correlation between the estimated number of
absolute total and specific eDNA copies per litre with the fish abundance obtained by using TEF, and (3)
to model the influence of the total number of eDNA copies per sample on the taxa richness.

Material and Methods

Site description and eDNA sampling strategy

From the Black Forest Mountains to the Black Sea, the Danube River is the second largest European river,
with a drainage area of 801,093 km2, a river length of approximately 2850 km and a mean discharge of 6480
m3.s-1. The river is divided into three main sections of comparable length, namely the Upper-, Middle- and
Lower Danube (Eros et al., 2017) (Fig. 1 and 6). The 18 sampled tributaries, located all along the Danube,
have an average flow rate varying from 5 to 1800 m3.s-1 (Supplementary Tab 1) and represent a very diverse
range of rivers from torrential, fresh alpine rivers to large warm lowland streams (Kresser & Laszloffy, 1964).

From June 29 to August 6, 2019, 29 and 18 sites were sampled on the Danube River and its tributaries,
respectively. During this period, these rivers were close to the average hydrological conditions (Supplementary
Tab 1), with a mean daily flow rate of 1716 m3.s-1 at Vienna. The sites located on the main channel of the
Danube were distributed regularly from the source to the mouth of the river. The distance between the sites
(mean: 99.2 km, standard error: 26.0 km; range: 38-149 km) was sufficient to avoid the potential influence
of eDNA transported downstream from one site to the next (Pont et al., 2018). For the same reason, the
sampling sites were not located within several tens of km downstream of the confluence of a major tributary.
The tributaries were sampled 1-55 km upstream of their confluence with the Danube. Due to the failure
of DNA amplification, the Inn River site was resampled in May 2020. At each site, two surface samples
were collected either by wading or from a boat moving from shore to shore to provide temporal and spatial
integrative sampling of the river cross section (mean filtration time of 22.34 MN). The water was collected
with a peristaltic pump inside a disposable sterile tube and was directly filtered through a cross flow filtration
capsule (VigiDNA 0.45 μm, SPYGEN), and its volume was measured (3 to 40 L, mean of 28.73 L). At the
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. end of each filtration, the water in the capsule was drained, and the capsule was refilled with 80 mL of
conservation buffer CL1 (SPYGEN) to prevent eDNA degradation.

Conventional fishing

During the same period (July 3 to August 28, 2019), 41 sites were sampled by using TEF along the Danube
River and its tributaries (Bammer et al., 2021). Two additional sites were sampled in October 2018 and
January 2020. The sampling procedure followed both the European Standard (CEN, 2003) and recommen-
dations for quantitative sampling in large rivers (Schmutz, Zauner, Eberstaller, & Jungwirth, 2001). Fish
were sampled in a single pass along the bank of the main channel and in some places in the connected
backwaters. The main mesohabitat types were sampled in their proportional distribution at the site level
(length of river site at least 10 times the width of the river) to maximize the representativeness of the fish
assemblage. The sampling effort varied between 300 and 28,412 m2, depending on the diameter of the anode
(boom or hand-held) and on the river size. Fish were determined to the species level, measured (+/- 0.5
cm total length) and released alive immediately afterwards. Fish individual biomass was estimated using
species-specific length-weight relationships. The data for one site (Russenski Lom River) where only 19
fish were caught were discarded. Eighteen of the remaining sites were located on the same river stretch
as the eDNA sampling sites (distance less than 20 km), and only the main channel was sampled, allowing
comparison between eDNA and TEF sampling methods at these sites (Supplementary Tab 1).

eDNA metabarcoding and taxonomic assignment

The eDNA metabarcoding workflow (extraction, amplification using “teleo” primers, high-throughput se-
quencing and bioinformatic analysis) was performed following a previously described protocol (Pont et al.,
2018). After eDNA extraction, 12 PCR replicates were conducted per sample. Twelve libraries were pre-
pared using the Fasteris MetaFast protocol, and twelve independent paired-end sequencing reactions (2 ×
125 bp) was carried out on a MiSeq sequencer (Illumina) with the MiSeq Kit v3 (Illumina) following the ma-
nufacturer’s instructions at Fasteris facilities. To monitor possible contaminants, eleven negative extraction
controls and seven negative PCR controls (ultrapure water) were amplified with 12 replicates and sequenced
in parallel with the samples. Sequence reads were analysed using programs implemented in the OBITools
package (Boyer et al., 2016). The forward and reverse reads were assembled with the ILLUMINAPAIRE-
DEND program using a minimum score of 40 and retrieving only joined sequences. Then, we assigned the
reads to each sample using NGSFILTER software, and a separate data set was created for each sample by
splitting the original data set into several files using OBISPLIT. After this step, we analysed each sample
individually before merging the taxon list for the final ecological analysis. Strictly identical sequences were
clustered together using OBIUNIQ. Sequences shorter than 20 bp, or with fewer than 10 reads or labelled
“internal” by the OBICLEAN program were excluded.

To optimize the taxonomic assignment of fish eDNA collected in our water samples, we assembled, in ad-
dition to our previous database (Valentini et al., 2016), a complementary “Danubian” reference database
(Supplementary Tab 3). Tissue samples for 356 specimens belonging to 73 species were collected at locations
situated in the Danube catchment. Total DNA was extracted from 10 mg of muscle tissue, amplified using
the eDNA metabarcoding protocol with “teleo” primers and sequenced using a MiSeq sequencer at Fasteris
facilities (Valentini et al., 2016). The sequences obtained were analysed using the ObiTools package followi-
ng the same protocol as the eDNA samples excluding the taxonomic assignation step. The most abundant
sequence was retrieved for reference database construction.

The final taxonomic assignment of molecular operational taxonomic units (MOTUs) was performed using
the program ECOTAG, with our two reference databases and the sequences extracted from the release 142
(standard sequences) of the ENA database (http://www.ebi.ac.uk/ena). Considering the incorrect assignment
of a few sequences to the sample due to tag jumps (Schnell, Bohmann, & Gilbert, 2015), all the sequences
with a frequency of occurrence < 0.001 per sequence and per library were discarded. Then, the data were
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. curated for Index-Hopping (MacConaill et al., 2018) with a threshold empirically determined per sequencing
batch using experimental blanks (i.e., combinations of tags not present in the libraries) for a given sequencing
batch between libraries.

The taxonomic nomenclature used referred to the European Freshwater Fish Fauna (Kottelat & Freyhof,
2007), except for the genera Cottusand Phoxinus at the species level due to our insufficient knowledge of the
haplotype diversity within the Danube catchment. The corresponding reference sequences were denominated
Cot gob and Pho pho (see Supplementary Tab 2 for species names corresponding to eDNA detected taxa
name abbreviations). When reference sequences from the different reference databases were assigned to the
same species, their corresponding number of reads was cumulated. When reference sequences were assigned
at the genus level, they were finally denominated at the species level when only one species from the genus
was known in the catchment (Anguilla anguilla , Barbatula barbatula ). If not, they were discarded (Aci-
penser spp., Alburnus spp., Barbus spp., Rutilus spp.) , as were sequences assigned to a higher taxonomic
level (Cyprinidae, Salmonidae). The molecular markers did not discriminate between 2 to 3 detected taxa
belonging to the same genus (Salvelinus , Carassius , Alosa , Acipenser ,Barbus , Lampetra ) and to diffe-
rent genera for five groups (Cypr 1, Cypr 2, Cypr 3, Cypr 4, Cypr 5). Within all groups, we only considered
species-level assignment for taxa known to be present in the Danube catchment (Supplementary Tab 2). Of
the two undifferentiated species in the Cypr 1 taxonomic group and present in the Danube River catchment
(Chon nas, Tel sou), only Chon nas was captured by using TEF during our survey. Because Tel sou is a
species well known to occur mainly in upstream fast-flowing river reaches, we considered Cypr 1 occurrence
to be primarily related to the presence of Chon nas. After the final taxonomic sequence identification, three
categories of taxa were considered (see Supplementary Tab 2). The first category included all the taxa who-
se presence at the Danube River was confirmed (KNWTaxa) by previous traditional fish sampling surveys
(Bammer et al., 2021; Eros et al., 2017) or from the literature (Kottelat & Freyhof, 2007; Meulenbroek et al.,
2018; Sommerwerk et al., 2009). The second category (WASTaxa) included food fish, farmed fish, aquarium
fish or fish with any other link to human activity allowing a rejection of extra-organism eDNA in the river
(mainly wastewater). The third group included species unknown in the catchment and not known for any
human use (UNKTaxa).Alosa spp. were detected in the upper Danube in one sample (KM 843) with only one
positive PCR. The presence of this anadromous species in such an upstream location cannot be confirmed
by any previous observation and was considered a false positive at this site.

Quantification of teleo eDNA

For the quantification of fish DNA, the samples were amplified in a real-time quantitative PCR setup using
the same “teleo” primers as for metabarcoding. qPCR was performed in a final volume of 25 μL, which
included 3 μL of DNA, 12.5 μL of SYBR® Green Master Mix (BioRad®), 8.3 μL of ddH2O, 0.5 μL of
each “teleo” primer (10 mM), 4 μM of human blocking primer (Valentini et al., 2016) and 0.2 μL bovine
serum albumin (BSA, Roche Diagnostic). Each sample was analysed in 3 replicates. To obtain a standard
curve, a known concentration of a synthetic gene was diluted from 1,13x108 to 1,13x105copies of DNA per
reaction. The tubes containing the DNA samples were sealed, and then the qPCR standards were added to
the qPCR plate in a room separate from the eDNA extraction room. The qPCR theroprofile and cycling
conditions used were as follows: 95 °C for 10 min, followed by 55 cycles of 95 °C for 30 s and 55 °C for 30
s. Melting curves were produced by plotting fluorescence intensity against temperature as the temperature
was increased from 65 to 95 °C in 0.5 °C steps every 5 s. The samples were analysed on a BIO-RAD®
CFX96 Touch Real-Time PCR Detection System. To test the sensitivity of the primer for quantification,
the limit of detection (LOD, i.e., the minimum amount of target DNA sequence that can be detected in
the sample) and the limit of quantification (LOQ, i.e., the lowest amount of target DNA that yields an
acceptable level of precision and accuracy) were calculated by running a dilution series of a known amount
of synthetic gene, ranging from 1 ng.μL-1 (1.13 x 109 DNA copies) to 10-9 ng.L-1 (1.13 DNA copies) with
12 qPCR replicates per concentration below 10-3 ng.μL-1. The LOQ (Klymus et al., 2019) was estimated
at 10-7 ng/μL, which corresponds to ca. 500 copies, and the LOD (Klymus et al., 2019) was estimated to
be 80 copies. However, when performing 12 replicates, as in the case of the applied eDNA metabarcoding
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. protocol, the LOD estimate was 6 DNA molecules.

The quantity of teleo-DNA per sample of KNWtaxa (eleo-DNA) was calculated from the ratio of KNWtaxa
read counts over the total read count, multiplied by the teleo-DNA quantity extracted (van Bleijswijk et
al., 2020). A similar computation was applied to each fish taxon, and the final concentration of fish species
DNA per litre was computed from the ratio of the quantity of DNA per taxon by the volume sampled for
each sample.

Statistical treatments

The mean site-specific richness calculated from the eDNA and TEF data was compared using two-tailed
Student’s t test for paired samples (R Core Team, 2020; package MASS, function t-test).

Teleo-DNA concentrations and fish biomass/density data were log-transformed to satisfy normality assump-
tions before modelling the relationship between them using a type II linear regression (R Core Team, 2020;
package lmodel2, function lmodel2, “main axis” method). Teleo-DNA concentrations were regressed against
the mean annual waterflow values at each site (Kresser & Laszloffy, 1964).

The structures of fish assemblages revealed by eDNA and TEF at the 18 common sites were compared using
co-inertia analysis (Doledec & Chessel, 1994; R Core Team, 2020; package ade-4, functions dudi.pca and
coinertia). This multivariate method allowed the comparison of the ordinations of two data sets to find the
orthogonal co-inertia principal components that maximize the co-variance between them. The RV co-inertia
criterion (0 to 1) measured the adequacy between the two tables (Dray, Chessel, & Thioulouse, 2003) and
was tested (Monte Carlo test with 10,000 permutations). We only considered common taxa with a similar
level of taxonomic resolution (40 species) to test the similarity of the structure of fish assemblages obtained
by the eDNA method and TEF abundance expressed in density or biomass.

To test the hypothesis that the number of KNWTaxa detected by eDNA was dependent on the quantity
of teleo-DNA per sample or on the water volume (V) filtered from the 94 samples, we used an asymptotic
function to describe our species-sampling effort relationship considering that, at any time, the richness Y
is finite at a given area (Soberon & Llorente, 1993). The choice of the non-linear function remains largely
empirical (Thompson, Withers, Pianka, & Thompson, 2003), and we chose a model (Tjorve, 2003) from
the negative exponential family a * [1 - exp-bX], with an asymptotic value of richness, b proportional to
the relative rate of Y increase while X increases, and X the sampling effort (teleo-eDNA or V). To control
for variability in species richness between sites, we used non-linear mixed-effect (NLME) models (Comets,
Lavenu, & Lavielle, 2017; R Core Team, 2020; package saemix, function saemix.model, 1000 simulations)
with sites as a random factor and two alternative fixed effects (teleo-eDNA, V). These two models were
compared between them and to the model with only the site random effect using the AIC (Burnham &
Anderson, 2002). The significance of the fixed parameters was tested with a Wald chi-square test (Comets
et al., 2017), the normality of the residuals with a Shapiro test, and the goodness of fit of the selected model
by comparing the observed and predicted values at the individual level.

Results

eDNA detected taxa list and comparison with conventional sampling

The total numbers of sequence reads obtained before and after quality control (metabarcoding bioinformatic
process) were 45.999x106 and 36.820 x106, respectively. A total of 53.589x103 reads assigned to UNKTaxa
were discarded. A total of 474.323x103 reads were assigned to WASTaxa. All the remaining reads were
assigned to KNWTaxa. The final mean sequencing depth was 34,161 per positive PCR replicate (range
90x103 to 179.209x103).
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. Out of a total of 86 taxa detected after the bioinformatic process and reassignment procedure (see Sup-
plementary Tab 1 for taxa abbreviation list), five were classified as UNKTaxa (Bar med, Eso cis, Onc cla,
Onc mas, Ric bal) and 21 as WASTaxa. Among WASTaxa (Fig. 2), the two most abundant (Onc myk and
Sal spp) were detected at 15 and 7 of the 47 sites, respectively, in the Upper Danube and its tributaries. Most
of the other taxa were marine species detected mainly (71% of the total number of occurrences) downstream
from Vienna (7 taxa) and on two tributaries, the Arges River (8 taxa) and the Russenki Lom River (5 taxa).
Of the 60 remaining taxa classified as KNWTaxa (Supplementary Tab 1), 48 were identified at the species
level, eight at the genus level, and four at a higher taxonomic level (taxa groups).

When only considering the 18 sites sampled with both TEF and eDNA, 40 of the 62 species caught by using
TEF were also detected at the species level by using eDNA. Eighteen of the remaining species were detected
by using eDNA at a higher taxonomic level. Eight species-specific taxa (”Aci gue”, ”Aci rut”, ”Aci ste”,
”Bar car”, ”Ben sp”, ”Pun pla”, ”Rom ura”, ”Umb kra”) and one taxa group (Cor. sp.) were detected only
by using eDNA. Four species (”Clu cul”, ”Eud dan”, ”Eud mar”, ”Neo eur”) were caught only by using
TEF. Despite the lack of discrimination between certain species by using eDNA, the taxon richness per site
obtained by using eDNA was higher than that obtained by using TEF (Fig. 3), with mean richness values
of 29.7 and 21.6, respectively (Student’s t test, t = 5.2147, df = 17,p < 0.001). The difference was slightly
greater when species caught by using TEF were grouped together following the taxonomic assignment used
for the eDNA taxa (mean TEF species richness of 20.17, t = 6.1429, df = 17, p< 0.001).

Comparison between absolute eDNA copy concentration and TEF abundance

The average amount of teleo-DNA per sample was 4,130,634 DNA copies (range 50,676 to 23,684,000),
corresponding to an average concentration of 1,223,819 DNA copies per litre (range 7,219 to 9,046,465).
The concentration of teleo-DNA per site decreased along the first 500 km of the Danube and remained
stable downstream (Fig. 4). The teleo-DNA concentrations in the tributaries were significantly higher than
those in the Danube (Student’s t test, t = -5.231, df = 44.987, p< 0.001). For all 47 sites, the teleo-DNA
concentrations were negatively correlated with the mean water flow (Fig. 4, Pearson’s R coefficient = -0.740,
n = 47, p < 0.001).

The total fish density and biomass estimated by TEF at the 18 common sites were strongly correlated with
the teleo-eDNA concentrations (Fig. 5): Pearson’s R coefficients of 0.821 (n = 18, P = 0.00002) and 0.760 (n
= 18, p < 0.001), respectively. When all the common sites were combined, the correlation between the taxa-
specific eDNA concentration per litre and the species-specific abundance/biomass per ha was of comparable
intensity: Pearson’s R coefficients of 0.763 (n = 40, p < 0.001) and 0.673 (n= 40, p < 0.001), respectively.
When the sites and species were differentiated, the concentration of taxa-specific eDNA per litre at each site
remained significantly correlated with the specific density and biomass per ha estimated from TEF samples
but with a lower intensity (Fig. 5): Pearson’s R coefficients of 0.527 (n = 224, p < 0.001) and 0.397 (n =
224, p < 0.001), respectively.

The co-inertia analysis showed a high level of similarity between the structure of the fish assemblages revealed
by using eDNA (taxa-specific number of DNA copies per litre) and TEF (specific number of fish caught per
ha) at the 18 common sites with RV co-inertia criteria of 0.797 (p < 0.001) and 0.984 (p < 0.001) when
the TEF data were expressed in density and biomass, respectively. The coordinates of the eDNA and
TEF samples were highly correlated on the first and second co-inertia factors for TEF expressed as density
(Pearson’s R coefficient = 0.982, p < 0.001) or as biomass (Pearson’s R coefficient = 0.993, p < 0.001). A
direct comparison of the longitudinal distributions of species/taxa obtained with the two methods confirmed
their similarity (Supplementary Fig. 1).

The change in the concentrations of the specific taxa DNA copies per litre from the source to the mouth
of the Danube River provides evidence of a succession of species (Fig. 6). Bar bar, Cot gob, Huc huc,
Lam pla, Pho pho and Thy thy were restricted to the upper Danube, while Aci rut, Neo flu, Sab bal, and
Sca ery were detected from Vienna to the mouth of the Danube. Abr bra, Alb alb, Cyp car, Sil gla and
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. Zin str were detected along the entire course of the river. Syn aba and Alo spp. were only present in the
lower Danube, but Alo spp. was also detected 12 km upstream from Iron Gate I (Fig. 6). Aci ste and
Umb kra were limited to the Danube delta.

Relationship between the quantity of teleo-DNA extracted and taxonomic rich-
ness

The relationship between the number of teleo-DNA copies extracted from a water sample and the number of
taxa detected was tested using non-linear mixed-effects (NLME) models with sites as a random factor and
two alternative fixed effects: teleo-DNA and water volume (V).

The non-linear mixed-effects (NLME) models with teleo-eDNA as a fixed effect had a lower Akaike infor-
mation criterion (AIC) value than the NLME model with only the random effect (site identity): AIC values
of 566.63 and 600.67, respectively. The Wald chi-square test showed a significant effect for the fixed-effect
teleo-eDNA (Wald Chi-squared test = 29.973, df = 1, p < 0.001). The NLME model with the water vol-
ume sampled (V) as a fixed effect had a higher AIC value than the NLME model with only the random
effect (835.28 versus 600.67), and V was not significant (Wald chi-square test = 1.004, df = 1,p > 0.05).
For the best model including teleo-eDNA (Fig. 7), the Pearson’s R coefficient between the observed and
predicted values at the individual level was 0. 959 (n = 94, p < 0.001), and the residuals were normally
distributed (Shapiro test, W = 0.994, p > 0.05). Asymptotic richness per site and relative growth coefficient
estimates and their associated standard errors at the population level were 27.29 (± 0.75) and 4.55 (± 0.83),
respectively, for fixed effects and 17.96 (± 5.06) and 4.49 (± 0.3.06), respectively, for random effects. At the
individual level, asymptotic richness and relative growth coefficients varied from 19.34 to 34.42 and from
0.1793 to 6.2658, respectively, with only one relative growth coefficient value less than 1 (Enns River).

The predicted value of teleo-eDNA needed to detect 95% of the taxa richness was 0.651x106 DNA copies when
considering the model parameters defined at the population level. At the individual (site) level, this amount
varied from 0.252x106 to 2.520x106 DNA copies after excluding the Enns River site (value of 15.4040x106

DNA copies).

Discussion

The fish communities of our sampling sites along the Danube and near the mouths of its main tributaries are
well known both in terms of the fish species list and the assemblage structure (Eros et al., 2017; Kottelat &
Freyhof, 2007; Sommerwerk et al., 2009); thus, these communities are useful for testing the effectiveness of an
eDNA metabarcoding strategy. From a total of 86 taxa detected during our study, only five were UNKTaxa in
the Danube catchment (Kottelat & Freyhof, 2007; Sommerwerk et al., 2009). For most of these taxa, the main
explanation is probably a misassignment of the detected sequences in relation to insufficient knowledge of
their regional haplotype variability. Richardsonius balteatus , a North American species, Barbus meridionalis
, present in rivers draining to the northwestern Mediterranean basin, andEsox cisalpinus occurring in central
and northern Italy (Kottelat & Freyhof, 2007) are species whose teleosequences are close to those ofSqualius
cephalus , Barbus barbus and Esox lucius,respectively. Oncorhynchus clarkii and Oncorhynchus masou , two
salmonid species inhabiting the northern Pacific Ocean, may also have been confused with 0nc Myk, but
they have also been introduced into European fish farms (Crawford & Muir, 2008), and hybridization with
other Salmonid species is conceivable (Chevassus, 1979). The development of a more comprehensive local
reference database would reduce this risk of misassignment.

The WASTaxa category of taxa was composed mainly of food fish according to the eDNA present in urban
wastewater. Most of these taxa were detected at only three sites: immediately downstream of the wastewater
discharge point of the city of Vienna, on the Argès River and on the Russemski Lom River. The latter two
rivers are known to receive insufficiently treated municipal wastewater (Frincu, 2021; Kirschner et al., 2021).
eDNA released into the river from wastewater treatment plants can lead to false-positive detection results,
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. and a good knowledge of the regional fauna is needed to identify them. Notably, the detection of marine food
fish is a clear sign of local pollution and can be incorporated as a criterion for future bioassessment methods
based on eDNA samples (Pont et al., 2021). Two other taxa (0nc Myk, Sal spp) are also known as food fish
and farmed fish (https://www.helgilibrary.com/indicators/fish-consumption-per-capita/austria/), but they
are also regularly present in the Upper Danube and its tributaries, mainly due to stocking (Stankovic, Crivelli,
& Snoj, 2015). Therefore, the presence of their eDNA must be interpreted with caution when detected in a
water body that does not correspond to one of their known habitats.

A total of 60 taxa known to occur in the Danube River catchment (KNWTaxa) were detected. In addition
to the 48 taxa assigned at the species level, the 12 taxa assigned at a higher taxonomic level corresponded to
a potential of 26 well-known Danubian species, giving a maximum number of 74 species detected. This value
was comparable to the total of 71 species caught in the TEF survey conducted in the same period (Bammer
et al., 2021). When considering only the 18 sites sampled with both TEF and eDNA, all the species caught
by using TEF were detected by using eDNA except four (Clupeonella cultriventris, Eudontomyzon danfordi,
Eudontomyzon mariae, Neogobius eurycephalus ), but they were not recorded in our DNA reference database.
Six of the eight taxa (Aci gue, Aci rut, Aci ste, Bar car, Ben sp, Rom ura) detected only by using eDNA
were benthic species (Kottelat & Freyhof, 2007) inhabiting mainly the Danube itself or its coarse-bottomed
tributaries. Similarly, the higher taxonomic richness obtained by using eDNA confirmed the ability of this
method to be representative of all fish fauna, especially in deep rivers where a single traditional sampling
technique does not allow sampling of the whole river section (Eros et al., 2017). Our results highlight
the effectiveness of our integrative sampling strategy in space (the whole section of the river) and time
(approximately half an hour) as well as the performance of the teleo primer, even if its discriminating power
for some species is limited. For the latter, the analysis of another marker in parallel, such as MiFish, can
allow more species to be discriminated (Polanco et al., 2021).

One of the most original aspects of this study is the strong correlation between teleo-eDNA concentrations
and fish abundance estimated by using TEF at 18 common sites. The efficiency of eDNA qPCR data to
correctly estimate taxa-specific abundance is well documented (Rourke et al., 2021), but the estimation of
the total fish abundance from the total fish eDNA concentration (primer qPCR analysis) has been tested
only in an estuarine environment at three sites only a few kilometres apart (van Bleijswijk et al., 2020). Here,
we demonstrate the capability of eDNA metabarcoding to estimate the total absolute abundance of fish at
distant sites, i.e., independent of their eDNA contents, and in a large range of river sizes. The intensity of
the correlation between the teleo-eDNA concentration and fish abundance is comparable to results obtained
in species-specific qPCR studies in natural environments (Yates et al., 2019). The difference in correlation
intensity with fish abundance observed when the eDNA concentration is expressed as density or biomass
should be viewed with caution, as no significant effect of the fish abundance metric was found (Yates et al.,
2019). The ratios of fish species-specific read counts over the total read count of a sample multiplied by the
teleo-eDNA concentration measured with qPCR (van Bleijswijk et al., 2020) were significantly correlated
with the fish species abundance obtained by using TEF. This correlation was higher when all sites were
pooled, which highlights the agreement between the two methods for all the species and the importance of
uncertainties associated with the site scale with both eDNA and TEF.

The very high values of the co-inertia criteria also demonstrate that the descriptions of fish community
structures obtained with the TEF (abundance per ha) and eDNA methods (taxa-specific DNA copy numbers
per litre) were quite similar. The distribution of species along the entire Danube River obtained by using
eDNA was consistent with previous knowledge (Eros et al., 2017) but with a lower between-site variability.
For example, Aci rut, a resident sturgeon species, was regularly detected downstream of the first 1000 km of
the river by using eDNA, whereas no or few individuals were captured by using traditional methods (Bammer
et al., 2021; Eros et al., 2017). The anadromous taxa Alo spp (Alosa immaculata / A. tanaica ) was detected
by using eDNA in almost all the sites located downstream of the Iron Gate dams that are known to limit
their upstream migration (Sommerwerk et al., 2009). In addition, the detection of Alo spp 12 km upstream
of Iron Gate I dam (KM 1908) is consistent with previous captures of Alosa tanaicaindividuals upstream of
Iron Gate II (M. Lenhardt, pers. comm.).
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. Nevertheless, eDNA is only an indirect estimator of organism abundance and is influenced by many phy-
siological processes and environmental conditions, and the uncertainties associated with all factors affecting
eDNA concentration in the environment are high (Rourke et al., 2021). eDNA cannot be expected to provide
a highly accurate quantification of the fish populations as needed for precise fish stock estimations in fisheries
(Boivin-Delisle et al., 2021; Rourke et al., 2021; Yates, Cristescu, et al., 2021). For such a purpose, recent
technical options could provide a good alternative (Hoshino et al., 2021; Sato et al., 2021; Taylor M. Wilcox
et al., 2020; Ushio et al., 2018). However, it must also be considered that most conventional fish sampling
methods are associated with many biases and high uncertainties, especially in large water bodies where
the spatial representativeness of samples is limited and multiple methods must be used (Eros et al., 2017;
Zajiceke & Wolter, 2018). For most biomonitoring purposes, a rough estimation of absolute fish abundance
is sufficient, as the main objective is to compare fish assemblages on a large scale or to detect long-term
variability in relation to changes in anthropogenic disturbances.

An additional benefit of quantifying total fish eDNA by qPCR is to optimize sampling effort. Our NLME
models showed that the species richness was underestimated when the amount of teleo-eDNA extracted
from a sample was below a threshold of 0.65.106 eDNA copies. Although several authors have recognized the
importance of this parameter (Shu, Ludwig, & Peng, 2020; Wang et al., 2021), to our knowledge, no studies
have quantified its influence. In addition, our results demonstrated the significant influence of river size on
the concentration of teleo-eDNA per litre, with values 10 to 100 times lower in larger rivers. This can be due
to different processes, e.g., dilution of eDNA with increasing river depth, as most fish species are confined
to the river bottom or shoreline, or the decreased abundance of fish in large rivers compared to small rivers.
Further research is needed to better understand the processes that explain such a pattern. As the quantity of
teleo-eDNA extracted depends on both its concentration per litre and the water volume sampled, the water
volume needed to extract an amount of eDNA over the threshold of 0.65x106 eDNA copies is approximately
40 litres for large rivers but only a few litres for smaller rivers. The volume of water to be sampled is the main
issue in many studies, with values ranging from less than a litre to 68 L (Cantera et al., 2019; Civade et al.,
2016; Doi et al., 2017), but no general guidelines have been established (Shu et al., 2020; Wang et al., 2021).
This study highlights that river size is one of the main factors that influences the minimum water volume
to be sampled. Nevertheless, this result is only valid in the context of our spatial and temporal integrative
sampling strategy: the total volume collected must be sufficient to allow the collection of eDNA from the
entire river section.

In conclusion, our results show that the combination of qPCR analysis to estimate the total concentration
eDNA amplified by the “teleo” primer, an eDNA metabarcoding workflow with a high number of technical
replicates, and an integrative sampling strategy allows a correct estimation of species diversity and delivers a
good proxy of absolute species abundance (based on taxa-specific DNA copy numbers per litre). Our approach
is not appropriate if accurate abundance estimation is required, such as in intensively managed fisheries.
However, we consider it sufficient for most biomonitoring and bioassessment purposes, especially given the
limited effectiveness of conventional fish sampling methods in most aquatic ecosystems. The efficiency of our
procedure needs to be tested in ponds and lakes, estuaries, and marine environments. Our results should
inspire a more quantitative approach to aquatic community analysis using eDNA methods.
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Figure captions

Fig. 1 Location of sampling sites along the Danube (29 sites, red circles) and tributaries (18 sites, black
triangles) near their confluence with the Danube.

Fig. 2 Longitudinal change in species richness along the Danube (blue line) and tributaries (red dots).
Occurrences of food/aquarium fish at sites along the Danube (blue bars) and tributaries (red bars).

Fig. 3 Boxplot comparison of the taxa richness obtained from eDNA (red) and (TEF) samples at the 18
common sites. For TEF, richness is expressed at the specific-species level (dark blue) and following the
taxonomic assignment used for eDNA taxa (species or species group, light blue).

Fig. 4 Between-site variability of teleo-DNA concentrations in the Danube (blue line) and the tributaries
(red dots) (Fig. 4a). Relationship between teleo-DNA concentrations and mean annual waterflow at the
different sites from the Danube (blue dots) and tributaries (red dots) (Fig 4b).

Fig. 5 Comparison between eDNA and traditional electrofishing methods (TEF) at the 18 common sites
sampled by both methods. Regressions (type II) of teleo-eDNA concentration (mitochondrial DNA copies/L)
on fish biomass (Fig. 5a) and fish density (Fig 5b) estimated by TEF. Regressions (type II) of species-specific
eDNA concentration on species-specific biomass (Fig 5 c) and species-specific density (Fig 5d).
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. Fig. 6 Number of eDNA copies per litre of taxa detected from the source to the mouth of the Danube
River (in km). Only species with a relative abundance greater than one per thousand are represented. The
size of the square is a function of the concentration of the corresponding taxa-specific eDNA per litre at a
given site (see Supplementary Tab 1 for taxa abbreviation list). The separation of the Upper-, Middle- and
Lower-Danube sections (vertical red lines) are based on the locations of the Gabcikovo dam (KM 1029) and
the Iron Gate dams I and II (KM 1908 and KM1987 respectively)47.

Fig. 7 Plot of the number of taxa detected by eDNA against the number of teleo-DNA copies per sample for
the 47 sites. Fitted curves from parameters estimated from a non-linear mixed model at the population level
(black line) and individual level (red lines: tributaries, blue lines: Danube River). Longitudinal distribution
of species.

Figure 1

Fig. 1 Location of sampling sites along the Danube (29 sites, red circles) and tributaries (18 sites, black
triangles) near their confluence with the Danube.

Figure 2

Fig. 2 Longitudinal change in species richness along the Danube (blue line) and tributaries (red dots).
Occurrences of food/aquarium fish at sites along the Danube (blue bars) and tributaries (red bars).

Figure 3

Fig. 3 Boxplot comparison of the taxa richness obtained from eDNA (red) and (TEF) samples at the 18
common sites. For TEF, richness is expressed at the specific-species level (dark blue) and following the
taxonomic assignment used for eDNA taxa (species or species group, light blue).

Figure 4

Fig. 4 Between-site variability of teleo-DNA concentrations in the Danube (blue line) and the tributaries
(red dots) (Fig. 4a). Relationship between teleo-DNA concentrations and mean annual waterflow at the
different sites from the Danube (blue dots) and tributaries (red dots) (Fig 4b).
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. Figure 5

Fig. 5 Comparison between eDNA and traditional electrofishing methods (TEF) at the 18 common sites
sampled by both methods. Regressions (type II) of teleo-eDNA concentration (mitochondrial DNA copies/L)
on fish biomass (Fig. 5a) and fish density (Fig 5b) estimated by TEF. Regressions (type II) of species-specific
eDNA concentration on species-specific biomass (Fig 5 c) and species-specific density (Fig 5d).
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. Figure 6

Fig. 6 Number of eDNA copies per litre of taxa detected from the source to the mouth of the Danube
River (in km). Only species with a relative abundance greater than one per thousand are represented. The
size of the square is a function of the concentration of the corresponding taxa-specific eDNA per litre at a
given site (see Supplementary Tab 1 for taxa abbreviation list). The separation of the Upper-, Middle- and
Lower-Danube sections (vertical red lines) are based on the locations of the Gabcikovo dam (KM 1029) and
the Iron Gate dams I and II (KM 1908 and KM1987 respectively)47.
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. Figure 7

Fig. 7 Plot of the number of taxa detected by eDNA against the number of teleo-DNA copies per sample for
the 47 sites. Fitted curves from parameters estimated from a non-linear mixed model at the population level
(black line) and individual level (red lines: tributaries, blue lines: Danube River). Longitudinal distribution
of species.
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