# On a conjecture of Davies and Levitin 

Hasen Ozturk ${ }^{1}$

${ }^{1}$ Ordu University Department of Mathematics

March 18, 2022


#### Abstract

Let $\$ H_{-}$c $\$$ be a $\$(2 \mathrm{n}) \backslash$ times $(2 \mathrm{n}) \$$ symmetric tridiagonal matrix with diagonal elements $\$ \mathrm{c} \backslash$ in $\backslash$ mathbb $\{\mathrm{R}\} \$$ and off-diagonal elements one, and $\$ S \$$ be a $\$(2 n) \backslash \operatorname{times}(2 n) \$$ diagonal matrix with the first $\$ \mathrm{n} \$$ diagonal elements being plus ones and the last $\$ \mathrm{n} \$$ being minus ones. Davies and Levitin studied the eigenvalues of a linear pencil $\$ \backslash$ mathcal $\{A\} \_c=H \_c-\backslash$ lambda $S \$$ as $\$ 2 \mathrm{n} \$$ approaches to infinity. It was conjectured by DL that for any $\$ \mathrm{n} \backslash \mathrm{in} \backslash$ mathbb $\{N\} \$$ the non-real eigenvalues $\$ \backslash$ lambda $\$$ of $\$ \backslash$ mathcal $\{\mathrm{A}\} \_c \$$ satisfy both $\$ \mid \backslash$ lambda $+c \mid<2 \$$ and $\$ \mid \backslash$ lambda $-\mathrm{c} \mid<2 \$$. The conjecture has been verified numerically for a wide range of $\$ n \$$ and $\$ c \$$, but so far the full proof is missing. The purpose of the paper is to support this conjecture with a partial proof and several numerical experiments which allow to get some insight in the behaviour of the non-real eigenvalues of $\$ \backslash$ mathcal $\{\mathrm{A}\} \_c \$$. We provide a proof of the conjecture for $\$ \mathrm{n} \backslash$ leq $3 \$$, and also in the case where $\$|\backslash \mathrm{lambda}+\mathrm{c}|=\mid \backslash \mathrm{lambda}-$ $\mathrm{c} \mid \$$. In addition, numerics indicate that some phenomena may occur for more general linear pencils.


## Hosted file

Partial Proofs and Numerics.pdf available at https://authorea.com/users/465952/articles/ 560377-on-a-conjecture-of-davies-and-levitin

