Aprotic phosphonium-based ionic liquid as electrolyte for highly CO2 electroreduction to oxalate

Chongyang Jiang¹, Ma Xifei², Shaojuan Zeng³, Feng jiaqi², Li Guilin², Lu Bai⁴, fangfang Li², Xiaoyan Ji², and Xiangping Zhang⁵

¹Institute of Process Engineering, Chinese Academy of Sciences, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Key Laboratory of Green Process and Engineering ²Affiliation not available ³Institute of Process Engineering, Chinese Academy of Sciences ⁴Institute of Process Engineering Chinese Academy of Sciences ⁵Institute of Process Engineering, CAS

March 24, 2022

Abstract

In this study, a new electrolyte system consisting of tetrabutylphosphonium 4-(methoxycarbonyl) phenol ([P4444][4-MF-PhO]) ionic liquid and acetonitrile (AcN) was developed as CO2 electroreduction electrolyte to produce oxalate, and the mechanism was studied. The results showed that using the new ionic liquid-based electrolyte, the reduction system exhibits 93.8% Faradaic efficiency and 12.6 mA cm-2 partial current density of oxalate at -2.6 V (vs. Ag/Ag+). The formation rate of oxalate is 234.4 µmol cm-2 h-1, which is better than that reported in the literature. The mechanism study using density functional theory (DFT) calculation revealed for the first time that [P4444][4-MF-PhO] IL can effectively activate CO2 molecules through ester and phenoxy double active sites, stabilize the reaction intermediate. The potential barriers of the key intermediates *CO2- and *C2O42- formation by induced electric-field was reduced in the phosphonium-based ionic environment, which greatly facilitates the activation and conversion of CO2 molecules to oxalate.

Hosted file

Main document.docx available at https://authorea.com/users/466911/articles/561050-aprotic-phosphonium-based-ionic-liquid-as-electrolyte-for-highly-co2-electroreduction-to-oxalate

Hosted file

Image.docx available at https://authorea.com/users/466911/articles/561050-aproticphosphonium-based-ionic-liquid-as-electrolyte-for-highly-co2-electroreduction-to-oxalate