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Abstract

Robust estimates of demographic parameters are critical for effective wildlife conservation and management, but are difficult to
obtain for elusive species. We estimated the breeding and adult population sizes, as well as the minimum population size, in a
high-density brown bear population on the Shiretoko Peninsula, in Hokkaido, Japan, using DNA-based pedigree reconstruction.
A total of 1,288 individuals, collected in and around the Shiretoko Peninsula between 1998 and 2020, were genotyped at 21
microsatellite loci. Among them, 499 individuals were identified by intensive genetic sampling conducted in two consecutive
years (2019 and 2020) mainly by noninvasive methods (e.g., hair and fecal DNA). Among them, both parents were assigned
for 330 bears, and either maternity or paternity was assigned to 47 and 76 individuals, respectively. The subsequent pedigree
reconstruction indicated a range of breeding and adult ([?]4 years old) population sizes: 128-173 for female breeders and 66-91
male breeders, and 155-200 for female adults and 84-109 male adults. The minimum population size was estimated to be
449 (252 females and 197 males) in 2019. Long-term continuous genetic sampling prior to a short-term intensive survey would
enable parentage to be identified in a population with a high probability, thus enabling reliable estimates of breeding population
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Abstract

Robust estimates of demographic parameters are critical for effective wildlife conservation and management,
but are difficult to obtain for elusive species. We estimated the breeding and adult population sizes, as well
as the minimum population size, in a high-density brown bear population on the Shiretoko Peninsula, in
Hokkaido, Japan, using DNA-based pedigree reconstruction. A total of 1,288 individuals, collected in and
around the Shiretoko Peninsula between 1998 and 2020, were genotyped at 21 microsatellite loci. Among
them, 499 individuals were identified by intensive genetic sampling conducted in two consecutive years (2019
and 2020) mainly by noninvasive methods (e.g., hair and fecal DNA). Among them, both parents were
assigned for 330 bears, and either maternity or paternity was assigned to 47 and 76 individuals, respectively.
The subsequent pedigree reconstruction indicated a range of breeding and adult ([?]4 years old) population
sizes: 128-173 for female breeders and 66-91 male breeders, and 155-200 for female adults and 84-109
male adults. The minimum population size was estimated to be 449 (252 females and 197 males) in 2019.
Long-term continuous genetic sampling prior to a short-term intensive survey would enable parentage to be
identified in a population with a high probability, thus enabling reliable estimates of breeding population
size for elusive species.

Keywords: Brown bear, breeding population size, pedigree reconstruction, population estimate, microsatel-
lite analysis,

Ursus arctos
Introduction

The identification of demographic parameters is fundamental for understanding behavioral ecology (Roy, et
al. , 2012; Stoen, et al. , 2006) and is essential for the effective management and conservation (Katzner,
et al. , 2011) of wild animals. This includes quantity-related factors, such as population size/density
and the number of reproductively active individuals, and quality-related factors, such as sex ratios, age
structures, survival/mortality rates, reproductive rate, and population growth rate. Reliable estimates of
these parameters are of particular importance for endangered animals or populations, but are usually difficult
to obtain. This is particularly true for rare or elusive species, including large carnivores, most of which
have declining population trends (Wolf and Ripple, 2018). In addition to habitat loss and fragmentation by
deforestation (Zemanova, et al. , 2017), human-caused mortality, including culling for management purposes
and hunting have become a serious threat to populations (Collins and Kays, 2011). On the other hand, an
increase in the population of large carnivores presents a potential threat to human populations and livestock
(Hristienko and McDonald, 2007). Therefore, population monitoring of wild carnivores inhabiting areas
close to human populations is indispensable for the development of wildlife management and conservation
policies, such as a determining harvest quotas (Kohira, et al. , 2009).

In the last two decades, DNA-based statistical models have been developed and used to estimate population
sizes and trends. Most are based on noninvasive sampling methods. In large carnivore studies this includes
the collection of hair (Rounsville, et al. , 2022; Woods, et al. , 1999), feces (Kindberg, et al. , 2011; Kohn,
et al. , 1999), and their combination (Ciucci, et al. , 2015). Hair and fecal samples allow DNA-based
individual identification without capturing and handling the animals, which is of great advantage in terms



of cost-effectiveness (Kindberg, et al. , 2011), and animal welfare (Cattet, et al. , 2008). Several estimators
have been developed for population size estimation based on noninvasive genetic data, including capture-
mark-recapture (CMR) methods (Seber, 1986), rarefaction analysis (Kohn et al., 1999), and, more recently,
spatially explicit capture-recapture (SECR) methods (Efford, 2004). These methods have been applied to
several large carnivore species, including brown bears (Ursus arctos ) (Kindberg, et al. , 2011; Morehouse
and Boyce, 2016), wolves (Canis lupus ) (Caniglia, et al. , 2012), coyotes (Canis latrans ) (Kohn, et al. ,
1999; Morin, Kelly and Waits, 2016), and mountain lions (Puma concolor ) (Russell, et al. , 2012). These
methods use an individual’s genotype as a molecular tag (Schwartz, Luikart and Waples, 2007). Genotypes
can be a unique and permanent mark, which is superior to classic CMR approaches that use physical tags,
such as ear-tags and leg bands. However, genotypic data are more than just tags; they contain further
information, such as parent-offspring relationships and population structures, which sometimes improve the
accuracy of estimates of population sizes and trends (Pearse, et al. , 2001).

As an alternative method for estimating demographic parameters, a DNA-based pedigree reconstruction
approach has been developed (Creel and Rosenblatt, 2013). This approach has been widely used to estimate
the number of breeding individuals in a population (Israel and May, 2010; Koch, et al. , 2008; Pearse, et al.
, 2001; Quinn, Alden and Sacks, 2019), as well as to investigate many aspects of animal behavior, including
population structure (Calboli, et al. , 2008; Hudy, et al. , 2010), breeding ecology (Levine, et al. , 2019;
Shimozuru, et al. , 2019), and dispersal (Arora, et al. , 2012). Because population estimations based on
statistical models do not provide age-related information, breeding population size estimates can offer more
practical information regarding the reproductive potential of a population. One of the advantages of this
method is that it enables the presence of breeders that were not directly sampled to be inferred if their
offspring have been sampled, although it remains uncertain whether they were dead or alive at the time of
sampling. Therefore, this method is particularly useful for estimating the number of breeding individuals
under the circumstances where the inferred breeders can be determined to be alive or dead. For example, in
a previous study in painted turtles (Chrysemys picta ), Pearse et al. (2001) targeted hatchlings as offspring
in a candidate parentage analysis, in addition to their mothers attending the nest, which enabled them to
determine the number of male breeders that existed at the copulating period. In most mammals it is not
possible to selectively sample newborns. In addition, it is almost impossible to obtain information on age by
noninvasive genetic sampling, which makes it more difficult to know whether the breeders inferred by pedigree
reconstruction are dead or alive. Such uncertainty over the survival /mortality of the breeders raises the ceiling
of the maximum estimates and thereby impairs its accuracy. This holds particularly true for large carnivores
that are relatively long-lived, for which multiple-generations can exist in a population, and mortality is
difficult to detect. Therefore, studies of breeding populations based on the pedigree reconstruction approach
are challenging and remain rare in large carnivore populations (Creel and Rosenblatt, 2013; Spitzer, et al. ,
2016).

In this study, we estimated the breeding and adult population size, as well as the minimum population size,
in a brown bear (Figure 1) population in the Shiretoko Peninsula, Japan, based on a pedigree reconstruction
approach. The Shiretoko Peninsula is located in eastern Hokkaido, Japan (Figure 2). An area extending
from the middle to the tip of the peninsula has been designated a UNESCO World Natural Heritage Site,
as well as a national park, where the habitat of the brown bear is protected. However, human—bear conflict,
including agricultural crop damage and intrusion into human residential areas, has become a serious problem
on the peninsula. As many as 20-70 bears have been killed annually over the past decade (total 373 bears in
2011-2020), mainly for management purposes. This small peninsula consists of coastal area and precipitous
mountains, and most of the area has limited accessibility, which makes it difficult to conduct a population
estimation survey based on a systematic genetic sampling targeting all areas of the peninsula. As an alter-
native, a harvest-based method, based on the mortality records of brown bears, has estimated a population
size as 559, although the wide confidence intervals (+440) give little credibility to the estimates (Ministry
of the Environment Government of Japan, 2017). The precise estimation of the population and/or breeding
population is required for the appropriate management and conservation of brown bears. On the peninsula,
information on genotypes, sex, and ages of dead bears (due to management culls, hunting, accidents, or



natural causes) has been accumulated for the past three decades. Due to the strong relationship between
park managers and hunters on the peninsula, poaching or hunting without a report are very unlikely to have
occurred over the past two decades. In addition, opportunistic noninvasive genetic sampling (hairs and feces)
has been performed in some areas (Shirane, et al. , 2018), and continuous bear monitoring surveys (including
DNA sampling) have been conducted for a decade or more in the Rusha area (Figure 2; Shimozuru, et al. ,
2017). The accumulated information, if combined with large-scale genetic sampling, may be able to identify
reliable demographic parameters, although other methods (e.g., the CMR method, a rarefaction analysis and
the SECR method) are difficult due to geographical limitations. In the current study, we applied a pedigree
reconstruction approach to this small but highly populated bear habitat. The population size of breeders
and adults, and the minimum population size, were estimated based on large-scale genetic sampling events
conducted in two consecutive years.

Methods
Ethical approval

All procedures involved in sample collection from live animals were conducted in accordance with the Gui-
delines for Animal Care and Use, Hokkaido University, and were approved by the Animal Care and Use
Committee of the Graduate School of Veterinary Medicine, Hokkaido University (Permit Number: 1106,
1151, 1152, 15009, 17005, 18-0083, and 19-0047).

Study area and sampling

This study was conducted on the Shiretoko Peninsula (43°50°-44°20" N, 144°45°-145°20" E; Figure. 2),
eastern Hokkaido, Japan. An area from the middle to the tip of the peninsula has been on the UNESCO
World Natural Heritage List since 2005. It is valued for the unique ecosystem formed by the interrelationship
of its marine and terrestrial environments. Genetic samples were collected in and around the peninsula
using multiple methods that detailed in previous studies (Shimozuru, et al. , 2020; Shimozuru, et al. |
2019; Shimozuru, et al. , 2020; Shimozuru, et al. , 2017; Shirane, et al. , 2018; Shirane, et al. , 2019).
In this study, the area consisting of Shari, Rausu, and Shibetsu towns was defined as being inside the
peninsula (approximately 1,760 km?), with additional samples from Kiyosato and Nakashibetsu towns also
included in the analysis (Figure 2). Most samples (blood and tissue) were from bears that were dead due to
nuisance control (mostly outside the national park) or hunting (limited to the October to January period
outside the national park), or that were captured for research purposes. For bears captured or killed between
1998 and 2020, age was estimated by counting the dental cementum annuli (Craighead, Craighead and
Mccutchen, 1970; Tochigi, et al. , 2018). In addition, we also obtained hair collected by hair-traps in several
locations during 2010-2020, skin tissues collected by biopsy dart sampling during 2011-2020, and fecal
samples collected during 2009-2020.

During 2019-2020, we conducted intensive, noninvasive genetic sampling for hair and feces. For hair, 63 and
67 tree-rub traps (For details, see Sato, et al. , 2020; Shimozuru, et al. , 2020) were placed throughout the
peninsula in 2019 and 2020, respectively, except for areas where it was difficult to gain access (Figure 2). In the
tree-rub trap, the trunk was partially smeared with wood preservative (Creosote R; Yoshida refinery, Tokyo,
Japan) to lure bears (Sato, et al. , 2020), and barbed wire was wrapped around the trunk between 30 and
230 cm above the ground. From late May to October, we visited each trap at approximately 2-week intervals
(a total of 10 and 11 collections in 2019 and 2020, respectively), and collected hairs from individual barbs,
which then were stored separately in envelopes. Samples were dried and kept at —30°C until DNA extraction.
Each tree-rub was monitored by an automatic camera (HykeCam SP108-J; Hyke Inc., Asahikawa, Japan).
The recording time and intervals were set to 25 and 5 s, respectively. All videos were checked to estimate the
number of bears that potentially rubbed against the tree, and their sex/age status was determined visually
if possible. Through a combination of genetic analysis and video data, breeding status was clarified in some
females, e.g., by the accompanying presence of cubs or yearlings. For fecal samples, we collected bear scats
with ages of 04 days as estimated by field collectors. They were stored in Inhibitex buffer (Qiagen Inc.,
Tokyo, Japan) and kept at —~30°C until DNA extraction. Bear scats were collected every time field collectors



found them during bear patrols in and around popular tourist areas and farmland, driving on forest roads,
and during exploratory investigations in the forest. To collect DNA samples from the areas without tree-rub
traps, field collectors periodically (1-2 times a month from June to September) made explorations on foot
into those areas, e.g., high-elevation areas and the tip of the peninsula.

Extraction of DNA and genotyping

The extraction of DNA, microsatellite genotyping, and a mitochondrial DNA haplotype analysis were con-
ducted using the procedure described in previous studies (Shimozuru, et al. , 2019; Shirane, et al. , 2018).
Briefly, DNA was extracted using the DNeasy Blood & Tissue Mini Kit (Qiagen Inc., Tokyo, Japan) for
blood and tissue samples, the DNA Extractor FM Kit (Wako, Osaka, Japan) or Isohair Easy (Nippon Gene,
Inc., Tokyo, Japan) for hair samples, and the QIAamp DNA Stool Mini Kit (Qiagen Inc.) for feces samples.
Twenty-one microsatellite markers and one sex marker, amelogenin (Yamamoto, et al. , 2002), were analyzed
by a multiplex PCR assay (Shimozuru, et al. , 2020; Shimozuru, et al. , 2019; Shimozuru, et al. , 2020).
Allele size was determined using an ABI PRISM 310 genetic analyzer or SeqStudio Genetic Analyzer (Ther-
mo Fisher Scientific K.K., Tokyo, Japan). In addition, eight Y-linked microsatellite alleles (Y318.1, Y318.2,
Y318.4, Y318.6, Y318.9, Y369.1, Y369.4, and 15020.1; Hirata, et al. , 2017) were determined by a multiplex
PCR assay, using the same primer sets as those used in previous studies (Bidon, et al. , 2014; Hirata, et al. ,
2017). The mitochondrial and Y chromosome haplotype information were used to select candidate mothers
for offspring, and candidate fathers for male offspring, respectively.

Pedigree reconstruction

Parentage analysis was performed using a likelihood-based approach with the CERVUS software (version
3.0.7) (Kalinowski, Taper and Marshall, 2007), followed by the COLONY software (version 2.0.6.4) (Jones
and Wang, 2010; Wang, 2004). Mitochondrial and Y chromosomal haplotype data were used for the selection
of potential mother—offspring relationships and potential father—son relationships, respectively. Analyses
were run systematically in accordance with a previous study (Shimozuru, et al. , 2019). First, all individuals,
sampled during 1998-2020, were analyzed with CERVUS, which selected the most likely parent among the
existing candidates. The same simulation parameters were set as in a previous study (Shimozuru, et al. |
2019). In the first step of the CERVUS analysis, we assigned a parent pair. The confidence level was set at
80%, and no mismatching was allowed in a parent—offspring combination (i.e., mother—father—offspring trio).
One mismatch was allowed in a parent—offspring combination obtained at a [?]95% confidence level when
the same mother and father were selected as the most likely parents ([?]1 mismatch per pair) in maternity
and paternity assignment analyses, respectively. If a parent pair could not be assigned due to a low (<80%)
confidence level or the presence of [?]1 mismatching loci, we assigned maternity or paternity as a second
step. The confidence level was set at 80%, and no mismatching was allowed in a mother/father—offspring
combination. Furthermore, bears that were not assigned a mother and/or father in CERVUS were included
in a parentage analysis using COLONY. The COLONY software generates hypothetical parents in a sib-ship
reconstruction with the assumption that both females and males are promiscuous (Steyaert, et al. , 2012),
which enables the assignment of parentage to individuals whose parent(s) were not present in the parent
candidate data set. To reduce the possibility of multiple generations in the candidate offspring leading to
a false parentage assignment, only bears that were sampled during 2019-2020 were included as candidate
offspring in COLONY analyses.

Breeding/adult population estimates

In this study, breeders and adults were defined as bears that produced [?]1 offspring between 1998 and 2020,
and bears that had the potential ability to breed, respectively. For females, adults included both breeders
and bears [?]4 years old (the youngest age of the first mating in this population, reported by Shimozuru, et
al. (2017). For males, the youngest age of the first mating in this population was 6 years of age (Shimozuru,
et al. , 2020), whereas males potentially reach sexual maturation at 3.5 years of age in the Scandinavian
population (Zedrosser, et al. , 2007). In the current analysis, bears [?]4 years old and sexually experienced
males (indicated by a parentage analysis) were included in the adult population, which allowed us to compare



the breeding/adult population size between sexes. In this study, we estimated the breeding/adult population
size as of 2019, the first year of the intensive genetic sampling period. This was because 2019 was expected
to be the year when the highest number of breeders/adults would be identified as alive. For example, females
identified with cubs for the first time in 2020 could be counted as breeders in 2019. Likewise, all females
and males identified in 2019 and/or 2020 were confirmed as breeders if their offspring were sampled during
1998-2020. In addition to breeding experience, some bears were confirmed to be [?]4 years old based on their
appearance when identified in an ongoing bear monitoring survey that has been continuously conducted in
recent decades in the area between Rusha and Utoro (Shimozuru, et al. , 2020; Shimozuru, et al. , 2017).
Some bears were confirmed to be [?]4 years based on the year of first genetic identification, or on the year
when their parent was dead (e.g., if the father was dead in 2014, his offspring could potentially be born in
2015, suggesting they were [?]4 years old as of 2019).

First, we calculated the minimum number of breeders, including the existing bears and hypothetical parents.
The former included bears identified in 2019 and/or 2020 that were confirmed as sexually experienced based
on a parentage analysis. The later included hypothetical parents generated by the COLONY software, which
were estimated to produce cubs during 2018-2020. For example, if a 1-year-old bear, killed in 2019, was
not assigned a mother from the list of candidate mothers, it was reasonable to assume that his/her mother,
although not genetically identified, gave birth in 2018 and was alive until the timing of mother—offspring
separation in 2019. Similarly, if a cub-of-the-year, sampled in 2020, was not assigned a father from the list
of candidate fathers, it could be assumed that his/her father was alive and mated with the mother in 2019.

Second, we estimated the maximum breeding population size by a pedigree reconstruction approach, based
on the simple assumption that the number of breeders would not exceed the total number of parents that
produced bears identified in 2019-2020. We estimated the number of breeders that produced bears identi-
fied during 2019-2020, but whose mother and/or father (genetically identified during 1998-2018) were not
sampled during 2019-2020, or whose mother and/or father were missing from the list of existing candidates
sampled during 1998-2020. One of the problems of this approach is that the assumption that each missing
parent constitutes a new individual would most likely cause an overestimation (Spitzer, et al. , 2016). In this
study, COLONY allowed hypothetical parents to produce multiple offspring, which reduced the likelihood of
overestimation due to this issue. Another problem is that it is difficult to know how many of the parents that
were identified as alive until 2018, but not sampled during 2019-2020, were still alive as of 2019. To account
for mortality among those individuals, we calculated the period between the year of the last identification
and 2019, and multiplied it by the survival rate to estimate his/her survival probability. Because the adult
survival rate was not investigated in this population, we applied the median value of the survival rates (0.94
for females and 0.89 for males) among the other brown bear populations (0.89-0.96 for females, 0.62-0.94
for males; reviewed in Schwartz 2003). For example, a mother identified as alive in 2017 was counted as 0.88
of an individual (i.e., 0.94 x 0.94). In addition, we assumed that adult bears who had not been sampled
for the last 5 years (2016-2020) in the area where successive surveys were conducted were no longer alive.
Continuous genetic samples from hair-traps, biopsy darts, and fecal collection have been conducted in the
area between Rusha and Utoro (Figure 2; Shimozuru, et al. , 2020; Shimozuru, et al. , 2017), enabling us
to assume that those individuals were less likely to be alive.

A similar but more serious concern, reported by Creel and Rosenblatt (2013), was that there is no way
to ascertain how many of the hypothetical parents are actually alive. To avoid overestimation, we made
several assumptions. First, females [?]30 years old and males [?]28 years old were not counted as breeding
individuals. This assumption was based on previous studies regarding reproductive senescence in brown bears
(Schwartz, et al. , 2003; Van Daele, et al. , 2001; Zedrosser, et al. , 2007). Upon pedigree reconstruction,
the age of each hypothetical parent was estimated based on the age of the oldest offspring and generation
intervals. The generation interval between mother and offspring was set at 7.3 years based on our bear
monitoring survey in the Rusha area. We calculated the first age when females gave birth to cubs that
survived the first year (for eight females = 5-9 years, average of 7.25; Shimozuru, et al. , 2017), and used
it as the minimum interval between generations. This value was more realistic than their primiparity age
(for 15 females = 5-6 years, average of 5.3; Shimozuru, et al. , 2017), which was more likely to induce



overestimation in the current analysis. The generation intervals between father and offspring, i.e., the first
age when males sired cubs that survived the first year, was not well investigated in this population. Males
become sexually mature at 3.5 years old (Zedrosser, et al. , 2007), but it is rare to gain a reproductive
opportunity until physical maturation at around 9-11 years of age (Moriwaki, et al. , 2018; Shimozuru, et
al. , 2020; Shirane, et al. , 2020). Therefore, we set the same value (7.3 years) as for females, based on
the assumption that the generation intervals between father and offspring were not less than those between
mother and offspring. The second assumption was that more than four matrilineal generations do not exist
at the same time, which was also based on our bear monitoring survey conducted in the Rusha area. In
this area, four generations (offspring, mother, grandmother, and great-grandmother) exist at the same time,
but a great-great-grandmother has never been identified (Shimozuru, et al. , 2017). Similarly, our previous
pedigree reconstruction conducted in the same population revealed that more than three paternal generations
(offspring-father-grandfather) do not exist at the same time (Shimozuru, et al. , 2019). Hypothetical mothers
and fathers that correspond to great-great-grandmother and great-grandfather, respectively, were assumed
to be dead, and were not counted as breeding individuals in the current analysis. Finally, we calculated the
minimum and maximum number of adults, by adding the number of bears confirmed to be [?]4 years old in
2019 (based on the criteria described above) to the minimum and maximum number of breeders.

Minimum population estimates

The minimum population size as of 2019 included bears identified in 2019, including bears that died in 2019;
bears not identified in 2019-2020, but whose presence as of 2019 was inferred by pedigree reconstruction; and
bears [?]1 year old, identified not in 2019 but in 2020. The second category included existing bears (i.e., bears
identified only before 2019) and hypothetical bears generated by the COLONY software, as described above.
In the third category, the age or minimum age of bears was determined based on the year of first genetic
identification (i.e., bears identified before 2019 were included), the year when their parent was dead, or on
the video data obtained at the time of genetic identification. The combination of a DNA-based parentage
analysis and video data taken at the hair-trap site sometimes enabled us to determine the age of young
bears (i.e., 0-1 years old) that accompanied their mother. Some bears were confirmed to be [?]1 year old
when their DNA was collected, and their body sizes were able to be assessed by the video data. Significant
differences in body sizes between 0- and 1-year-old bears enabled us to determine if bears were [?]1 year
old, even if information regarding their age was unavailable. This assessment was done only when we could
identify the bear in the video clip with 100% confidence. Therefore, bears that had the possibility of being
cub-of-the-year were not included in the minimum population size as of 2019.

Results

The number of samples analyzed and the number of bears identified by an intensive survey during 2019-
2020 are shown in Table 1. The distribution of feces that was successfully analyzed is shown in Appendix
A. From the 2-year intensive genetic survey in 2019-2020, 499 unique bears (281 females and 218 males)
were identified. Among them, 172 bears (96 females and 76 males) had been genetically identified by 2018.
Finally, with the samples collected between 1998 and 2020, we genotyped 1,288 bears (616 females and 672
males), including 1,221 bears from the Shiretoko Peninsula (i.e., Shari, Rausu, and Shibetsu towns), and 67
bears from areas adjacent to the peninsula (i.e., Kiyosato and Nakashibetsu towns). Approximately 58% of
the sampled bears (748 bears) were confirmed to be dead, due to management culls, hunting, accidents, or
natural causes. All bears were genotyped at all of the loci. We found seven haplotypes in the mitochondrial
analysis, which was similar to the results of previous studies on the same population (Shirane, et al. , 2018):
HB-02 (N = 37), HB-10 (N = 139), HB-11 (N = 703), HB-12 (N = 66), HB-13 (N = 122), HB-newl (N =
107), and HB-new2 (N = 1); and one heteroplasmic pattern: HB-10/11 (N = 113). For the Y chromosomal
haplotype analysis, we found four haplotypes (BR1.02, BR1.04, BR1.05, and BR1_06) that were reported in
a previous study (Hirata, et al. , 2017). In addition, based on two markers, UarY369.4 and 15020.1, which
were excluded in the above study due to the pseudoheterozygous genotypes identified in bears sampled
outside Hokkaido, the haplotypes BR1.04 and BR1.05 were classified into two and three sub-haplotypes,
respectively. Finally, we found six haplotypes, BR1.02 (N = 32), BR1.04a (N = 1), BR1.04b (N = 339),



BR1.05a (N = 57), BR1.05b (N = 91), BR1.05¢ (N = 1), and BR1.06 (N= 149). Two samples were not
available for Y chromosomal haplotypes due to an unstable amplification.

Table 2 summarizes the results of the parentage analysis with CERVUS. Among the 499 unique bears
identified in 2019-2020, 7 males with the HB-02 mitochondrial haplotype were considered to be immigrated
males from outside the peninsula, because no females with HB-02 were identified on the peninsula (Shirane,
et al. , 2018). Therefore, those males were excluded from the candidate bears that were possibly born inside
the peninsula. Both parents were assigned for over two-thirds of the remaining 492 bears, and less than 8%
of the bears were unassigned to one parent. Among the 499 bears, including the seven immigrant males,
125 females and 65 males were confirmed to be breeders, due to the existence of [?]1 offspring between 1998
and 2020. In addition, 27 females and 18 males were identified as [?]4 years old as of 2019, based on the
year of first visual/genetic identification (12 females and 6 males), the year of death of their parent (15
females and 8 males), or an age estimation at death by counting the cementum annuli of the teeth (4 dead
males in 2019-2020), although they did not have any breeding record. Among the 499 bears, no bears were
assigned as daughters/sons, or mothers/fathers of bears sampled outside the peninsula (i.e., Kiyosato and
Nakashibetsu towns). Taken together, among the 499 bears identified in 2019-2020, 152 females and 83
males were confirmed to be adults (i.e., bears with reproductive experience or [?]4 years old) as of 2019.

Table 3 summarizes estimations of the breeding population by including past-identified breeders (previously
existed, but not identified in 2019-2020) and hypothetical parents, based on a pedigree reconstruction by
the combination of CERVUS and COLONY analyses. Among the bears identified between 1998 and 2018
but not in 2019-2020, 16 females and 10 males (identified between 2008 and 2018) were assigned as parents
of bears identified in 2019-2020. Among them, one female was assigned as a mother of a bear that was
born in 2018 and was dead in 2020. She was included in the minimum breeding population because it was
reasonable to assume that she survived until the time of separation with the offspring in 2019. On the
other hand, four females were estimated to be [?]30 years old based on the reconstructed pedigree, and one
female (unidentified since 2012) and three males (unidentified since 2008-2015) were assumed to be dead
due to their long-term non-identification in the Rusha area where continuous genetic monitoring had been
conducted. By excluding these bears, 8.8 and 5.4 bears were included in the maximum breeding population
as of 2019. Subsequently, COLONY generated 51 hypothetical mothers and 37 hypothetical fathers as
potential parents of the bears (identified in 2019-2020) that remained unassigned to both or either of the
parents in the CERVUS analysis. Among them, two females and one male were included in the minimum
breeding population because they were assigned as parents of bears born in 2019 (two hypothetical females)
and in 2020 (one hypothetical male). Among the remaining hypothetical parents, 13 females and 16 males
were excluded due to the estimated age (two females and three males were estimated to be [?]30 and [?]28
years old, respectively), and due to the limitation of maximum maternal /paternal generations (9 females and
13 males were considered to be great-great-grandmothers and great-grandfathers, respectively). In addition,
two females were assumed to be dead because they were mothers of resident adult females in the Rusha area,
but were not observed in the past 12 years. Finally, the minimum/maximum adult populations of females
and males were estimated to be 155-200 and 84-109, respectively.

The minimum bear population in 2019 in the Shiretoko Peninsula is shown in Table 4. It was found that
a total of 449 (252 females and 197 males) existed as of 2019 in the Shiretoko Peninsula. Changes in the
cumulative number of unique bears counted as the minimum population in 2019 are shown in Figure 3. Bears
identified visually (one female) or inferred by pedigree reconstruction (one existing female, two hypothetical
females, and one hypothetical male) were excluded from this analysis. Three females were counted as adults,
not at the timing of first genetic identification, but when they were proven to be an adult (e.g., at a time
when they were confirmed to be present with offspring).

Discussion

We applied a pedigree reconstruction approach to estimate the breeding and adult population size of brown
bears on the Shiretoko Peninsula, Japan. Large-scale, intensive genetic sampling enabled a high rate of
parentage assignment, which allowed us to raise the minimum size of the breeder/adult populations. The



adults ([?]4 years old as of 2019) accounted for 47.1% of the total unique bears identified in 2019-2020,
which was comparable to the percentage of adults (43.0%; [?]5 years old, defined in Craighead, Sumner and
Mitchell, 1995) in Yellowstone bears monitored at Trout Creek, 1960-1968. This suggests that the current
method is effective enough to detect breeders/adults among bears without information on age. The estimated
breeding/adult population size, although that was the minimum value, was higher than among other brown
bear populations in the world, suggesting that this population, which inhabits a small area, has a very high
reproductive potential (Schwartz, Miller and Haroldson, 2003). The breeding/adult population size is a very
useful indicator for determining population dynamics and set harvest/hunting quotas (Swenson, et al.
1994), which is essential for the development of wildlife management and conservation policies. Kohira et al.
(2009) estimated the population growth rate to be >1 under the conditions where [?]81 adult females [?]5
years old (among 150 females in total) existed in the Shiretoko Peninsula, excluding Shibetsu Town (which
accounts for 31% of the total forest cover in the current study area), with eight adult female mortalities/year
(7.2 adult [[?]5 years old] female mortalities/year in the same area during 2011-2020). Our results suggest
that the current harvest rates are below the sustainable level; however, careful attention is still required
because some of the parameters used in Kohira et al. (2009) were extrapolated from data obtained from
other brown bear populations.

To estimate the maximum breeding population, we made an assumption that the breeding population would
not exceed the total number of parents that produced bears identified in 2019-2020. This assumption
was unreliable if the sampling efforts were insufficient or if the sampling area was too limited. In these
circumstances, the maximum population size would be severely underestimated. Although most of the hair-
trap sites were placed in coastal areas for ease of access, the combination of hair-trapping and scat collection
enabled intensive genetic sampling in the current study, which was supported by the accumulative curve of
unique bears shown in Figure 3. Brown bears in this population range from high elevations (e.g., to eat alpine
stone pine cones in summer) to coastal areas (e.g., to eat salmon in autumn) depending on seasonal changes
in food availability (Shirane, et al. , 2021), suggesting that most of the bears on the peninsula had the
potential to be sampled. In addition, one of the advantages of the current method is that it was possible to
infer the presence of the parents without sampling if their offspring were sampled. Male bears disperse from
their birthplace at around three years of age (Shirane, et al. , 2019), which allowed mothers living in the area
with a low sampling probability to be detected by the pedigree reconstruction. Therefore, it was unlikely that
the true breeding population exceeded the current estimation, but there is a need to give careful attention
to the possibility of overestimation. One of the disadvantages of this method is that with an increase in the
number of bears whose parent(s) are unknown, the number of hypothetical parents increases, which raises
the ceiling of the estimate. This concern was partially mitigated by the use of COLONY software, which
allowed each hypothetical parent to be assigned to multiple bears based on the promiscuous mating ecology
of bears (Steyaert, et al. , 2012). However, because it is not always possible to know whether they are
alive or dead, this leads to an overestimation, particularly in short-term surveys, as discussed in Creel and
Rosenblatt (2013) and Spitzer et al. (2016), in which a population estimation was conducted based on a
similar method. In the present study, more than two-thirds and over 90% of the bears were assigned for both
parents and either parent, respectively. This rate of parentage assignment is high compared to other studies
targeting brown bears (Norman and Spong, 2015; Sawaya, Kalinowski and Clevenger, 2014; Spitzer, et al. ,
2016) and other bear species (Zeyl, et al. , 2009), which allowed us to reduce the generation of hypothetical
parents in this study.

This “alive or dead problem” holds true not only for hypothetical parents but also for existing ones. Al-
though the parentage assignment rate was high, the lack of information regarding their survival also leads to
overestimations. In this study, among the 295 existing parents (170 females and 125 males) assigned as the
parents of the 492 unique bears identified in the 2-year period, 222 bears (113 females and 109 males) had
already been identified by 2018, of which 196 (97 females and 99 males) were confirmed to be dead. This
enabled us to reduce the number of breeders without information on their survival, which in turn reduced
the difference between the minimum and maximum breeding populations. This was mainly achieved by the
accumulation of over 20 years of genetic information preceding large-scale sampling events. Furthermore,



information on age for dead bears (obtained mainly by an analysis of their teeth) and the date of first iden-
tification for living bears were very useful to assign the minimum age, which helped improve the accuracy of
estimates of the minimum population size as of 2019. We suggest that the current method based on pedigree
reconstruction offers less advantage in terms of estimating breeder/adult population sizes based on genetic
data obtained by limited sampling events, but works well for populations where continuous genetic surveys,
particularly targeting harvested bears, have been conducted in advance.

To assume the mortality of hypothetical parents and bears identified only before 2019, we defined three
criteria, i.e., a maximum number of generations, maximum age as a breeder, and long-term absence of
observation records in the areas with high survey activity. This enabled us to exclude 33% (37/114) of those
bears from the maximum population size. The adoption of these criteria was a realistic approach on the
basis of previous studies; however, it may be too conservative. For example, the minimum ages of some
parents were estimated based on the age of the oldest daughter/son in the offspring list, but it was unlikely
that the daughter/son was the first offspring that they raised successfully. In fact, among bears included
in the maximum breeding number (N = 49 and 28, for females and males, respectively), the minimum age
for 16 females and 11 males was estimated to be 20 years of age or older, but their real ages may have
exceeded the threshold criteria as a breeder. In addition, opportunistic hair-trapping and scat collection has
been conducted throughout the peninsula over the last decade; thus, those older bears should have had a
higher possibility of being sampled. Therefore, it is reasonable to think that the maximum breeding size still
included a certain number of bears that were already dead. This suggests that the true breeding population
size was closer to the minimum than maximum number, which is supported by the accumulative curve of
unique adult bears that almost reached a plateau at the end of the 2-year period.

The sex ratio of breeders was more than two-fold (2.04) biased in favor of females, which is unusual compared
to other brown bear populations (e.g., 1.20-1.30 in Swedish population; Spitzer, et al. , 2016). It is generally
accepted that there are no sex biases at birth in brown bears (Schwartz, et al. , 2003), and this result therefore
raises some issues. It was most likely due to sex differences in reproductive opportunities; male reproduction
is competitive (Steyaert, et al. , 2012), and breeding opportunities tend to be biased toward physically
mature males, which reduces the possibility for young males with limited breeding experience to be assigned
as a father in a parentage analysis. This is consistent with a previous report showing that the frequency
of breeding was low in 5- to 9-year old males but high in 10- to 14-year old bears in the Rusha area of the
Shiretoko Peninsula (Shimozuru, et al. , 2020). However, if the bias were solely due to this reason, the
number of males assigned as [?]4 years old based on a pedigree reconstruction should have been larger than
that of females, which was not true (27 females vs. 18 males). In addition, the number of bears of unknown
age was not very different (49 females vs. 47 males) in the minimum population. Furthermore, the number of
bears whose father was unknown (47) was fewer than that of bears whose mother was unknown (76), which
reduced the possibility that males had a lower probability of sampling than females did in the current field
survey. This suggests that the female-biased breeding population (128 vs. 66) or adult ([?]4 year) population
(155 vs. 84) was not strongly influenced by procedural matters in the current analysis. The adult sex ratio
has been shown to vary in other brown bear populations, but is more or less biased to females (Schwartz,
et al. , 2003), similarly to this population. This was partially supported by the male-biased probability
of human-caused death in this population, particularly for 2- to 3-year-old bears when males initiate natal
dispersal (Kohira, et al. , 2009; Shimozuru, et al. , 2020). In addition, the high mortality rate in males due
to natural causes, e.g., starvation due to the high energy demand during development in males (predicted
by Mattson and Reid, 1991) or intraspecific killing (Schwartz, et al. , 2003), may have accelerated this
tendency, although the sex differences in the natural survival rate are still unknown in this population.

The minimum population size (449 individuals as of 2019) in the study area (total area of three towns: 1,760
km?; total forest cover in the area: 1,378 km?) indicated that the Shiretoko Peninsula has one of the highest
brown bear populations area in the world. The minimum density (25.5-32.6 bears/100 km?) was much higher
than the estimated brown bear density in the interior populations of Europe (e.g., Swedish population: 0.8
1.2 bears/100km?; Bellemain, et al. , 2005) and North America (0.4-8.0 bears/100km?; Haroldson, et al.
, 2021; Schwartz, et al. , 2003), and also higher than or comparable to the coastal populations in Alaska
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(18.4-40.0 bears/100km?; Schwartz, et al. , 2003), where a high-nutrient diet (e.g., salmon) is available in
the hyperphagia period. In this study, genetic sampling conducted in two consecutive years (2019-2020)
allowed us to increase the minimum population by 28% compared to the number obtained solely in the
first year (2019). This was partially achieved by the minimum age assignment for bears identified for the
first time in 2020, based on pedigree reconstruction and also on body size assessment in cases where video
data were allowed to specify the donor bear. This suggests that a simple count of the detected genotypes,
a very classic method, can still provide practicable data through a combination of long-term, continuous
genetic monitoring for dead/alive bears and a subsequent multi-year large-scale sampling event. We still
need to ascertain how close the minimum value is to the true population size through the use of more
sophisticated statistical methods, e.g., SECR approaches. However, population estimates using statistical
models sometimes have wide confidence limits (Lukacs and Burnham, 2005). Therefore, a precise estimation
of the minimum population size sometimes provides more applicable and conservative information for wildlife
management and conservation, and can be a useful indicator to select the best-fit model (Solberg, et al. |
2006), thereby helping to refine population estimates.

In conclusion, our study suggests that pedigree reconstruction is a very useful tool for estimating breed-
ing/adult populations and minimum population size in elusive wildlife species. This approach is also ap-
plicable to wildlife populations under circumstances where population estimation using statistical models,
e.g., the SECR approach, is difficult for various reasons, e.g., geographical limitations and the behavioral
characteristics of study animals. It should be emphasized that not only the sampling intensity for large-scale
sampling events but also the preceding accumulation of information on the genotypes and ages of dead indi-
viduals are essential to maximize the utility of this approach. The current study indicates how important an
accurate knowledge of animal mortality (due to management culls, hunting, accidents, poaching, and natural
deaths) and secured recovery of samples are for monitoring populations of wildlife. A large-scale, intensive
genetic survey is very costly, and therefore it is not often conducted. In preparation for the opportunity of
such surveys, continuous genetic monitoring efforts are needed to maximize the amount and quality of the
information regarding demographic parameters.
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Tables
Table 1. Number of samples and bears identified during 2019-2020.

Samples

Year

No. samples analyzed

No. successful analysis

No. unique bears

female/male

*Other methods; biopsy-darting, blood stains and saliva.

#Dead; management kills, hunting and natural death.

TThe number included one and three visually-identified, not genetically-identified individuals in 2019 and 2020, respectively

Table 2. Key characteristics of the parentage analysis by CERVUS showing the number of breeders and
adults identified in 2019-2020.

Bears identified in 2019-2020
Females

Males

Triads

Dyads

With "no parent”

Female breeders®

Male breeders®

Ratio of dams : sires

Females [?]4 y, no breeding record

Males [?]4 y, no breeding record

No. breeders or [?]4 years old (Females/Males)

& Seven males, originated out of the peninsula, were included, but excluded as potential offspring in the parentage analysis.
b Individuals with at least one offspring between 1998 and 2020.
¢ 4 males, originated outside the peninsula, were included.

4 Percentage among same sex.
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Table 3. Population size of breeders and adults estimated by a pedigree reconstruction.

Female  Male

No. breeders (existed) 16 10
Estimated as dead 5 3
Counted as minimum number 1 0
Counted as maximum number 8.8 5.4
No. hypothetical parents 51 37
Estimated as dead 13 16
Counted as minimum number 2 1
Counted as maximum number 36 20
Minimum No. of parents 3 1
Maximum No. of parents 45 25
Breeding population size 128-173  66-91

Adult ([7]4 y) population size  155-200 84-109

Table 4. Minimum population size in the Shiretoko Peninsula, Hokkaido, Japan, as of 2019.

Age

4

2-3

1

0

Unknown

Subtotal

Total

Number in the parenthesis indicates the number of bears died in the given year.

IThree females and one male that were not identified in 2019-2020 but inferred by pedigree reconstruction were included.
*One and Sthree visually-identified bears were included.

#One bear (age unknown) and one cub that died due to natural causes were included in 2019 and 2020, respectively.
TTFifty bears born and four bears possibly born in 2020 were excluded.

Figure Legends

Figure 1. Brown bears copulating in the Rusha area of the Shiretoko Peninsula, Hokkaido, Japan (Photo:
Masami Yamanaka).

Figure 2. Map of the Shiretoko Peninsula, eastern Hokkaido, Japan. The dotted yellow line indicates
the Shiretoko National Park. This map was created using QGIS version 3.4.7-Madeira (QGIS.org, 2022.
QGIS Geographic Information System. QGIS Association. http://www.qgis.org) and edited by the au-
thor. The topographic features are based on Digital Topographic Map 1:25000 published by Geospatial
Information Authority of Japan (available from https://fgd.gsi.go.jp/download /map Gis.php ?tab=dem, ac-
cessed 18-May-2019). Administrative divisions were created by the National Land Numerical Infor-
mation published by Ministry of Land, Infrastructure, Transport, and Tourism of Japan (available
from https://niftp.mlit.go.jp/ksj/index.html, accessed 21-Jul-2021). National park boundaries were created
using GIS data for national parks published by Biodiversity Center, Ministry of the Environment (available
from http://gis.biodic.go.jp /webgis/sc-026.html?kind=nps, 20-Jul-2021). The vegetation was created using
the 1:25,000 GIS-based vegetation map ”Hokkaido” published by Biodiversity Center of Japan, Ministry of
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the Environment, Japan (available from http://gis.biodic.go.jp/webgis/sc-025.html?kind=vg67, 19-Jul-2021).

Figure 3. Changes in the cumulative number of unique bears counted as the minimum population in 2019.
Bears identified visually or inferred by pedigree reconstruction were excluded from this analysis. Three
females were counted as adults, not at the timing of first genetic identification, but when they were proven
to be an adult (e.g., at a time when they were confirmed to be present with offspring).

Data Accessibility

The data (microsatellite genotypes, mitochondrial haplotypes, and Y-chromosomal haplotypes) will be made
available in Dryad.
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