Discharge and Floods Projected to Increase More Than Precipitation Extremes

Felipe Quintero Duque¹, Gabriele Villarini¹, Andreas Prein², Wei Zhang³, and Witold Krajewski¹

¹The University of Iowa ²National Center for Atmospheric Research ³Utah State University

June 14, 2022

Abstract

Floods claim a high toll in fatalities and economic impacts. Despite their societal relevance, there is much more to learn about the projected changes in discharge and flooding. Here we force an operational hydrologic model over the state of Iowa with high-resolution convection-permitting climate-model precipitation to evaluate the response of 140 watersheds to climate change. At the end of the century, under the most aggressive scenario in terms of fossil fuel use, we show that the transition from snow to rainfall and a $^{30\%}$ increase in extreme precipitation rates lead to a doubling of maximum discharge during the spring and extended the flood season into the fall. Total discharge volumes are also expected to increase. Our results suggest that flood projections based on extreme precipitation increases alone substantially underestimate future risk due to the nonlinearity of the hydrologic response explained by long-term soil moisture memory and its feedbacks with precipitation.

Hosted file

paper_20220608.docx available at https://authorea.com/users/489195/articles/573015-dischargeand-floods-projected-to-increase-more-than-precipitation-extremes