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Abstract

After breast cancer, cervical cancer is the second most frequent cancer in women globally. The Human Papillomavirus is the

most common cause of cervical cancer. In this paper, we used a nonlinear ordinary differential equation system to build a

mathematical model of cervical cancer with six compartments (the number of susceptible women, vaccinations of susceptible

women, the infected women with HPV, the number of infected with cervical cancer, treatment individual, and recovery class).

The model is examined using the existence of bounded and positive solutions, numerical analysis, sensitivity analysis, and

stability analysis of disease-free and endemic equilibrium points as a function of R0 values. The numerical simulations of the

system are carried out using the ODE45 subroutine of MATLAB and the results are revealed using graphs and biologically

interpreted. Using numerical simulation, applying vaccination and increasing treatment for everyone can help to reduce and

control the spread of cervical cancer.
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Numerical Simulation, Sensitivity analysis, Stability Analysis.

1 Introduction

Uterine cervical cancer is a global health issue, but it is particularly concerning

in developing countries. The main cause of cervical cancer is infection with

HPV [1]. Breast cancer (30.2%), cervix cancer (13.4%), and colorectal cancer

are the three most common cancers in Ethiopia’s adult population (5.7% )[2]

. Women account for around two-thirds of all cancer deaths each year. It is

either the first or second most common type of cancer in women. There are

over 100 different types of HPV, the majority of which are harmless.The types

of HPV that are very common in cases of cervical cancer are types 16 and 18,

which is more than 70% of all cervical cancers reported [3],

Behavioral, biological, environmental, and genetic risk factors of cancer. Tobacco

usage, harmful alcohol consumption, a poor diet, and physical inactivity are

all behavioral risk factors. Overweight, obesity, age, the individual’s sex, and

genetic or inherited make-up are all biological factors. Exposure to carcinogens

in the environment, such as chemicals, radiation, and infectious agents, is

a concern (including certain viruses) [4]. Low levels of awareness, a lack of

effective screening programs, being overshadowed by other health priorities

(such as AIDS, tuberculosis, and malaria), and a lack of attention to women’s

health are all plausible reasons for the country’s higher cervical cancer incidence

rate[5]. Blood spots or light bleeding between or following periods, bleeding

after intercourse, douching, increased vaginal discharge, pain during sexual

intercourse, bleeding after menopause, and unexplained persistent pelvic and

back pain are all symptoms of cervical cancer[4].

About 40% of cancers can be prevented through primary prevention, which

is also the most cost-effective method of fighting cancer. Hysterectomy, Cone
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biopsy, Radical trachelectomy, Lymph node removal, chemoradiation,radiation

therapy, surgery, clinical trials and radiation therapy are all used to treatment

cervical cancer. [6].

Vaccination provides an alternative or a supplementary intervention for CC

prevention. Because neither ÂăscreeningÂă nor vaccinationÂăcan guarantee

100 percent protection against CC, the best prevention plan may comprise a

mix of the two [7]. Mathematical modeling is an abstract that uses mathematical

language to explain system behavior and portrays the behavior of real devices

and things in mathematical terms. [8]. In this study, we created a compartment

model called SV IvC T R and analyze it to explore cervical cancer utilizing stability

analysis, sensitivity analysis and the ODE45 numerical simulation approach.

2 Mathematical Formulation

In this work, we divided the model into six sections to create a model for

cervical cancer. The number of susceptible women S(t), women vaccinated

V(t), the number of women infected with HPV Iv (t), the number of women

infected cervical cancer C(t), the number of women treated for HPV and infected

cervical cancer T(t), and the number of women recovered from disease R(t) are

the variables. To create the model, we used the following basic assumptions.

• After the age of 15, the susceptible population consists of all females.

• The recruiting rate, natural death rate, and cervical cancer death rate are

all taken into account.

• The total population is equal to the sum of all variables, that is, N (t ) =
S(t )+V (t )+ Iv (t )+C (t )+T (t )+R(t ).

• Individual vaccination rates are proportionate to the number of people
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who are at risk.

• Infected women with HPV and infected women with cervical cancer receive

individualized treatment.

The new model’s flow chart depicts the disease of cervical cancer as it spreads

through the population:

Figure 1: The flow chart of the Compartment model

The following systems of ordinary differential equations are used in the model

equation of the above flow char[2], [3],[9] and [10].
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dS

d t
=b − SβIv

N
− Sβ1C

N
−µS +θ1V −θS +λR,

dV

d t
=θS −θ1V −µV ,

d Iv

d t
=SβIv

N
+ Sβ1C

N
− (∆+µ)Iv − (1−γ)Iv −γIv ,

dC

d t
=γIv − (σ+µ)C −δC ,

dT

d t
=δC + (1−γ)Iv − (φ+µ)T −ψT,

dR

d t
=ψT −µR −λR,

(1)

With S(t ) > 0,V (t ) ≥ 0, Iv (t ) ≥ 0,C (t ) ≥ 0,T (t ) ≥ 0,R(t ) ≥ 0,

Description of variables

S(t) At time t, denotes the vulnerable population of women over the age of 15.

V(t) Vaccination individual at time t.

Iv (t ) People that were infected with HPV at time t .

C(t) People who infected with cervical cancer at time t.

T(t) Treatment individual at time t.

R(t) At time t, the individual is recovering..
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Description of parameters

b The rate of recruitment in the vulnerable population.

µ The natural death rate per year for each variable .

θ1 Failure rate of vaccination

θ Vaccination rate

β The transition from HPV-susceptible to HPV-infected.

β1 The transition from HPV-susceptible to HPV-infected.

δ The proportion of infected cervical cancer patients in each therapy group.

γ The percentage of people with cervical cancer who are infected and who are receiving treatment.

β1 The transition from HPV-susceptible to cervical cancer-infected..

σ Infected cervical cancer has a high mortality rate.

∆ The number of people who die as a result of being infected with HPV is on the rise..

φ Treatment-related death rate.

ψ The rate of treatment individual to recovery.

λ The percentage of people who have been shifted to the susceptible class.

3 Analysis of The Model

3.1 Positivity and boundedness of the model’s solution

Theorem 1:

The biological importance of the model system (1) lies on the region Ω =
{(S,V , Iv ,C ,T,R)in R6 : 0 ≤ S +V + Iv +C +T +R = N , N < b

µ
}.

Proof:

From the first equation of system (1), dS
d t = b − SβIv

N − Sβ1C
N −µS + θ1V − θS +

λR, we can be expressed as a form of inequality dS
d t ≥ −SβIv

N − Sβ1C
N −µS −θS.

We obtain after some simplifications, S(t ) > S0e−
(
βIv+β1C+µ+θ

N

)
t ≥ 0. Here, The

starting population of susceptible is S(0), which is an integral constant and
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indicates a positive amount with the limit t → ∞, resulting in S(t ) > 0. As a

result, S(t) is always a positive number.

From the second equation of system (1), dV
d t = θS − θ1V −µV , expressed as

type of inequality, dV
d t ≥ −θ1V −µV . We got, V (t ) > V0e−(θ1+µ)t ≥ 0. Here, V0

is an integral constant, the initial population of the vaccine individual, and a

positive amount with a limit t → ∞ which leads to V (t ) > 0. Hence, V (t ) is

always a positive number.

Based on third equation of system (1), d Iv
d t = SβIv

N + Sβ1C
N − (∆+µ)Iv − (1−γ)Iv −

γIv , it can be expressed as form of inequality as d Iv
d t ≥−(∆+µ)Iv−(1−γ)Iv−γIv .

The analytic solution Iv (t ) > Iv (0)e−(∆+µ+1)t ≥ 0. Since, Iv (0) represents the

initial population of HPV-infected people, an integral constant, and a positive

value. t →∞ leads to Iv (t ) > 0. Hence, Iv (t ) is always positive.

Based on fourth equation of system (1)„ dC
d t = γIv − (σ+µ)C −δC , which can

express as an inequality form dC
d t ≥ −(σ+µ)C − δC . The solution is C (t ) >

C0e−(σ+µ+δ)t ≥ 0. This shows that, C (0) is constant and initial population of

the People who infected with cervical cancer and positive quantity with the

limit t →∞ and the solution leads to C (t ) > 0. Here, C (t ) is always positive.

Based on fifth equation of system (1)„ dT
d t = δC + (1 − γ)Iv − (φ+µ)T −ψT ,

which can express as an inequality form dT
d t ≥ −(φ+µ)T −ψT . The solution

is T (t ) > C0e−(φ+µ+ψ)t ≥ 0. This shows that, T (0) constant, initial population

of the treatment compartment and positive quantity with the limit t →∞ and

the solution leads to T (t ) > 0. Here, T (t ) is always a positive number.

Finally, the last equation of system (1), , dR
d t = ψT −µR −λR, we can express

as an inequality form dR
d t ≥ −µR −λR. Then, the analytical solution is R(t ) >

R0e−(µ+λ)t ≥ 0. As a result„ R(0) is an integral constant that reflects the initial

population of the recovered or removed compartment, and it has a positive

7



value with the limit t →∞ resulting in R(t ) > 0. Here, R(t ) is always positive

in this case.

Since, d N
d t = b −µN −∆Iv −σC −φT ≤ b −µN . Now, N (t ) ≤ b

µ
+e−µt

(
N (0)− b

µ

)
.

Consider initial condition such that 0 ≤ N (0) ≤ b
µ

by Gronwall inequality, 0 ≤
N (t ) ≤ b

µ
.

Now, human population is now non-zero and bounded. Theorem (1) states

that if a uniquely boundedness solution exists, the significance domain Ω is

positively invariant.

3.1 Equilibrium Point

Disease Free Equilibrium Point

The right-hand side of equations (1) through (6) can be zero, and the variables’

values can be calculated. In this situation, in the long run, every human population

is mathematically susceptible, which indicates that the human population’s

susceptibility is not zero and can be represented as (S,V , Iv ,C ,T,R) = (S,0,0,0,0,0).

To simplify things, we can write (S,V , Iv ,C ,T,R) = ( b
µ+θ ,0,0,0,0,0). As a result,

the disease-free equilibrium point is E0 = ( b
µ+θ ,0,0,0,0,0).

Endemic Equilibrium Point

The endemic equilibrium point occurs when a disease can’t be completely

eradicated but still exists in the human population. Let’s start with equation

(4),dC
d t = γIv − (σ+µ+δ)C = 0,to determine the endemic equilibrium point

designated by E1, C∗ = γIv

σ+µ+δ .

From the third equation of system (1), d Iv
d t = S

(
βIv+β1C

N

)
−(
∆+µ+ (1−γ)+γ)

Iv =
0. By simplifying this equation, I have

S∗ = (∆+µ+1)(N(σ+µ+δ))−β1γ)N

βN(σ+µ+δ) .

Since from the second equation of system (1),dV
d t = θS − θ1V −µV = 0 and

solving we get,
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V ∗ = θS
θ1+µ .

Starting from equation (6) from system (1), dR
d t =ψT −µR−λR = 0. After some

simplifications and the value of T ∗ = (µ+λ)R
ψ

.

Equation (5) from system (1), dT
d t = δC + (

1−γ)
Iv −φT −µT −ψT = 0. After

some simplifications and the value of I∗v = (φ+µ+ψ)(σ+µ+δ)(µ+λ)R

ψ(δγ+(1−γ)(σ+µ+δ)) .

From the equation (1) in system (1), to substitute the value of C∗,S∗,T ∗,V ∗Iv∗
and simplify dS

d t = b −S
(
(βIv+β1C

N

)
−µS +θ1V −θS +λR = 0 and the value of R∗

is

R∗ = −bN+β1C+S∗(βI∗v +Nµ+Nθ)−θ1V ∗N
λN

Then the endemic equilibrium point E1 = (S∗,V ∗, I∗v ,C∗,T ∗,R∗), since

S∗ = (∆+µ+1)(N(σ+µ+δ))−β1γ)N

βN(σ+µ+δ) .

V ∗ = θS
θ1+µ .

I∗v = (φ+µ+ψ)(σ+µ+δ)(µ+λ)R

ψ(δγ+(1−γ)(σ+µ+δ)) .

C∗ = γIv

σ+µ+δ

T ∗ = (µ+λ)R
ψ

.

R∗ = −bN+β1C+S∗(βI∗v +Nµ+Nθ)−θ1V ∗N
λN .

Basic Reproduction Number R0

The basic reproduction number, R0, is calculated using the next generation

matrix approach, R0 = P (FV −1),where P is the largest eigenvalue, F is the fresh

infection accuracy rate in the compartment model, and V is the individual

transfer out and in the compartment model. Infected compartment Iv and

C are then the only ones we consider. Let f Iv denote the appearance of new

infectious into Iv and f Iv = S
(
βIv+β1C

N

)
and f C = 0.

 f Iv

f C

=

 S
(
βIv+β1C

N

)
0

 ,
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Then, using the Jacobian matrix as a linearizer,

F =

 ∂ f Iv (E0)
∂Iv

∂ f Iv (E0)
∂C

∂ f C (E0)
∂Iv

∂ f C (E0)
∂C

 =

 βS
N

β1S
N

0 0

 , since S = N

F =

 β β1

0 0


Find the value of V, we consider V Iv = (∆+µ+1)Iv and V C =−γIv+(σ+µ+δ)C .

Then, V Iv

V C

=

 (∆+µ+1)Iv

−γIv + (σ+µ+δ)C

 ,, the linearization using the Jacobian matrix

is ,

V =

 ∂V Iv (E0)
∂Iv

∂V Iv (E0)
∂C

∂V C (E0)
∂Iv

∂V C (E0)
∂C

 =

 ∆+µ+1 0

−γ σ+µ+δ

 and

V −1 =

 1
∆+µ+1 0

γ

(∆+µ+1)(σ+µ+δ)
1

σ+µ+δ


Then the next generation matrix method is given by

R0 = maxP (FV −1) = maxP (

 β β1

0 0


 1

∆+µ+1 0

γ

(∆+µ+1)(σ+µ+δ)
1

σ+µ+δ

)

=max P(

 β

∆+µ+1 +
δγ

(∆+µ+1)(σ+µ+δ)
β1

σ+µ+δ

0 0

)

Then find the value of P by using eigenvalue λ1 of this equation and we have

to get

λ1

(
λ1 − β(σ+µ+δ)+δγ)

(∆+µ+1)(σ+µ+δ)

)
= 0.

Which implies that, λ1 = 0 or λ1 = β(σ+µ+δ)+δγ
(∆+µ+1)(σ+µ+δ) .

Then R0 = β(σ+µ+δ)+δγ)
(∆+µ+1)(σ+µ+δ) .

3.2 Stability Analysis

Stability of Disease Free Equilibrium Point E0

Theorem 2:
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When R0 < 1, the disease-free equilibrium point denoted by E0 in the model

equation (1) through equation (6) is locally asymptotically stable, while E0 is

unstable when R0 > 1.

Proof:

The sign of eigenvalue of the related Jacobi matrix is used to analyze the

local stability behavior of equilibrium points. To put it another way, if the

eigenvalues are negative and the real component is negative, the system is

stable; otherwise, it is unstable. The following formula give the Jacobian matrix

of non linear differential equations.

J (S,V , Iv ,C ,T,R) =



dS
∂S

dS
∂V

dS
∂Iv

dS
∂C

dS
∂T

dS
∂R

dV
∂S

dV
∂V

dV
∂Iv

dV
∂C

dV
∂T

dV
∂R

d Iv
∂S

d Iv
∂V

d Iv
∂Iv

d Iv
∂C

d Iv
∂T

d Iv
∂R

dC
∂S

dC
∂V

dC
∂Iv

dC
∂C

dC
∂T

dC
∂R

dT
∂S

dT
∂V

dT
∂Iv

dT
∂C

dT
∂T

dT
∂R

dR
∂S

dR
∂V

dR
∂Iv

dR
∂C

dR
∂T

dR
∂R


, (2)

The Jacobian matrix of system (1) are given by,

J (S,V , Iv ,C ,T,R) =



−βIv−β1C
N −µ−θ θ1

−Sβ
N

−Sβ1

N 0 λ

θ −θ1 −µ 0 0 0 0

βIv+β1C
N 0 Sβ

N − (∆+µ+1) Sβ1

N 0 0

0 0 γ −σ−µ−δ 0 0

0 0 1−γ δ −φ−µ−ψ 0

0 0 0 0 ψ −µ−λ


,

(3)

The disease free equilibrium point, E0

(
b

µ+θ ,0,0,0,0,0
)

can be substitute into

equation (3) we have get,
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J

(
b

µ+θ ,0,0,0,0,0

)
=



−µ−θ θ1 − bβ
(µ+θ)N − bβ1

(µ+θ)N 0 λ

θ −θ1 −µ 0 0 0 0

0 0 −bβ
N (µ+θ) − (∆+µ+1) bβ1

(µ+θ)N 0 0

0 0 γ −σ−µ−δ 0 0

0 0 1−γ δ −φ−µ−ψ 0

0 0 0 0 ψ −µ−λ


,

(4)

To find the Eigen value, solve the characteristic equation for equation (4),

which is given by the formulas below.

Det (J−cI ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ−θ− c θ1 − bβ
(µ+θ)N − bβ1

(µ+θ)N 0 λ

θ −θ1 −µ− c 0 0 0 0

0 0 α
bβ1

(µ+θ)N 0 0

0 0 γ ω 0 0

0 0 1−γ δ −φ−µ−ψ− c) 0

0 0 0 0 ψ −µ−λ− c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(5)

Where, α= −bβ
N (µ+θ) −∆−µ−1− c and ω=−σ−µ−δ− c

The characteristics equation of equation (5) are,

⇒ (−µ−θ−c)(−θ1−µ−c)( −bβ
N (µ+θ) − (∆+µ+1)−c)(−σ−µ−δ−c)(−φ−µ−ψ−

c)(−µ−λ− c) = 0,

As a result, we have the following to find the Eigenvalue c. ⇒−µ−θ− c = 0,⇒
c1 =−(µ+θ) < 0.

⇒−θ1 −µ− c = 0,⇒ c2 =−(θ1 +µ) < 0.

⇒ −bβ
N (µ+θ) − (∆+µ+1)− c = 0,⇒ c3 =−( bβ

N (µ+θ) + (∆+µ+1)) < 0.

⇒−σ−µ−δ− c = 0,⇒ c4 =−(σ+µ+δ) < 0.

⇒−φ−µ−ψ− c = 0,⇒ c5 =−(φ+µ+ψ) < 0.
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⇒−µ−λ− c = 0,⇒ c6 =−(µ+λ) < 0.

We can determine the nature of illness free equilibrium point based on the

algebraic sign of Eigenvalue c1,c2,c3,c4,c5,c6 of jacobian matrix. Because all

of the eigenvalues are negative or less than zero, the disease-free equilibrium

point is locally asymptotically stable whenever R0 < 1.

Theorem 3:

The disease free equilibrium point of equation (1) to equation (6) is globally

asymptotically stable whenever R0 < 1 and E0 is unstable if R0 > 1.

Proof:

We consider the following Lyapunov function

W = a1Iv +a2C (6)

Differentiate this equation with respect to time gives,

dW

d t
= a1

d Iv

d t
+a2

dC

d t
, (7)

Substitute d Iv
d t and dC

d t into equation (5), we have

dW

d t
= a1

(
SβIv

N
+ Sβ1C

N
− (∆+µ)Iv − (1−γ)Iv −γIv

)
+a2

(
γIv − (σ+µ)C −δC

)
,

(8)
dW

d t
= a1

(
SβIv

N
+ Sβ1C

N
− (∆+µ+1)Iv

)
+a2

(
γIv − (σ+µ)C −δC

)
, (9)

dW

d t
= a1Sβ1C

N
−a2(σ+µ+δ)C +a1

(
δβ

N
− (∆+µ+1)+a2γ

)
Iv , (10)

Here, a1

(
Sβ
N − (∆+µ+1)

)
=−a2γ. Now,

a2 =
−

(
Sβ
N − (∆+µ+1)

)
a1

γ
, (11)
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dW

d t
= a1Sβ1C

N
+

(
Sβ
N − (∆+µ+1)

)
a1

γ
(σ+µ+δ)C a1, (12)

=
(
Sβ1γ+Sβ−N (∆+µ+1)(σ+µ+δ)

)
C a1

Nγ
, (13)

Let, S = N and taking a1 = 1 and substitute R0, we have

dW

d t
≤ (∆+µ+1)(σ+µ+δ)(R0 −1)C

γ
, (14)

Since, dW
d t ≤ 0 for R0 < 1. This means that the only dW

d t ≤ 0 , E0 is globally

asymptotically stable whenever R0 < 1, according to Lasalles invariant principle.

Stability of E1

Theorem 4:

Endemic equilibrium point E1 = (S∗,V ∗, I∗v ,C∗,T ∗,R∗) of the systems (1) to (6)

are locally asymptotically stable, if R0 > 1.

Proof

Let E∗ are transformation into S = S∗ + s,V = V ∗ + v ,Iv = I∗v + i ,C = C∗ + c,

T = T ∗+ t and R = R∗+ r , where s, v, i, c, t and r are small perturbations.

using positive definite function,

M = 1

2

(
n1s2 +n2v2 +n3i 2 +n4c2 +n5t 2 +n6r 2) (15)

Differentiate equation (15) with respect to time, we have,

d M

d t
= n1s

dS

d t
+n2v

dV

d t
+n3i

Iv

d t
+n4c

dC

d t
+n5t

dT

d t
+n6r

dR

d t
(16)

Now, substitute the values dS
d t , dV

d t , d Iv
d t , dC

d t , dT
d t , dR

d t into equation (16) gives,

d M

d t
= n1s

(
b − SβIv

N
− Sβ1C

N
−µS +θ1V −θS +λR

)
+n2v

(
θS −θ1V −µV

)
(17)

+n3i
(

SβIv

N + Sβ1C
N − (∆+µ)Iv − (1−γ)Iv −γIv

)
+n4c

(
γIv − (σ+µ)C −δC

)
14



+n5t
(
δC + (1−γ)Iv − (φ+µ)T −ψT

)+n6r
(
ψT −µR −λR

)
d M

d t
=−n1

(
µ+θ)

s2−n2

(
θ1 +µ

)
v2−n3

(
∆+µ+1

)
i 2−n4

(
σ+µ+δ)

)
c2−n5

(
φ+µ+ψ)

t 2

(18)

−n6

(
µ+λ)

r 2 −n1

(
β

N s2i + β1

N s2c −λsr −bs
)
+n3

(
β

N i 2s + β1

N si c
)
+n4γi c +δtc −

n5

(
γ−1

)
i t +n6ψtr

Let choosing n1 = n2 = n3 = n4 = n5 = n6 = 1

d M

d t
=−(

µ+θ)
s2 − (

θ1 +µ
)

v2 − (
(∆+µ+1)

)
i 2 − (

σ+µ+δ)
)

c2 − (
φ+µ+ψ)

t 2

(19)

−(
µ+λ)

r 2−
(
β

N s2i + β1

N s2c −λsr −bs
)
+

(
β

N i 2s + β1

N si c
)
+γi c+n5δtc−(

γ−1
)

i t+
ψtr

Because, d M
d t ≤ 0 is negative definite within the attraction area Ω. As a result,

endemic if R0 > 1, the endemic equilibrium point E1 is locally asymptotically

stable.

Theorem 5 :

Endemic equilibrium point E1 = (S∗,V ∗, I∗v ,C∗,T ∗,R∗) of the systems (1)

to (6) are globally asymptotically stable, if R0 > 1.

Proof

Since to show that E∗ is globally asymptotically stable, we have consider Lyapunov

function as

M = (S − S∗− S ln S
S∗ )+ (Iv − I∗v − Iv ln( Iv

I∗v
))+ c0(V −V ∗−V ln V

V ∗ )+ c1(C −C∗−
C ln C

C∗ )+ c2(T −T ∗−T ln T
T ∗ )+ c3(R −R∗−R ln R

R∗ ),

where c0, c1, c2and c3 are constants and positive numbers I selected appropriately.

The lyapunov function above is positive definite if and only if

M = (S−S∗−S ln S
S∗ )+(Iv−I∗v −Iv ln Iv

I∗v
)+c0(V −V ∗−V ln V

V ∗ )+c1(C−C∗−C ln C
C∗ )+

c2(T −T ∗−T ln T
T ∗ )+ c3(R −R∗−R ln R

R∗ ) > 0,
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Differentiating this equation with respect to t , we obtain;

d M
d t = (S −S∗) Ṡ

S + (Iv − I∗v ) İv
Iv
+ (V −V ∗) V̇

V + (C −C∗)Ċ
C + (T −T ∗) Ṫ

T + (R −R∗) Ṙ
R

Substitute the value of Ṡ, İv , V̇ ,Ċ , Ṫ and Ṙ into this equation we have,

d M
d t = c0(S−S∗

S )(b − SβIv

N − Sβ1C
N −µS +θ1V −θS +λR)+c1(V −V ∗

V )(θS −θ1V −µV +
c2( Iv−I∗v

Iv
)(SβIv

N + Sβ1C
N −(∆+µ)Iv −(1−γ)Iv −γIv )+c3(C−C∗

C )(γIv −(σ+µ)C −δC )+
c4(T−T ∗

T )(δC + (1−γ)Iv − (φ+µ)T −ψT )+ c5(R−R∗
R )(ψT −µR −λR)

After some simplifications, we get

d M
d t =−c0(µ+θ)(S−S∗)2−c1(θ1+µ)(V −V ∗)2−c2(∆+µ+1)(Iv − I∗v )2−c3(σ+µ+
δ)(C −C∗)2−c4(φ+µ+ψ)(T −T ∗)2−c5(µ+λ)(R−R∗)2+(c0b(S−S∗)+c0θ1(V −
V ∗)(S −S∗)+ c0λ(S −S∗)(R −R∗)

+c1θ(V −V ∗)(S−S∗)+c3γ(Iv − I∗v )(C −C∗)+c4δ(T −T ∗)(C −C∗)+c4(1−γ)(Iv −
I∗v )(T −T ∗)+ c5ψ(T −T ∗)(R −R∗)).

Now, if c0b(S−S∗)+c0θ1(V −V ∗)(S−S∗)+c0λ(S−S∗)(R−R∗)+c1θ(V −V ∗)(S−
S∗)+c3γ(Iv−I∗v )(C−C∗)+c4δ(T−T ∗)(C−C∗)+c4(1−γ)(Iv−I∗v )(T−T ∗)+c5ψ(T−
T ∗)(R−R∗)) < 0, then, d M

d t < 0 and R0 > 1. This show that endemic equilibrium

point E1 = (S∗,V ∗, I∗v ,C∗,T ∗,R∗) of the systems (1) to (6) are globally asymptotically

stable.

3.3 Sensitivity Analysis

The normalized forward sensitivity index of a variable R0 = R that depends

differentiable on parameter P is defined as ΛR
P = ∂R0

∂P × P
R0

. All of the basic

parameters are displayed when you type for parameter p.

Here, R0 = β(σ+µ+δ)+δγ)
(∆+µ+1)(σ+µ+δ for the sensitive index of R0 to the parameters such as

β,δ,σ,∆,µ,γ as follows:

Now,ΛR
β
= ∂R0

∂β
× β

R0
= (σ+µ+δ)

(σ+µ+δ)(∆+µ+1) ×
β(σ+µ+δ)(∆+µ+1)
β(σ+µ+δ)+δγ = β(σ+µ+δ)

β(σ+µ+δ)+δγ > 0

For parameter δ,ΛR
δ
= ∂R0

∂δ
× δ

R0
= β+γ(σ+µ+δ)−β(σ+µ+δ)+δγ

(σ+µ+δ)(∆+µ+1) × δ(σ+µ+δ)(∆+µ+1)
β(σ+µ+δ)+δγ

= δ((β+γ)(σ+µ+δ)−β(σ+µ+δ)+δγ)
(σ+µ+δ)(σ+µ+δ+δγ) > 0
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For parameter σ,ΛR
σ = ∂R0

∂σ
× σ

R0
= β(σ+µ+δ)−β(σ+µ+δ)+δγ

(σ+µ+δ)(∆+µ+1) × σ(σ+µ+δ)(∆+µ+1)
β(σ+µ+δ)+δγ

= β(σ+µ+δ)−β(σ+µ+δ)+δγ)
(σ+µ+δ)β(σ+µ+δ)+δγ = −δγ

(σ+µ+δ)β(σ+µ+δ)+δγ < 0.

For parameter γ,ΛR
γ = ∂R0

∂γ
× γ

R0
= δ

(σ+µ+δ)(∆+µ+1) ×
γ(σ+µ+δ)(∆+µ+1)
β(σ+µ+δ)+δγ

= δγ

β(σ+µ+δ)+δγ > 0.

For parameter ∆,ΛR
∆ = ∂R0

∂∆
× ∆

R0
=− β(σ+µ+δ)+δγ

(∆+µ+1)2(σ+µ+δ) ×
∆(σ+µ+δ)(∆+µ+1)
β(σ+µ+δ)+δγ

= −∆
(µ+∆+1) < 0.

For parameterµ,ΛR
µ = ∂R0

∂µ
× µ

R0
= β(σ+µ+δ)(∆+µ+1)−β(σ+µ+δ)+δγ(δ+∆+2µ+σ+1)

(∆+µ+1)2(σ+µ+δ)2 ×µ(σ+µ+δ)(∆+µ+1)
β(σ+µ+δ)+δγ

= βµ

β(σ+µ+δ)+δγ −
µ(δ+∆+2µ+σ+1)
(∆+µ+1)(σ+δ+µ) > 0.

Positive indexes for factors like µ,γ,δ, and β indicate that if their values are

rising, they have a major impact on the spread of cervical cancer in their community..

As their values increase, those factors with negative sensitivity indices, such

as σ and ∆ have an effect of reducing the burden of cervical cancer in the

community. Then we must reduce the positive indices of parameters while

increasing the negative indices.

4 Result and Discussion

To generate numerical simulations of the system (1), the MATLAB function

ODE45 is utilized. The stability study of the provided system of nonlinear

ordinary differential equations (1) is performed by altering the following parameter

values in Table (1), and then the supplied model is systematically computed.
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Parameters Value(per year) Source Parameters Value(per year) Source

b 288802, 16,821,072 [2], [10] ψ 0.0576 Assumed

β 0.8 [10] φ 0.0576 Assumed

β1 0.248 [10] δ 0.576 Assumed

µ 0.0162 [2] σ 0.8 [3],[10]

θ1 0.1 [2] γ 0.85 [10]

θ 0.8 [9], [2] ∆ 0.0576 [10]

λ 0.032 Assumed

Table 1: The parameter values of the model

Based on the above data in table (1), we found that

R0 = β(σ+µ+δ)+δγ)
(∆+µ+1)(σ+µ+δ) = 0.8(0.8+0.0162+0.576)+0.576(0.85)

(0.032+0.0162+1)(0.8+0.0162+0.576) = 1.0987 > 1. This shows that

the disease-free equilibrium point is asymptotically unstable both locally and

globally, but the endemic equilibrium point is asymptotically stable both locally

and globally, meaning that cervical cancer is propagated or transmitted in the

population.

Figure 2: Infected virus and cervical cancer population for the R0

In Figure 2, the infected virus, the cervical cancer population, and R0 do

not intersect. This indicates that the basic reproduction number is insecure,

implying that cervical cancer was spreading throughout the community.
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Figure 3: Infected HPV population with different value of treatment

As seen in Figure 3, the fundamental reproduction number R0 grows as the

parameter β increases. When the fundamental reproduction number R0 rises,

the endemic equilibrium point stabilizes, indicating that cervical cancer is

widely distributed in the community. As a result, we must use various strategies,

such as vaccination, to adjust the parameters of β.

Figure 4: Infected HPV population with different value of treatment

Figure 4 shows that until the parameter of∆ grows, the fundamental reproduction

number R0 falls. When R0 falls, the endemic equilibrium point becomes unstable,

while the disease-free equilibrium point remains stable, indicating that cervical

cancer is rapidly dying out. As a result, we must use various strategies such as

immunization and treatment to improve the parameters of ∆.
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Figure 5: value of vaccination θ = 0.5

Figure 6: Susceptible,Infected HPV , infected cancer, treatment and recovery with value of

vaccination θ = 1

In Figure 5 and 6 shows that, vaccination is administered to the parameter

θ = 0.5 and θ = 1 vulnerable population, resulting in a rapid decline in the

number of people infected with HPV. As a result, the number of uninfected

HPV rises while the number of infected cervical cancer decreases.
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Figure 7: Susceptible with different value of vaccination

Figure 7 shows how the susceptible population decreases rapidly as the

number of vaccinations administered to the population rises. People who

get vaccinated gain immunity before becoming infected with HPV, and the

number of people infected with cervical cancer decreases as the number of

people who get vaccinated rises. As a result, immunization plays a critical role

in preventing HPV-related cancers.

Figure 8: Infected cancer with different value of treatment

As shown in Figure 8, the number of people infected with cervical cancer

decreases as the number of treatments offered to the community rises. As
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the number of people treated for cervical cancer rises, the number of people

infected with the disease decreases. As a result, therapy plays a critical role in

cancer control .

Figure 9: Infected HPV with different value of treatment

As seen in Figure 9, the number of HPV-infected people decreases as the

number of treatments administered to the community rises. As the number of

people treated for HPV decreases, the number of those infected with the virus

decreases. As a result, therapy plays a critical role in preventing HPV-related

cancers.

5 Conclusions

In this paper, we developed a SV I vC T R model for the propagation of cervical

cancer transmission disease. A mathematical model that examines the cervical

cancer transmission illness in the presence of vaccination and treatment. The

model properties such as positive, boundedness, sensitivity analysis, existence

of stability of disease free equilibrium points as well as endemic equilibrium

point, and basic reproduction number R0 are computed, indicating that the

model is mathematically well-posed and epidemiological meaningful.
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The disease-free equilibrium point is globally asymptotically unstable, according

to stability analysis, because the basic reproduction number R0 = 1.0987 > 1.

The sickness does not progress and eventually dies out in this situation. The

endemic equilibrium point is locally asymptotically stable due to the basic

reproduction number R0 = 1.0987 > 1 and globally asymptotically stable because

all trajectories originating inside the region of attraction are approaching the

equilibrium values (S∗,V ∗, I∗v ,C∗,T ∗,R∗). In this instance, each existing infection

results in the emergence of several new infections. It was discovered that the

model has an endemic equilibrium that exists when R0 = 1.0987 > 1.

We studied four most influential parameters such as β,δ,γ, and µ to make

the basic reproduction number R0 less than one using sensitivity analysis to

increases the spread of cervical cancer. We must control the spread of cervical

cancer disease by increasing the parameter value of ∆ and σ.

When a vaccination is administered to a susceptible population, that group

develops immunity against HPV, which is responsible for 80% of cervical cancer

cases. Vaccines, in general, have an important role in reducing and controlling

disease.
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