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Abstract

The predicted temperature increase caused by climate change is a threat to biodiversity. Male reproduction is particularly
sensitive to elevated temperatures resulting in sterility. Here we investigate temperature induced changes in reproductive
tissues and the fertility reduction in male Drosophila melanogaster. We challenged males during development and either
allowed them to recover or not in early adulthood, while measuring several determinants of male reproductive success. We
found significant differences in recovery rate, organ sizes, sperm production and other key reproductive traits among males
from our different temperature treatments. Spermatogenesis and hence sperm maturation was impaired before reaching the
upper thermal sterility threshold. While some effects were reversible, this did not compensate the earlier damage imposed.
Surprisingly, developmental heat stress was damaging to accessory gland growth and female post mating responses mediated by
seminal fluid proteins were impaired regardless of the possibility of recovery. We suggest that sub-lethal thermal sterility and
the subsequent fertility reduction is caused by a combination of malfunctioning reproductive traits: inefficient functionality of
the accessory gland and alteration of spermatogenesis.
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The predicted temperature increase caused by climate change is a threat to biodiversity. Male reproducti-
on is particularly sensitive to elevated temperatures resulting in sterility. Here we investigate temperature
induced changes in reproductive tissues and the fertility reduction in male Drosophila melanogaster. We
challenged males during development and either allowed them to recover or not in early adulthood, while
measuring several determinants of male reproductive success. We found significant differences in recovery
rate, organ sizes, sperm production and other key reproductive traits among males from our different tem-
perature treatments. Spermatogenesis and hence sperm maturation was impaired before reaching the upper
thermal sterility threshold. While some effects were reversible, this did not compensate the earlier damage
imposed. Surprisingly, developmental heat stress was damaging to accessory gland growth and female post
mating responses mediated by seminal fluid proteins were impaired regardless of the possibility of recovery.
We suggest that sub-lethal thermal sterility and the subsequent fertility reduction is caused by a combina-
tion of malfunctioning reproductive traits: inefficient functionality of the accessory gland and alteration of
spermatogenesis.

Temperature is a critical abiotic factor for many organisms and can turn into an environmental stressor,
particularly for ectotherms. Elevated temperatures are known to affect an ectotherms physiology, behavior
and, on a broader scale their overall performance (Huey and Stevenson, 1979). When critical thermal limits
are exceeded, both viability and reproductive potential are harmed. Within the last years, most research
assessing fitness loss under increasing temperatures have incorporated mainly measures that evaluate an
organism physiological failure (viability thresholds), like death or heat coma (Walsh et al., 2019). However,
often the fertility range is narrower than the viability range, such that sub-lethal temperatures already pose
an important fitness loss, impeding organisms to reproduce, threatening population stability and persistence
(Kellermann et al., 2012; van Heerwaarden and Sgrò, 2021; Walsh et al., 2019). Given the strong ecological
implications that sterility and fertility loss exert on organisms, study the capacity of species and the mecha-
nisms to respond ecologically and evolutionarily to the challenges of increasing temperatures has become a
research priority, especially within the climate change context (Parmesan 2006). Hence, understanding the
reproductive and resulting fitness consequences of exposure to elevated temperatures is key.

Sterility is one consequence when reaching thermal fertility limits at both the upper and lower ends. Most
of the literature refers to males, as these have repeatedly been found to be more temperature sensitive
than females (e.g. Sales et al., 2018; Zwoinska et al., 2020). However, there are also examples of female
sterility due to high temperatures (e.g. in the Nile tilapia, Oreochromis niloticus (Byerly et al., 2005)).
Based on the premise that spermatogenesis is more thermosensitive than oogenesis, the study of male fertility
thresholds is of special interest, not only to understand the damage imposed on male fertility, but also to
gauge the consequences for reproductive capacity and thus, fitness (Parratt et al., 2021). Even though this
phenomenon has been documented for a range of taxa like insects (e.g. several Drosophila species such as
D. melanogaster and D. simulans (Chakir et al., 2002)), fishes (e.g. Nile tilapia, O. niloticus (Byerly et al.,
2005) and channel catfish, Ictalurus punctatus (Strüssmann et al., 1998)), reptiles (e.g. yucca night lizard,
Xantusia vigilis (Cowles and Burleson, 1945)) and some vertebrates (e.g. Arbor Acres roosters, Gallus gallus
(McDaniel et al., 1996), zebra finch, Taeniopygia guttata (Hurley et al., 2018) and rams, Ovis aries (Hafez,
1964)), the mechanisms underlying sterility at extreme temperatures are still unknown. The fact though that
some species can recover fertility after being transferred to milder temperatures (e.g. D. melanogaster males
(Chakir et al., 2002)) indicates that the destruction of germ cells might not explain the observed temperature
induced infertility.

Previous research on D. melanogaster (Rohmer et al., 2004) has shown that elevated temperatures disrupt
spermatogenesis causing cytological abnormalities. As a result, males have shorter cysts, show abnormalities
in the shape and position of sperm nuclei, an impairment of spermatid elongation and an increase in spermatid
death rate.D. simulans instead had shorter cysts at higher temperatures (David et al., 2005) indicating
phenotypic plasticity, with temperature dependent plasticity in sperm length being adaptive in Tribolium
castaneum (Vasudeva et al., 2019). Despite these first studies into spermatogenesis dynamics under thermal
stress, little is yet known about recovery dynamics on sperm production. Furthermore, effects on the second
reproductive tissue, the male accessory glands (AGs), have not been considered. The importance of the AGs
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for male reproductive success has been widely studied (Chen, 1984; Gillott, 2003; Wolfner, 1997). Seminal
fluid proteins (SFPs), secreted mainly by the AGs, are transferred together with sperm to the female during
mating causing changes in female postmating responses (e.g. behavior and physiology (Chapman, 2001; Chen
et al., 1988)). In addition, SFPs affect male sperm competitive ability, and modulate sperm storage dynamics
inside the female’s sperm storage organs (Avila et al., 2011) together ensuring fertility. Moreover, SFPs might
have protective functions as in honeybees, Apis mellifera (den Boer et al., 2009) and leaf-cutter ants, Atta
colombica (den Boer et al., 2007), where SFPs increase sperm viability. Hence, whether temperature damages
either or both tissues, needs to be considered to understand the mechanisms of temperature induced sterility.

With the predicted temperature increase (at least 1.5 - 2°C for 2081-2100 (Collins et al., 2013)) and the
occurrence of longer and more severe heat waves (Meehl and Tebaldi, 2004) due to global climate change, we
are convinced that studying the responses of reproductive traits to stressful thermal conditions is of special
interest in order to determine species persistence under possible new environmental conditions (Hoffmann,
2010; Huey and Kingsolver, 1993; Huey and Stevenson, 1979; Kellermann et al., 2012; Sinclair et al., 2016;
van Heerwaarden and Sgrò, 2021; Walsh et al., 2019).

In this context, we assessed fitness loss and the ability to recover, focusing on the mechanistic basis of
heat-induced sterility, of males exposed to sub-lethal developmental temperatures. Life stages undergoing
fundamental changes might be particularly sensitive to environmental stressors (Lowe et al., 2021), as e.g. the
pupal stage in the oriental fruit moth, Grapholita molesta (Zheng et al., 2017) orDrosophila larvae (Hoffmann
et al., 2003). In addition, the lack of mobility of many species at both early and late developmental stages adds
a challenge to elude thermal stress. Hence, we here exposed larvae to heat-stress and considered the resulting
consequences on male fertility in early adulthood. To determine the causes of male temperature-induced
sterility, we tested whether spermatogenesis is disrupted impairing mature sperm formation and secondly,
measured whether a delay in AG maturation (Ruhmann et al., 2016) contributes to reduced reproductive
success. With this extensive analysis of male reproductive traits, we suggest that impaired functionality of
both reproductive tissues is causing temperature induced male sterility.

Materials and methods

Fly stocks and culturing

We used a Drosophila melanogaster wild type stock collected in Portugal by Prof. Élio Sucena in Azeitão,
in 2007. It was established as an outbred population from 160 wild caught fertilized females with an ample
degree of genetic variation within the population (Martins et al., 2014). Flies were cultured in our laboratory
at standard conditions: 25°C and 60% humidity at a 12h light-dark cycle. Stocks were kept in glass bottles
filled with 70mL of standard yeast-sugar (SYA) food (Bass et al., 2007). Once a week, three glass bottles with
about 250 recently eclosed flies each were started, and we mixed flies across bottles regularly to maintain
genetic diversity. We used a temperate population as we expect them to maintain higher phenotypic variation
as they were initially adapted to exist within a broad thermal range compared with tropical populations
(Hoffmann et al., 2003). Species from temperate areas are expected to maintain higher phenotypic plasticity
even after adaptation to laboratory conditions and provide a more promising way to test thermal responses
under a broader range of experimental temperatures and hence, give a more powerful estimation of the species
ability to cope with increasing temperatures (Mathur and Schmidt, 2017). Although laboratory adaptation
may alter some life-history traits, previous research has shown that some plastic responses are maintained
(Trotta et al., 2006) and previous research in thermal responses still find ample variation (Parratt et al.,
2021; Sales et al., 2018).

For paternity analysis in a sperm competition experiment we used flies bearing the stubble (Sb ) mutation
as a tractable phenotypic marker. The Sb gene was back-crossed multiple times into the wild-type Dahomey
genetic background. Sb is a dominant mutation that causes a short, thick bristle phenotype (Lees et al., 1945)
that is visible by eye and can be easily distinguished from the wild type bristle structure. As the recessive
phenotype is lethal, we used males heterozygous for this mutation in the subsequent sperm competition
assay. The stock was kept under the same standard conditions as described above.
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Throughout all assays, in order to obtain experimental flies, we allowed parental flies to mate for 24h and
oviposit on grape-juice-agar plates [50 g agar, 600 mL red grape juice, 42.5 mL Nipagin (10% w/v solution)
and 1.1 L water] with a semi-liquid baker’s yeast paste distributed all around the plate to promote egg
laying. We incubated plates for 24 hours and collected first instar larvae at a density of 100 larvae per
vial containing 7mL of SYA food. For all experiments, flies were collected within 8 hours after eclosion as
virgins on ice. Adult flies were kept in separate sex groups 20 per vial. Throughout the experiments, females
were grown at 25°C, while males were exposed to different temperature treatments during development.
We exposed males to two challenging temperatures, one moderate (29°C) and one severe (31°C) challenge,
the latter near to the lethal threshold for D. melanogaster of 32°C (Petavy et al., 2001). We first tested
how developmental temperature affects male fertility and whether males can recover fertility when placed
at a benign temperature after eclosion. Control males were raised at the standard temperature of 25°C.
We observed changes from day one to six after eclosion. As we were interested in the fitness consequences
of the recovery process and the underlying mechanisms, we allowed half of the males to recover from the
heat stress (denoted with an R) after eclosion, while keeping the other half at the stressful temperature. All
assays described below were done under these conditions. In order to maintain temperatures precisely for
our different treatments, incubators with ±0.5°C accuracy were used (INCU-Line® IL 10). Accuracy was
monitored by placing a temperature logger (NOVUS®; accuracy of ±0.5°C) in each incubator throughout
the course of the experiments to record temperature.

Fecundity experiment

We measured egg lying rate, fertility, fecundity, and egg to adult survival of females mated with a temperature
challenged male that was either allowed to recover or not. Mating assays took place on three different days:
two, four and six days after adult male eclosion to assess changes in fertility during sexual maturation. Males
were paired with five-day old virgin females in all cases. New virgin males were used on each mating day
and 40 pairs per treatment and day were initially set up. Pairs were allowed to mate for seven hours on
day two and four, and for five hours on day six. The mating was observed, and the duration was adjusted
each day in order to have an appropriate sample size for all treatments (see Supplementary table S1 for the
full sample sizes). At the end of the interaction time, males were discarded. Mated females were kept at
25°C until the next day allowing them to lay eggs and were then discarded. We counted the number of eggs
and the vacated vials were kept at standard conditions for 12 days allowing all the offspring to eclose. After
that time, the number of offspring was counted, and we estimated the egg to adult survival. This assay was
repeated independently following the same procedure and adding one mating day (one, two, four and six
days after adult male eclosion). With that, we could get a better understanding of the effects of heat stress
on fertility and fecundity in recently eclosed males.

Remating and sperm competition experiment

To further examine determinants of male reproductive success we assessed male post-mating competitive
ability. We tested male sperm defense ability by first mating females to a temperature challenged focal male
and subsequently to a Sb mutant competitor. In this assay, all males and females were five days post-eclosion
when mated. Females and the Sb competitor males were grown at 25°C. For the first mating with the focal
males, 50 (for the 25°C treatment) or 70 (for the remaining treatments) individual pairs were set up and
given three and half hours to mate. We continuously observed pairs and noted the time when pairs were set
together, started and ended mating to calculate mating latency and copulation duration. After a successful
mating, males were discarded, and females were allowed to lay eggs for 48h. After this time, females were
transferred to a new vial containing a virgin heterozygous Sb male. Pairs were allowed to mate for two hours
(see Supplementary table S3 for the total number of mated pairs in both matings). We again recorded mating
behavior as before and scored how many females remated. Females who remated were kept in the same vial
for two days, allowing them to lay eggs, while Sb males were discarded. After these 48h we transferred
females to new vials allowing them to lay eggs for two more days. We kept vacated vials from both the
intermating interval and the four days after remating at standard conditions for 12 days allowing all the
offspring to eclose. Vials were frozen and the offspring counted, whereby for the vials after remating we
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determined paternity by separately counting offspring scored as presenting the Sb mutation versus the wild
type phenotype. As Sb fathers were heterozygous for the mutation, we corrected the counts for paternity
scores. Assuming half the offspring fathered by the Sb males present the Sb phenotype and the other half
the wild type phenotype, we doubled the Sb counts and corrected the wildtype counts by subtracting the
number of Sb offspring counted from the total wild type progeny number.

Maturation of the male reproductive system during recovery

In order to gain insights into the mechanistic basis of the recovery process we measured changes in male
accessory gland (AG) size during the recovery process. We further checked for the presence of sperm in the
seminal vesicles (SVs) and measured SV size and sperm viability to test the effects of elevated developmental
temperatures on sperm production and quality. All observations were done under a microscope (ZEISS,
AxioVision Software) with an Olympus SC50 5-megapixel color microscope camera; at a 50X amplification.
Further measurements (measurements of the organ areas, wing length and sperm head counts) were carried
out with ImageJ (Wayne Rasband).

Accessory gland size changes during recovery

Measurements were done on glands dissected from virgin males, as a previous mating and the accompanying
transfer of seminal fluid proteins reduces AG size (Ruhmann et al., 2016). We dissected glands from males
20-24 hours, two, four and six days old and followed procedures as carried out in (Ruhmann et al., 2016).
We also measured wing length as an indicator of male body size to control for the allometric relationship
between both factors (Shingleton et al., 2007). We measured both AGs and wings for each male and the
mean was used for the analysis. In total, the AGs and wings of 15-26 males per treatment and day were
measured.

Seminal vesicle size and sperm presence

Measurements were done on two- and six-day old virgin males. After dissecting out the reproductive tract,
we isolated both seminal vesicles (SVs). We placed the SVs on a slide in a drop of phosphate buffered saline
(PBS) solution and a picture of both organs was taken under the microscope immediately after dissection
to subsequently measure their area. Afterwards, we checked for the presence of sperm by puncturing the
central area with a thin needle. We recorded and assigned a value of 1- when sperm was present or 0- when
the sperm was absent for each SV and the mean size of both SVs was used for each male in the subsequent
analysis. A total of 15-20 males per treatment and day were dissected.

Sperm viability

Measurements were done only in six-day old virgin males from the control and the 29°C recovery treatment,
as especially young males and males from all the other treatments had a low number of sperm in the
SV preventing reliable estimates. We dissected out the male reproductive tract, the SVs were isolated and
punctured following the procedure above. We stained sperm with SYBR14 ® (1:50 in DMSO) and PI
(LIVE/DEAD ® Sperm Viability Kit, ThermoFisher Scientific) following the protocol explained in (Eckel
et al., 2017). The temporal decrease in sperm viability of the same male was measured at three different time
points: just after the staining (t0), 15 (t15) and 30 (t30) minutes later. With this procedure we can assess
sperm quality and future sperm performance (Eckel et al., 2017). The time between staining and taking the
first image was approximately 1 min. Pictures were taken under fluorescence (see microscope specifications
above). Sperm heads were counted by eye twice once by an observer blind and the second observer non-blind
to the treatment codes. As the counts were not significantly different, the mean of both counts was used for
the data analysis. Green sperm were considered alive while red and red-green double stained sperm were
scored as dead. A total of 21 males per temperature treatment were used.

Data analysis

All tests were done using R (version 3.6.1) and RStudio (1.2.1335). Graphs were created with the ggplot2
package in all cases (Wickham, 2016). As the data was not normally distributed, generalized linear mixed
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models (GLMM) were used with the appropriate error structure for analyzing the fecundity data and sperm
viability. In the first case, as the data suffered from an excess of zero counts, we used zero-inflation models as
advised by Zuur and colleagues (Zuur et al., 2009). We modelled both the likelihood of sterile replicates as
well as the number of offspring in one model, combining both a binomial and a count part (with a negative
binomial distribution) in one model. This needed packages pscl (Jackman, 2017), lmtest (Zeileis and Hothorn,
2002) and glmmTMB (Brooks et al., 2017). The model contained the following factors: temperature, day
and day2, as well as the interactions between temperature and day and temperature-day2. For the sperm
viability analysis, we accounted for pseudoreplication as the sperm from the same male was measured in
three time points. In this case, time point, and temperature were included in the model as fixed factors.

Fertility in the fecundity assay, male organ size (wing length, AG and SV size), the egg-to-adult survival as
well as the behavior in the sperm competition experiment were analyzed with generalized linear models (glm)
with the appropriate error structure and correction for overdispersion using the quasi-extension if necessary.
Significance of factors was tested through an analysis of deviance by subtracting a factor from the full model
and tested with an F - or Chi-square distribution as appropriate for the error structure (Crawley, 2007). We
present models with only the retained significant factors. Most of the statistical analysis were done in two
different ways: in the first case, all five treatments (developmental temperature and opportunity to recover
or not) were considered separately by coding them as five different treatments. In the second approach we
instead included larval temperature and recovery as different factors, but this precluded us from using data
from control males, allowing comparisons only among heat-challenged males. As control males both remained
at their developmental temperature and were ‘allowed’ to recover it was not possible to assign them to either
level for the factor recovery and thus precluded us from coding this as two independent treatment factors
with a full-factorial design. We report always the first approach unless the contrary is specified.

A Chi-square test was applied to analyze sperm presence in the SVs and the mating and remating rates in
the sperm competition experiment (Dytham, 2011). Allometry between AG size and wing length was tested
by using a regression. For that, both variables were converted into the same units (μm2) and the data was
transformed to a log scale for the analysis (Shingleton et al., 2007). Day was included as a fixed factor in
the model to account for the ontogenetic allometry.

Package multcomp (Hothorn et al., 2008) was used for the post-hoc comparison of wing length. Pairwise
comparisons using t tests were used for analyzing differences between temperature treatments in the AG
size.

Results

Sub-lethal temperature effects on behaviour and male reproductive output

On the basis that males of temperate Drosophila melanogasterstrains become sterile at 30°C (Chakir et
al., 2002; Petavy et al., 2001), we investigated the recovery dynamics for males of a temperate Portuguese
D. melanogaster strain (Martins et al., 2014) developed at mid (29°C) or sub-lethal (31°C) temperatures.
First, we documented viability of larvae under the different developmental temperatures and found those to
be clearly challenging as only 45.5% respective 23.7% of flies eclosed when exposed to 29°C or to 31°C, in
contrast to 95% of control flies eclosed successfully. Remaining at 29 or 31°C was stressful to adults as well,
as males clearly did not recover fertility in contrast to males allowed to recover (Fig. 1A, C and table 1).

We next assessed the fecundity of heat-challenged males and found females mated once to a heat-challenged
male laid significantly fewer eggs compared to females mated to control males (Fig. 1B, table 1). Males kept
at the challenging temperature after eclosion induced lower numbers of eggs laid throughout, while a small
improvement was seen for males allowed to recover. We independently repeated this experiment with the
addition of sampling also day 1 after eclosion and found the pattern to be robust (Supplementary Fig. S1A,
B and Supplementary table S2).

The offspring counts revealed that recovering males were initially sterile and recovered at different rates
(see Fig. 1C, interaction term table 1), with offspring numbers approaching those of control males on day 6.
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This is matched by a steep increase in egg-to-adult survival between day 2 and 4 (see Fig. 1D), while males
remaining at the challenging conditions produced very few offspring and had a low egg to adult survival
(Fig. 1D, table 1). No adult flies were produced by males grown and kept at 31°C. Males grown and kept at
29°C produced on average 82% fewer offspring on day 6, with respect to control males, while those allowed
to recover after eclosion had 36% fewer offspring. The slight increase for males recovering from development
at 31°C still resulted in a mean reduction of 63% in offspring produced. Hence, at this temperature males
suffer a severe fitness loss even if allowed to recover, while persistent heat stress results in near complete
sterility even at the moderate challenge.

When considering the mating behavior for individual pairs, we overall found little effect of a moderate heat-
challenge on mating success and only males experiencing a severe heat-challenge were negatively impaired.
Males raised at 31°C gained few copulations compared to males from the other treatment groups (χ2 =
66.135,df = 4, P < 0.0001; Fig. 2A). Males raised at 31°C had longer mating latencies (GLM with gamma
distribution:Deviance = 7.582, F = 3.002, df = 4, P = 0.021; Fig. 2B) while there was no effect on copulation
duration (GLM with poisson distribution: Deviance = 8.867, df = 4,P = 0.065; Supplementary Fig. S2A).

In addition to single mating productivity, we also tested male sperm competitive ability after developmental
heat-exposure. We document a severe negative impact of heat on male sperm defense ability (GLM with
a quasibinomial distribution: Deviance = 5173.8, F = 22.177,df = 4, P < 0.0001, Fig 2D), even after we
allowed males to recover for 5 days.

Additionally, heat-challenged males were unable to prevent female remating, regardless of the possibility for
recovery, as all females remated when the second male was present, while only 35.1% of females first mated
to a control male remated (χ2 = 82.624; df = 4, P < 0.0001). This pattern was also reflected in second
mating latencies (GLM with quasibinomial error distribution; Deviance = 73.482, F = 181.55, df = 1, P <
0.0001; see Fig. 2C).

Temperature effects on male reproductive tissues and mechanisms of recovery

Sperm presence in the SV and SV size

We scored the presence of mature sperm in both seminal vesicles (SV) and measured SV size in two- and
six-day-old males as proxies for the amount of mature sperm available to males. We found a major impact
of elevated developmental temperatures and the opportunity to recover on the presence of mature sperm in
the SV (χ2 = 82.01,df = 4, P < 0.0001; Fig. 3A). A six-day-recovery resulted in a significant increase in
mature sperm in the SV for both temperature treatments while those males not allowed to recover did not
improve even after six days.

The results we observed for sperm presence were paralleled by our measure of SV size (Fig. 3B, table 2).
Overall, heat-challenged males started with on average 31% smaller SVs than control males, however, by
day six differences in SV size were more noticeable. Males raised at 29°C recovered to have only 15% smaller
SVs compared to control males, while the other treatments retained small SV sizes resulting in a reduction
of 52% for males developed at 31°C independently of ability to recover and of 43% for males raised and kept
at 29°C.

We also compared sperm viability in six-day old males from the control and the 29°C recovery treatment at
three timepoints after releasing sperm from SVs (Fig. 3C). This procedure allows us to determine not only
sperm quality but also future sperm performance (Eckel et al., 2017). We found that, although the number
of dead and alive sperm was similar at the beginning of the experiment (t0), sperm viability decreased faster
over time (t15 and t30 min) when males were prior exposed to mid-challenging temperatures (GLMM with
a binomial error distribution: temperature: χ2 = 16.33, df = 1,P < 0.0001; time point: χ2 = 24.22, df = 2,
P < 0.0001; temperature * time point: χ2 = 9.71, df = 2, P = 0.008).

Accessory gland size changes during recovery

We here tested how developmental temperature affected accessory gland (AG) growth in young males. As
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developmental temperature affected male body size (GLM with a gamma error distribution: Deviance =
1.075,df = 4, F = 228.33, P < 0.0001) and this scales with organ size, we corrected for body size in further
analyses using wing length as a proxy. Overall, males were smaller on day 6 after eclosion when they
developed at higher temperatures (29: 1.25mm ± 0.007; 29R: 1.23mm ± 0.007; 31: 1.21m ± 0.011; 31R:
1.17mm ± 0.009) than control males (1.37mm ± 0.007, see Supplementary table S4).

We observed a clear reduction in AG growth during the first six days after eclosion in males exposed to
elevated developmental temperatures (Fig. 4A, table 2). The reduction in growth was gradual: the higher
the temperature, the slower the increase in AG size, resulting in significant differences on day 6. Surprisingly,
the growth trajectories did not differ for males raised at 29°C and kept at the growth temperature and those
allowed to recover (see post-hoc test in Supplementary table S5). Interestingly, AG sizes of recently eclosed
males (day one) were fairly similar. In a second analysis we only compared AG size of treated males and
hence, excluding the control group from the analysis, using larval temperature and the possibility of recovery
or not as fixed variables. This revealed that the 31°C recovery treatment resulted in males having significantly
smaller AGs compared to males not allowed to recover (GLM with a gamma error distribution, recovery:
F = 18.88, df = 1, P < 0.0001). By day six, the reduction in size was 12.8% for males of both treatments
exposed to 29°C and 40.3% for those exposed to 31°C compared with the control group.

We next assessed whether the allometric relationship between the gland and body size is also altered. The
regression analysis between both factors (see Supplementary table S6 and Fig. S3) indicates that in the two
elevated treatments a hypometrical relationship prevails (b<1) highlighting that the gland is smaller than
expected for the body size, while it tends to be isometrical in males grown at 25°C (b=1). Thus, differences
in AG size can be attributed to altered growth patterns due to temperature. Overall, these results suggest
that AG maturation is inhibited by elevated temperatures with males ultimately having smaller glands.

Discussion

We here investigated the recovery dynamics of a temperate D. melanogaster strain with a special focus on
effects on the male reproductive tissues. Overall, sublethal temperatures severely affected a male’s ability
to reproduce as found in other ectotherms (Conrad et al., 2017; Nguyen et al., 2013; Parratt et al., 2020;
Rodrigues et al., 2022, 2021; Sales et al., 2018; Vasudeva et al., 2019; Walsh et al., 2019; Zheng et al., 2017;
Zwoinska et al., 2020). In accordance with previous findings (Chakir et al., 2002; Petavy et al., 2001), the
males used here became temporarily sterile when exposed to temperatures above 29°C during development.
Moreover, we found negative effects on most of our measured reproductive traits that can be explained by
males transferring a sub-optimal ejaculate and despite the ability to recover, we found temperature stress to
still lead to severe fitness reductions with recovery dynamics depending on the developmental temperature
experienced.

The observed reduction in output could not be explained by reduced male mating rates, i.e. due to males
becoming unattractive as found in male red mason bees (Osmia bicornis, (Conrad et al., 2017)), as we found
little effect of a moderate heat-challenge of four degrees over the optimal temperature on mating behaviour.
We rather suspected male ability to produce or transfer sperm to be affected. Developmental temperature
can result in aberrant sperm in D. melanogaster(Rohmer et al., 2004) potentially explaining our reduced
egg-to-adult survival. Even if males can produce sperm, they might transfer less, reducing their overall
fertility (Kraaijeveld and Chapman, 2004; Seo et al., 1990; Taylor et al., 2001). Females of the parasitoid
waspAnisopteromalus calandrae stored 100 time less sperm when mated with a male exposed to a heatwave
and even though males were transferred to the optimum temperature after a heat shock, they were not able to
produce mature sperm (Nguyen et al., 2013). Constant exposure to heat stress during development resulted
in reduced testes and sperm size in the bruchid beetle Callosobruchus maculatus (Vasudeva et al., 2014).
However, while C. maculatus males had a lower sperm viability, no reduction in fertility in the absence of
sperm competition was observed. Hence, while sperm number is important, other factors might be at play
as well.

In addition to single mating productivity, we also tested male sperm competitive ability after developmental
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heat-exposure. Competitive ability is key to male reproductive success (Simmons, 2001) and was sensitive
to thermal conditions in T. castaneum (Sales et al., 2018). We similarly document a severe negative impact
of heat on male sperm defense ability, even after we allowed males to recover for 5 days. Thus, overall we
also observe the previously described sensitivity of male reproductive function to elevated, but sub-lethal
temperatures (Chakir et al., 2002; David et al., 2005; Sales et al., 2018; Walsh et al., 2019) in both competitive
and non-competitive contexts. Reduced ability to fertilise eggs and win in sperm competition could be due
to reduced sperm transfer (Kraaijeveld and Chapman, 2004; Seo et al., 1990; Taylor et al., 2001) and/
or reduced sperm storage by females (Nguyen et al., 2013). Both traits are important determinants in D
.melanogaster sperm competition outcomes (Lüpold et al., 2013; Manier et al., 2010). Sperm storage and
sperm competitive ability are mediated by receipt of SFPs (Avila et al., 2011). Thus, we continued by looking
at the SVs and the AGs for possible heat damage and we will discuss those two in turn.

We observed males to recover fertility to some extent within six days, indicating that spermatogenesis was
not completely damaged. Spermatogenesis in D. melanogaster lasts 10 days from the initial stem cell division
(reviewed in (Fabian and Brill, 2012)) and starts in the early larval stages (Le Bras and Van Doren, 2006)
with the reproductive system fully active during the pupal stage (Bodenstein, 1950) when most of sperm
individualisation and maturation occurs (Fabian and Brill, 2012). In our assay, males started producing
offspring by day 4 of the recovery process with the exception of males that had developed at 31°C, who
needed much longer to recover fertility. As sperm individualisation is temperature sensitive (Ben-David et
al., 2015), high developmental temperatures might disrupt proper sperm maturation. As the last step, the 64
interconnected spermatids individualize and finally the mature sperm coils into the base of the testis (Fabian
and Brill, 2012; Steinhauer, 2015) and already at 29°C Ben-David and colleagues (Ben-David et al., 2015)
observed the formation of fewer and more abnormal individualization complexes. Our proxy for availability
of mature sperm - SV size and sperm presence in the SV- corroborated these findings with a major impact
of elevated developmental temperatures and the opportunity to recover on the presence of mature sperm in
the SVs, but also highlighted a delay in mature sperm formation. Although we found that sperm presence
in the SV of males allowed to recover improved over time, the sperm quantity was lower than in control
males. Apart from having fewer sperm, this sperm also seems more sensitive as sperm viability decreased
faster in males exposed to 29°C during development within 30 mins after collection with the possibility to
lead to reduced fertilisation success in the long-run. While this data shows that recovery of spermatogenesis
is possible to some extent, the effects of temperature are not completely compensated during recovery. A
reduction in the number of sperm ejaculated was also found in T. castaneummales when facing a heat shock
of 5°C above the optimum temperature (Sales et al., 2018). This reduction might be the result of a significant
increase in sperm cell death of exposed males (Sales et al., 2018) as we found with time. We additionally
show, when elevated temperatures persist and recovery is not allowed, sperm maturation and/ or movement
into the SV is not possible, as no sperm was found in the SVs of six day old males grown and kept at 31°C.
A result similarly found in D. suzukii males raised at 30°C (Kirk Green et al., 2019) and in line with the
idea that spermiogenesis is affected as found previously (Ben-David et al., 2015) halting the maturation
of sperm. However, there is the potential for strong variation across genotypes in their ability to produce
mature sperm as indicated by the variation in fertility at sub-lethal temperatures across isogenic lines of the
Drosophila Genetic Reference Panel (Rodrigues et al., 2021).

In addition to the SVs, we also investigated the response to elevated developmental temperature on accessory
gland maturation as it is the main production site of SFPs, which are important determinants of male
reproductive success (Avila et al., 2010; Chapman et al., 2003). The interplay between male SFPs, sperm
and the female reproductive tract is integral to ensure all stages of the reproductive cascade can proceed
and culminate in the fertilization of a passing ova (Avila et al., 2010). Additionally, male SFPs can protect
sperm and enhance sperm viability (den Boer et al., 2009, 2008; Holman, 2009; King et al., 2011). The
growth of the accessory gland is key during sexual maturation (Ruhmann et al., 2016) and accompanied
by an increase in functionality (Leiblich et al., 2012; Prince et al., 2019). We here observed a negative
impact of heat-stress during development with a clear reduction in AG growth during the early stages.
Surprisingly, recovery had little effect and did not aid AG maturation, which could result in reduced AG
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functionality, affecting SFP properties and/or composition. This hypothesis is tentatively supported by our
phenotypic data, as temperature challenged males were not able to prevent female remating, induce increased
oviposition (a trait mediated by ejaculatory sex peptide (Chapman et al., 2003; Liu and Kubli, 2003) and
ovulin (Rubinstein and Wolfner, 2013)) and defend their ejaculate against subsequent rivals, regardless of
the possibility for recovery. These traits are determined by seminal fluid proteins like the sex peptide (Avila
et al., 2010; Chapman et al., 2003; Fricke et al., 2009; Liu and Kubli, 2003) and our results point towards the
possibility that heat-challenged males could not transfer functional or adequate amounts of sex peptide and
potentially other SFPs. We worked under the premise that larger AG size is indicative of SFP accumulation,
which is an adequate proxy for at least the first three days after eclosion (Koppik et al., 2018).

Under normal circumstances, rapid growth of the AG can be observed in the first ten days after eclosion
(Box et al., 2019; Ruhmann et al., 2016) and continues at a lower rate during male adulthood (Box et al.,
2019). In general, the change in AG size occurs due to changes in both its cell types – the secondary and the
main cells (Box et al., 2019; Leiblich et al., 2012). Main cells increase in size due to endocycling throughout
male life (Box et al., 2019). In secondary cells the vacuole like compartments (VLCs) increase in size and
change nature and location (Prince et al., 2019). VLCs are vital to secondary cell functionality (Corrigan
et al., 2014; Gligorov et al., 2013; Prince et al., 2019) by secreting their content into the gland lumen
and communicating with neighbouring main cells (Hopkins et al., 2019). Secondary cell and proper VLC
maturation is important for overall AG functionality and thus the question arises, whether development at
elevated temperatures disrupts proper formation of secondary cells and/ or interferes with main cell growth.
As, we did not observe an improvement for males allowed to recover compared with males kept at the growth
temperature, this might indicate that processes involved in AG growth cannot be rescued and developmental
temperatures might produce an irreversible damage, which could explain the inability of heat-damaged males
to recover and reach the fitness of control males. However, the AG can regenerate from damage (Box et al.,
2019) and possibly our chosen time span was too short to see this effect after heat-damage warranting further
investigations.

Conclusion

Under predicted climate change scenarios, an increase in temperature is expected next to an occurrence
of longer and more severe heat waves (Meehl and Tebaldi, 2004). Temperatures in the range of four to
six degrees above the optimum temperature as tested here are easily reachable in many areas worldwide,
especially during the summer (Solomon et al., 2007). From an ecological point of view, this could lead to
severe consequences for species distributions and persistence, particularly as recent research highlights a
lack of genetic variability in male sub-lethal fertility limits (van Heerwaarden and Sgrò, 2021; Zwoinska
et al., 2020). This lack would severely hamper a species ability to mitigate escape from this predicament
through evolutionary adaptation to the novel conditions. Already now, a species thermal fertility limit is
a better predictor of species ranges than the critical thermal limit across 43 Drosophila species (Parratt
et al., 2020). Our findings echo this recent interest in understanding the impact of temperature on male
reproduction. We here add insights on the fitness costs of heat stress and mechanisms allowing recovery.
In sum, we show that sub-lethal thermal sterility and the subsequent fertility reduction could be caused
by a combination of malfunctioning reproductive traits: inefficient functionality of the accessory gland and
alteration of spermatogenesis. In addition, we show that the possibility of recovery after exposure, even
when facing a mid-challenge, does not mitigate the damage imposed on reproduction by elevated thermal
stress during development. Moreover, five days of recovery is not enough to rescue SFP functionality, and
the AGs fate is mainly determined during development, which could explain the inability of heat-damaged
males to recover and reach the fitness of control males. We found AG functionality more thermosensitive
than spermatogenesis as SFPs induced female post-mating responses were already impaired at the mid-
challenging temperature of 29°C. Mature sperm though was found in males raised at 29°C and particularly
in those allowed to recover, which could explain the progressive increase in fertility observed in recovering
males.

Data Accessibilty Statement
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sory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54, 291–298.
https://doi.org/10.1016/0092-8674(88)90192-4

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Gao, X., Jr, W.J.G., Johns, T., Krinner,
G., Shongwe, M., Weaver, A.J., Wehner, M., 2013. Long-term Climate Change: Projections, Commitments
and Irreversibility. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin,
G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)].
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
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Table 1 . Generalized mixed models following a gaussian distribution was used to analyze the number of eggs,
and a quasibinomial distribution for the egg-to-adult survival. The offspring number produced was analyzed
using a Zero-inflated negative binomial model. The model included a logit part that analysed whether an
offspring was produced or not, while the count part analysed the number of offspring produced following a
negative binomial distribution. Males previously developed at 25, 29 or 31°C and were kept at the growth
temperature or moved to the control temperature to recover. Pairs were allowed to mate on day 2, 4, or 6
after eclosion. In all cases, male developmental temperature and opportunity to recover were analysed as the
factor temperature with five levels, with day of measurement coded as a factor with three levels.

Factor Deviance F df P

Number of eggs Number of eggs Number of eggs Number of eggs Number of eggs
Temperature 66149 33.532 4 < 0.0001
Day 4804.2 4.871 2 0.008
Temperature * Day 11029 2.935 8 0.004
Egg-to adult survival Egg-to adult survival Egg-to adult survival Egg-to adult survival Egg-to adult survival
Temperature 8607.6 56.138 4 < 0.0001
Day 1172.3 15.291 2 < 0.0001
Temperature * Day 1371 6.863 8 < 0.0001
Offspring number Offspring number Offspring number Offspring number Offspring number

Count part logit part

Factor df χ2 Π df

χ
2
Π

Temperature 4 26.31 <0.0001 12 162.81 <0.0001

Day 2 0.23 0.89 10 67.82 <0.0001

Temperature * Day 8 44.75 <0.0001

Table 2 . Results of a generalized linear models with a Gamma error distribution for male accessory gland
and seminal vesicle size. Both traits were measured in two- and six-day old adult males. Males previously
developed at 25, 29 or 31°C and were kept at the growth temperature or moved to the control temperature
to recover.

AG size

Factor Deviance F/χ2 df P
Temperature 7.233 75.474 4 < 0.0001
Day 8.595 358.720 1 < 0.0001
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Day2 4.736 197.670 1 < 0.0001
Wing length 0.531 22.144 1 < 0.0001
SV size SV size SV size SV size SV size
Temperature 8.286 91.652 4 < 0.0001
Day 6.709 296.830 1 < 0.0001
Temperature * Day 0.804 11.437 4 < 0.0001

Figure legends

Fig. 1 Comparison of reproductive output for heat-challenged males and those allowed to
recover (Mean ± SE). Proportion of fertile males (A) measured as the fraction of males at least producing
one offspring, the number of eggs laid after a single mating (B), the offspring number (C) and egg to adult
survival (D). Males were allowed a single mating two-, four- or six- days after eclosion after having developed
at (°C): 25 (circle symbol), black; 29 (triangle symbol), blue; or 31 (square symbol), orange. Males grown
and kept after eclosion at the developmental temperature are shown as a solid line, while males allowed to
recover (R) at 25°C after eclosion, are shown as a dashed line.

Fig. 2 Male mating behaviour and competitive success (Mean ± SE): proportion of males gaining
a copulation (A), and their mating latencies (B). Mating latency of females remating with a competitor
male (C), and proportion of offspring obtained by treatment males when defending their ejaculate against
a second male (P1) (D). The results are shown according to the developmental temperature of first mating
males. Males allowed to recover at 25°C after eclosion are represented with an “R”; otherwise, males were
kept at the growth temperature after eclosion.

Fig. 3 Assessment of mature sperm presence in heat-challenged males (Mean ± SE): seminal
vesicle (SV) size (A), and sperm presence in the vesicles (B) for two- and six- day old heat-challenged males.
Between 14 to 16 males were measured for each day and temperature treatment; the mean of both SVs was
used for each male for representing the SV size and sperm presence. Colored lines indicate the developmental
temperature: 25 (circle symbol), black; 29 (triangle symbol), blue; or 31 (square symbol), orange. Males
grown and kept after eclosion at the growth temperature are shown with a solid line while males allowed
to recover (R) at 25°C after eclosion, are shown with a dashed line. Sperm viability in heat-challenged
males (C): Percentage of alive sperm for six-day old control and 29°C recovery males. Portrayed is the
temporal decrease in sperm viability, measured at three different time points: just after the staining (t0) as
well as 15 (t15) and 30 (t30) minutes later. 21 males from each temperature treatment were used.

Fig. 4 Sexual maturation in accessory glands for heat-challenged males (Mean ± SE) (A) :
Accessory gland size measures for one-, two-, four- and six-day old heat-challenged males. Between 15 to
26 males were measured for each day and temperature treatment. The mean of both accessory glands was
used for each male. Colored lines indicate the developmental temperature (°C): 25 (circle symbol), black; 29
(triangle symbol), blue; or 31 (square symbol), orange. Males grown and kept after eclosion at the growth
temperature are shown with a solid line while males allowed to recover (R) at 25°C, are shown with a dashed
line.
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