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Abstract

This article concerns the dynamic transitions of a non-Newtonian horizontal fluid layer with thermal and solute diffusion and

in the presence of vertical magnetic field. First, a linear stability analysis is done by deriving the principle of exchange of

stability condition, which shows the system loses stability when thermal Rayleigh number exceeds a critical threshold. Second,

we considered the transition induced by real eigenvalues and complex eigenvalues, respectively, and two nonlinear transition

theorems along with several transition numbers determining the transition types are obtained via the method of center manifold

reduction. Finally, rigorous numerical computations are performed to offer examples of possible transitions, as well as the

stable convection patterns. Our results show that when the diffusivities from big to small are thermal, solute concentration and

magnetic diffusion, both continuous and jump transitions can occur for certain parameters; and if the diffusivities from big to

small is the inverse of the previous case, only continuous transition induced by real eigenvalues are observed, which indicate a

stationary convection.
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tal fluid layer with thermal and solute diffusion and in the presence of vertical

magnetic field. First, a linear stability analysis is done by deriving the prin-

ciple of exchange of stability condition, which shows the system loses stability

when the thermal Rayleigh number Rt exceeds a critical threshold. Second, we

considered the transition induced by real eigenvalues and complex eigenvalues,

respectively, and two nonlinear transition theorems along with several transition

numbers determining the transition types are obtained via the method of center

manifold reduction. Finally, rigorous numerical computations are performed to

offer examples of possible transitions, as well as the stable convection patterns.

Our results show that when the diffusivities from big to small are thermal,

solute concentration and magnetic diffusion, both continuous and jump transi-

tions can occur for certain parameters; and if the diffusivities from big to small

is the inverse of the previous case, only continuous transition induced by real
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1. Introduction

In 1901, the experimental work of Bénard [1] discovers a convection phe-

nomenon of a horizontal fluid layer heated uniformly from below. And the

instability problem followed by that discovery was draw attention to Rayleigh
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[2], and other researchers later on [3, 4, 5]. Nowadays, the thermal convection

phenomenon, known as Rayleigh-Bénard convection, is appearing in varies con-

texts [6, 7, 8, 9, 10]. Hence, the stability and bifurcation of Rayleigh-Bénard

convection coupled with other effects are of our interest.

The double diffusive convection is the name given to a convective motion

when there are two molecular diffusivities which cause opposing effect on ver-

tical density gradients. The competing of two stratifying effects can give rise

to instability and vertical mixing. The best known double diffusive convec-

tion comes from oceanography [11], which occurs due to distinct diffusivities of

heat and solute concentration. Besides oceanography, double diffusive convec-

tion is also found in diverse fields such as astrophysics, chemistry, geophysics

and so on [12, 13]. As this phenomenon is widespread in nature, both the-

oretical and experimental work have been carried out to address this issue

[14, 15, 16, 17, 18, 19]. Moreover, recent articles [20, 21] by Hsia et al. dis-

cuss the phenomenon from the perspective of the theory of phase transition

dynamics, which was developed in monographs [22, 23]. They offered a compre-

hensive analysis of bifurcation and stability for the Boussinesq equations with

diffusion of temperature and salinity in two- and three-dimensional spaces.

The thermal convection in electrically conducting media is known as magneto-

convection, which has been extensively studied due to its commonly presence in

earth’s outer core and other late-type stars like sun. In monograph [3] of Chan-

drasekhar, linear instability of magnetoconvection is thoroughly examined. We

also recommend the review of Proctor and Weiss [24] and the references within

for an overall understanding of the linear theory and some new results in the

non-linear regime. Regarding phase transition dynamics of magneto-convection,

Wang and Sengul [25] studied the dynamic transition of the incompressible MHD

equations in a rectangular domain with a large magnetic Prandtl number, and

diverse convection patterns is obtained depending on the choice of parame-

ters; More recently, Li et al.[26] established a complete stability and bifurcation

analysis for a rotating electrically conducting fluid layer in the presence of an

external magnetic field based on the Boussinesq approximation.

However, the fluid media may be non-Newtonian among the aforementioned

circumstances, which is a general setting in industrial practice. In particular, the

couple stress fluid is a typical case that stimulated widespread interest of many

researchers. And the modeling work of Stokes [27] is the most recognized and

simplest, which allows for polar effects such as the presence of couple stresses,

body couples and a non-symmetric stress tensor. As for stability problems,

Sunil et al. [28] shows the equivalence of linear and non-linear stability of

a couple-stress fluid. Nonetheless, there are few work concerning solely non-

Newtonian fluids in thermal convection, various other effects are often addressed

simultaneously. Sharma and Thakur [29] investigated an electrically conducting
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couple-stress fluid layer heated from below in porous medium and in presence

of magnetic field. They have reported that couple-stress and magnetic field

postpone the convection while the medium permeability hasten the onset of

convection. Linear and non-linear stability analysis for Non-Newtonian double

diffusive convection studied by Malashetty et al. [30] and Gaikwad et al. [31].

Shivakumara and Kumar [19] considered linear and weakly nonlinear stability

of a triply diffusive fluid layer. Convective instability of a doubly diffusive

incompressible couple stress fluid layer was investigated by Kumar et al. [32].

On account of phase transition, Pan et al. [33] considered stability and transition

of a couple stress fluid in saturated porous media.

Owing to the importance of the combining effect of thermal/solute concen-

tration diffusion and magnetic field on non-Newtonian fluid, our main goal of

this article is to produce stability and bifurcation analysis of such model pur-

posed by Kumar et al. [34] via the phase transition theory established by Ma

and Wang [22, 23]. In the framework of phase transition, the dynamic transi-

tions of all dissipative systems are classified into three types: continuous, jump

and mixed. The continuous transition indicates a gradual change from the base

state to the bifurcated state as the control parameter of the system crossing the

critical value, while a jump transition suggests a drastic change from base state

as the control parameter crosses the critical threshold, which is also called a

“catastrophic” transition. A mixed transition means there are two non-empty

open sets near the base state, the perturbation in one sets give rise to a contin-

uous transition and in another leads to a jump transition. The mixed transition

is also called a “random” transition since it became a random event whether

the system will undergo a gradual change or a drastic one.

This paper is three-fold. First, we verify the principle of exchange of sta-

bility (PES) condition by analyzing the linear stability via Fourier transform.

Second, by reducing the system into ODEs, we analyze dynamic behavior of

the transition from first real eigenvalue and first complex eigenvalue. Finally,

by numerical investigation under selected parameter ranges, we demarcated the

parameter ranges into different regions where each region corresponds to differ-

ent transition types. Also, some convection patterns are drawn.

This article is organized as follows. The basic governing equations are given

in section 2. section 3 is devoted to prove the principle of exchange of stability.

section 4 and section 5 states and proves the main conclusions on the transitions

from a pair of real eigenvalues and two pairs of complex eigenvalues, respectively.

section 6 gives several numerical examples and convection patterns. We end the

article with a summary of our main results in section 7. And the appendix A

completes the center manifold approximation formula used in section 5.
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2. Mathematical Settings

In this article, we consider the double-diffusive magnetoconvection of coupled

stress fluid layer, which is described by the dimensionless model [34]:(
∂

∂t
− Pr∆ + Pr Λc∆2

)
∆ψ =− Pr Rt

∂T

∂x
+ Pr Rs

∂C

∂x
+ Pr Rm∆

(
∂A

∂z

)
− J(ψ,∆ψ)− Pr RmJ(A,∆A),(

∂

∂t
−∆

)
T =− ∂ψ

∂x
− J(ψ, T ),(

∂

∂t
− τ1∆

)
C =− ∂ψ

∂x
− J(ψ,C),(

∂

∂t
− τ2∆

)
A =

∂ψ

∂z
− J(ψ,A),

(2.1)

where ψ(x, z) is the stream function, T (x, z) is the temperature field, C(x, z) is

the solute concentration, A(x, z) is the magnetic flux function and (x, z) ∈ Ω =

R× [0, 1]. And, J(f, g) = ∂f
∂x

∂g
∂z −

∂f
∂z

∂g
∂x is the Jacobian operator with respect to

x and z for arbitrary functions f and g. The dimensionless numbers Pr,Λc,Rt

and Rs are Prandtl number, couple stress parameter, thermal Rayleigh number,

solute Rayleigh number. τ1 and τ2 are the ratios of diffusivities, and Rm is

Chandrasekhar-Rayleigh number, which is named in [34].

The definitions of these dimensionless numbers are as follows

Pr =
ν

κt
, Λc =

µc
µd2

, τ1 =
κc
κt
, τ2 =

νm
κt
,

Rm =
µH2

0d
2

ρ0νκt
, Rt =

βtg∆Td3

νκt
, Rs =

βcg∆Cd3

νκt
,

(2.2)

where symbols in above definitions are: d is the thickness of fluid layer; H0

is the strength of the vertical magnetic field; ∆T and ∆C are the temperature

difference and solute concentration difference between upper and lower boundary

of the fluid layer; βt is the thermal expansion coefficient, βc is the solute analog

of βt; ρ0 is the reference density in Boussinesq approximation; κt is the thermal

diffusivity, κc is the solute diffusivity; ν and νm are kinematic viscosity and

magnetic viscosity, respectively; µ is material viscosity, while µc is material

constants having dimensions of momentum; g is the constant of gravity.

The boundaries are assumed to be stress-free with vanishing couple stress

and perfect conductors of heat and solute concentration. Hence, the appropriate

boundary conditions in z-direction is given by

ψ =
∂2ψ

∂z2
=
∂4ψ

∂z4
= T = C =

∂A

∂z
= 0 at z = 0, 1. (2.3)
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With notation Ψ(x, z) = (ψ(x, z), T (x, z), C(x, z), A(x, z))t, we assume periodic

boundary condition in x direction:

Ψ(x, z) = Ψ

(
x+

2π

α
, z

)
, (2.4)

where the parameter α > 0 is the inverse of the period. Furthermore, it is

natural to require ∫ 1

0

∫ 2π
α

0

Adx dz = 0. (2.5)

In what follows, we simplify the equations (2.1) by using an abstract func-

tional setting that is standard in the framework of dynamic transitions. De-

noting Hk(Ω) and L2(Ω) to be usually Sobolev spaces, we define the following

function spaces:

H−1 =
{

Ψ ∈ L2(Ω)×
(
L2(Ω)

)3| satisfying (2.4)- (2.5)
}

H0 =
{

Ψ ∈ H2(Ω)×
(
L2(Ω)

)3| satisfying ψ|z=0,1 = 0, (2.4)-(2.5)
}

H1 =
{
H6(Ω)× (H2(Ω))3| satisfying (2.3)- (2.5)

} (2.6)

which are endowed with their natural inner products. Then the linear operators

A =


∆

id

id

id

 , L =


Pr∆2 − PrΛc∆3 −PrRt ∂

∂x PrRs ∂
∂x PrRm∆ ∂

∂z

− ∂
∂x ∆

− ∂
∂x τ1∆
∂
∂z τ2∆

 ,

have the following properties

L : H1 → H−1, A : H0 → H−1, (2.7)

and gives the abstract form of equation (2.1):

∂AΨ

∂t
= LΨ +G(Ψ,Ψ), (2.8)

where the bilinear form G(Ψ, Ψ̃) is defined by

G(Ψ, Ψ̃) =


−J(ψ,∆ψ̃)− PrRmJ(A,∆Ã)

−J(ψ, T̃ )

−J(ψ, C̃)

−J(ψ, Ã)

 (2.9)

in which Ψ̃ = (ψ̃, T̃ , C̃, Ã). We will also use the abbreviation: G(Ψ) = G(Ψ,Ψ).
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Since A is an isomorphism, it is natural to apply the following abstract form,

∂Ψ

∂t
= LΨ + G(Ψ,Ψ), (2.10)

where the linear operator is defined by

L = A−1 ◦ L : H1 → H0, (2.11)

and bilinear form is given by

G(f, g) = A−1 ◦G(f, g) : H1 ×H1 → H0. (2.12)

The abbreviation G(Ψ) = G(Ψ,Ψ) is frequently applied in the remaining article.

2.1. Eigenvalue Problems

Consider the following eigenvalue problem:

LΨ = βΨ, Ψ ∈ H1, (2.13)

which is explicitly reads

Pr∆−1

[
∆2ψ − Λc∆3ψ − Rt

∂T

∂x
+ Rs

∂C

∂x
+ Rm∆

(
∂A

∂z

)]
= βψ,

∆T − ∂ψ

∂x
= βT,

τ1∆C − ∂ψ

∂x
= βC,

τ2∆A+
∂ψ

∂z
= βA.

(2.14)

According to boundary conditions (2.3) and (2.4), the eigenfunctions have

the following form in complexified space:
ψ(z)

T (z)

C(z)

A(z)

 eikαx, k ∈ Z. (2.15)

Inferring from eqs. (2.3) and (2.14), we have

∂2nψ

∂z2n
=
∂2nT

∂z2n
=
∂2nC

∂z2n
=
∂2n+1A

∂z2n+1
= 0, ∀n ∈ Z+ at z = 0, 1, (2.16)

which further suggesting the eigenfunctions are of following form
ψ sin(lπz)

T sin(lπz)

C sin(lπz)

A cos(lπz)

 eikαx, (k, l) ∈ I0 := Z× N \ (0, 0). (2.17)
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Plugging (2.17) into (2.14), we arrive at the eigenvalue problem for each

fixed wave number:
−γ2

JPr(γ2
JΛc + 1) ikαPrRt

γ2
J

− ikαPrRs
γ2
J

−lπPrRm

−iαk −γ2
J 0 0

−iαk 0 −γ2
Jτ1 0

πl 0 0 −γ2
Jτ2



ψ

T

C

A

 = β


ψ

T

C

A

 ,

(2.18)

where γ2
J = l2π2 + k2α2, J = (k, l). From above equations, we can obtain the

characteristic polynomial

f(β) = γ2
J(β + γ2

J)(β + γ2
Jτ1)

[
π2l2PrRm + (β + γ2

Jτ2)
(
β + γ2

JPr(γ2
JΛc + 1)

)]
+ α2k2Pr(β + γ2

Jτ2)
[
Rs(β + γ2

J)− Rt(β + γ2
Jτ1)

]
.

(2.19)

Regarding the characteristic polynomial as a polynomial of β, we also have

following equivalent expression:

f(β) = a4β
4 + a3β

3 + a2β
2 + a1β + a0 (2.20)

where the coefficients are

a0 = γ4
JPr

(
γ6
Jτ1τ2

(
γ2
JΛc + 1

)
+ k2α2τ2(Rs− Rtτ1) + l2π2γ2

JRmτ1
)
,

a1 = k2α2γ2
JPr(Rs(τ2 + 1)− Rt(τ1 + τ2)) + l2π2γ4

JPrRm(τ1 + 1)

+ γ8
J

(
Pr
(
γ2
JΛc + 1

)
(τ1τ2 + τ1 + τ2) + τ1τ2

)
,

a2 = k2α2Pr(Rs− Rt) + l2π2γ2
JPrRm

+ γ6
J

(
Pr
(
γ2
JΛc + 1

)
(τ1 + τ2 + 1) + τ1τ2 + τ1 + τ2

)
,

a3 = γ4
J

(
Pr(γ2

JΛc + 1) + τ1 + τ2 + 1
)
,

a4 = γ2
J .

(2.21)

For the sake of convenience, we discuss the eigenvalue problem in three cases,

I1 = {(k, l) ∈ I0|k, l 6= 0},
I2 = {(k, l) ∈ I0|k = 0},
I3 = {(k, l) ∈ I0|l = 0}.

(2.22)

Note that I0 = I1 ∪ I2 ∪ I3. We define the following notions for simplicity:

ξJ = eikαx


1

1

1

1

 , ζJ =


sin(lπz)

sin(lπz)

sin(lπz)

cos(lπz)

 , κsJ =


1

K0(J, s)

K1(J, s)

K2(J, s)

 (2.23)

where the complex coefficients Ki are:

K0(J, s) = − kα

βsJ + γ2
J

i, K1(J, s) = − kα

βsJ + τ1γ2
J

i, K2(J, s) =
lπ

βsJ + τ2γ2
J

.
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And we use ∗ to denote the Hadamard product of matrices, J to denote the

conjugate index of J = (k, l), i.e. J = (−k, l).

2.2. Eigenvalues and eigenvectors of index Sets Ii

For index set I1, i.e. k, l 6= 0, there are four eigenvalues βsJ , (s = 1, 2, 3, 4).

We make the assumption that <β1
J ≥ <β2

J ≥ <β3
J ≥ <β4

J . And the correspond-

ing eigenvectors are

ψsJ = κsJ ∗ ξJ ∗ ζJ . (2.24)

Since for real eigenvalue βsJ , the conjugate relations βsJ = βs
J

, κsJ = κs
J

and ψsJ =

ψs
J

are valid. We intend to let the relations also hold for complex eigenvalues.

Hence, we make further assumption that when βsJ and βs+1
J is a pair of conjugate

eigenvalues, βsJ = βs+1

J
and βs+1

J = βs
J

holds. This ensures the conjugate

relations are valid for both real and complex eigenvalues.

For index set I2, i.e. k = 0, l 6= 0, the two roots of characteristic polynomial

(2.19) are

β1
J = −l2π2, β2

J = −τ1l2π2, J ∈ I2. (2.25)

The other two roots βsJ , (s = 3, 4, J ∈ I2) are zeros of following quadratic

equation(
β + π2l2τ2

) (
β + π2l2Pr

(
π2Λcl

2 + 1
))

+ π2l2PrRm = 0, (2.26)

which are located on the left of imaginary axis due to Vieta’s theorem. Denoting

χ1
J =


0

1

0

0

 , χ2
J =


0

0

1

0

 , χ3
J = χ4

J =


1

0

0

1

 , for J ∈ I2. (2.27)

The corresponding eigenvector, which can be calculated via (2.18), are

ψsJ = χsJ ∗ ζJ for s = 1, 2,

ψsJ = κsJ ∗ χsJ ∗ ζJ for s = 3, 4.
(2.28)

We remark that there is no critical-crossing eigenvalue with index J in set I2.

For index set I3, i.e. l = 0, k 6= 0, there is an explicitly calculated eigenvalue

β1
J = −τ2k2α2 which corresponds to eigenvectors ψ1

J

ψ1
J = χ1

J ∗ ξJ :=


0

0

0

1

 ∗ ξJ for J ∈ I3. (2.29)
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And the other eigenvectors corresponds to the remaining eigenvalues of (2.19)

are excluded due to the boundary condition (2.3).

Since L is a completely continuous field (see [23]), we have the following

decomposition of H0 by collecting all the eigenvalues,

H0 = E1 ⊕E2 ⊕E3 =: span
J∈I1

s=1,2,3,4

ψsJ ⊕ span
J∈I2

s=1,2,3,4

ψsJ ⊕ span
J∈I3
s=1

ψsJ . (2.30)

And for each J , spans ψ
s
J is an invariant subspace of L.

To sum up, by the settings of κsJ for J ∈ I1, I2, I3, the conjugate relations

βsJ = βs
J
, κsJ = κs

J
and ψsJ = ψs

J
(2.31)

hold for all (J, s). Moreover, for a pair of conjugate eigenvalues βsJ and βs+1
J ,

we have

Km(J, s) = −Km(J, s+ 1) for m = 0, 1,

K2(J, s) = K2(J, s+ 1).
(2.32)

The above conjugate relations are useful for calculations in latter sections.

2.3. Adjoint Eigenvectors

To facilitate the center manifold reduction, the adjoint eigenvectors ψs,∗J ∈
H0 satisfying〈

ψsJ , ψ
s,∗
J

〉
6= 0, and

〈
ψsJ , ψ

s′,∗
J′

〉
= 0, for (J, s) 6= (J ′, s′)

H0 = span
J∈I1

s=1,2,3,4

ψs,∗J ⊕ span
J∈I2

s=1,2,3,4

ψs,∗J ⊕ span
J∈I3
s=1

ψs,∗J
(2.33)

is of our interest. We note that the inner product is taken in space H0 through

this article if there is no explicit clarification.

By setting

ψs,∗J = κs,∗J ∗ ξJ ∗ ζJ , for J ∈ I1,
ψs,∗J = κs,∗J ∗ ζJ for J ∈ I2,
ψ1,∗
J = κ1,∗

J ∗ ξJ for J ∈ I3,
(2.34)

our aim is to determine the coefficients

(κs,∗J =
(
K∗−1(J, s),K∗0 (J, s),K∗1 (J, s),K∗2 (J, s)

)t
)

by making use of (2.33). We notice that, for different indexes J and J ′,〈
ψsJ , ψ

s′,∗
J′

〉
= 0 is immediately valid. Hence, the calculation is reduced to

each invariant subspace spans ψ
s
J of L.

9



First, for J ∈ I3, the invariant subspace is one-dimensional. Thus, we can

easily determine κ1,∗
J = (0, 0, 0, 1)t for J ∈ I3, i.e. ψ1

J = ψ1,∗
J .

Second, for J ∈ I1, the coefficients are determined by following equations,〈
κs,∗J , κs

′

J

〉
+ γ2

J

〈
K∗−1(J, s), 1

〉
= 0, for s 6= s′, (2.35)

in which the inner product is the natural inner product in C4. Hence, by setting

K∗−1(J, s) = 1, we arrive at

K∗0 (J, s) =

(
γ2
J + 1

)∏4
n=1,n6=s

(
βn
J

+ γ2
J

)
kαγ4

J(τ1 − 1)(τ2 − 1)
i,

K∗1 (J, s) =

(
γ2
J + 1

)∏4
n=1,n6=s

(
βn
J

+ τ1γ
2
J

)
kαγ4

J(τ1 − 1)(τ1 − τ2)
i,

K∗2 (J, s) =

(
γ2
J + 1

)∏4
n=1,n6=s

(
βn
J

+ τ2γ
2
J

)
lπγ4

J(τ2 − 1)(τ1 − τ2)
.

(2.36)

Last, for J ∈ I2, we obtain

K∗0 (J, s) = K∗1 (J, s) = 0,

K∗2 (J, s) = −

(
γ2
J + 1

)∏4
n=3,4,n6=s

(
βn
J

+ γ2
Jτ2

)
πl

,

(2.37)

when s = 3, 4. For s = 1, 2 and J ∈ I2, direct calculation shows κ1,∗
J =

(0, 1, 0, 0)t, κ2,∗
J = (0, 0, 1, 0)t.

3. Principle of Exchange Stablities

In order to study the dynamical transitions of (2.1), we need to verify PES

condition. From the preceding discussion, the real parts of all eigenvalues in

index sets I2 and I3 are negative. Thus, the critical indexes can only belong to

index set I1. Furthermore, when Rt = 0, according to Routh-Hurwitz Test,

we know the characteristic polynomial (2.19) has four negative real-part roots.

Therefore, to verify PES condition, we only consider Rt > 0.

Note that when a0 = 0, (2.19) has a zero root. Now, the expression of one

critical value is as follows:

Rtc1 = min
J∈I1

h(J), (3.1)

where h(J) =
τ1l

2π2γ2
JRm+τ2k

2α2Rs+τ1τ2γ
6
J+Λcτ1τ2γ

8
J

τ1τ2k2α2 .
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Besides, according to the relationship between roots and coefficients, when

a2
1a4 − a1a2a3 + a0a

2
3 = 0, (2.19) has a pair of conjugate pure complex roots.

Thus, we have the equation as follows:

c2(J)Rt2 + c1(J)Rt+ c0(J) = 0, (3.2)

where

c2(J) =− k4α4Pr2γ6
J(τ1 + τ2)(ΛcPrγ

2
J + Pr + 1) < 0,

c1(J) =k2α2Prγ6
J(k2α2PrRs(Pr(Λcγ

2
J + 1)(τ1 + 2τ2 + 1)

+ τ1(τ1 + τ2) + τ2 + 1) + l2π2Prγ2
JRm(Pr(Λcγ

2
J + 1)(2τ1

+ τ2 + 1) + τ2(τ1 + τ2) + τ1 + 1) + γ6
J(τ1 + τ2)(ΛcPrγ

2
J

+ Pr + 1)(Pr(Λcγ
2
J + 1)(τ1 + τ2 + 2) + τ2

1 + τ1 + τ2
2 + τ2)) > 0,

c0(J) =− γ6
J(k2α2PrRs(τ2 + 1) + l2π2Prγ2

JRm(τ1 + 1)

+ ΛcPrγ
8
J(τ1 + 1)(τ2 + 1) + (Pr + 1)γ6

J(τ1 + 1)(τ2 + 1))

((ΛcPrγ
2
J + Pr + τ1)(k2α2PrRs+ γ6

J(τ1 + τ2)(ΛcPrγ
2
J

+ Pr + τ2)) + l2π2Prγ2
JRm(ΛcPrγ

2
J + Pr + τ2)) < 0.

(3.3)

By computation,

δ = c1(J)2−4c0(J)c2(J) = k4α4Pr2γ12
J (ΛcPrγ

2
J + Pr + τ1 + τ2 + 1)2

(2l2π2Prγ2
JRm(τ2 − 1)(k2α2PrRs(τ1 − 1)− γ6

J(τ1 − τ2)

(τ1 + τ2)(ΛcPrγ
2
J + Pr + 1)) + (k2α2PrRs(τ1 − 1)

+ γ6
J(τ1 − τ2)(τ1 + τ2)(ΛcPrγ

2
J + Pr + 1))2

+ l4π4Pr2γ4
JRm

2(τ2 − 1)2).

(3.4)

Note that when 1 < τ1 < τ2 or τ2 < τ1 < 1, δ > 0. Thus, (3.2) always has two

positive roots as follows:

0 < Rtc21 =
−c1(J) +

√
δ

2c2(J)
<
−c1(J)−

√
δ

2c2(J)
= Rtc22 . (3.5)

Therefore, we obtain another critical value as follows:

Rtc2 = min
J∈I1
{Rtc21}. (3.6)

Then, the exact value of the threshold Rtc for the system (2.1) can be intuitively

derived by Rtc1 and Rtc2 , given by

Rtc = min{Rtc1 ,Rtc2}. (3.7)

In what follows, let us verify the PES condition. To this end, we introduce

a critical index set defined by

X = {J ∈ I1|Rtc = min{h(J), Rtc21(J)}}. (3.8)

11



Note that Card(X) is finite, since when |J | → +∞, both h(J) and Rtc21(J) go

to positive infinity. We thus have the following PES condition:

Lemma 3.1. For the system (2.1), we have the following assertions:

(1) When Rtc = Rtc1 < Rtc2 , we have

β1
J


< 0, Rt < Rtc1 ,

= 0, Rt = Rtc1 , J ∈ X,
> 0, Rt > Rtc1 ,

<βsJ(Rtc) < 0 ∀(J, s) /∈ X × {1} (s = 1, 2, 3, 4).

(3.9)

(2)When Rtc = Rtc2 < Rtc1 , 1 < τ1 < τ2 or τ2 < τ1 < 1, we have

<β1
J = <β2

J


< 0, Rt < Rtc2 ,

= 0, Rt = Rtc2 , J ∈ X,
> 0, Rt > Rtc2 ,

<βsJ(Rtc) < 0 ∀(J, s) /∈ X × {1, 2} (s = 1, 2, 3, 4).

(3.10)

Proof. For Rt = 0, by computation, we know

a0 > 0, a3 > 0, a2a3 − a4a1 > 0,

a4 > 0, a1(a2a3 − a4a1)− a2
3a0 > 0.

Thus, by Routh-Hurwitz Test, for J ∈ I1, the real parts of all eigenvalues of

(2.19) are negative.

(1)For Rtc1 < Rtc2 , which means Rt firstly arrives at Rtc1 when Rt increases

from 0. Then according to the definition of Rtc1 and the continuous dependence

of βsJ (s = 1, 2, 3, 4) on Rt, the first conclusion holds.

(2)For Rtc2 < Rtc1 , which means Rt firstly arrives at Rtc2 when Rt increases

from 0. According to the definition of Rtc1 and the continuous dependence of

βsJ (s = 1, 2, 3, 4) on Rt, when Rt is in the neighborhood of Rtc2 , for J /∈ X

and J ∈ I1, <βsJ < 0. In order to verify that the first eigenvalues β1
J = β2

J =

σ+ iρ (J ∈ X) will change the signs of their real parts when Rt passes through

Rtc2 , we need to show σ′(Rtc2) > 0. We differentiate the (2.19) with respect to

Rt, and we find that when τ1, τ2 > 1 and τ1 < τ2,

σ′(Rtc2) = [[
√
δ(k2α2PrRs(τ1 − 1) + l2π2Prγ2

JRm(τ2 − 1) + γ6
J(τ2

1

+ τ2
2 )(ΛcPrγ

2
J + Pr + 1))][ΛcPrγ

2
J + Pr + τ1 + τ2 + 1]−1

+ k2α2Pr(2l2π2Prγ2
JRm(τ2 − 1)(k2α2PrRs(τ1 − 1)

− γ6
J(τ1 − τ2)(τ1 + τ2)(ΛcPrγ

2
J + Pr + 1)) + (k2α2PrRs

(τ1 − 1) + γ6
J(τ1 − τ2)(τ1 + τ2)(ΛcPrγ

2
J + Pr + 1))2

+ l4π4Pr2γ4
JRm

2(τ2 − 1)2)][ΛcPrγ2
J + Pr + 1]−1 > 0.

(3.11)
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Therefore, the second conclusion is valid.

When the parameters Λc = 1, Rs = 80000 and Pr = 7, we compare the

values of Rtc1 and Rtc2 as a function of Rm in the following cases: (1) τ1 =

0.72, τ2 = 0.5; (2) τ1 = 1.2, τ2 = 1.5, see Figure 3.1. Note that Rtc1 and Rtc2
depend on Rm almost linearly. A mathematical interpretation is that Rs is far

larger than Rm, thus, the expression (3.6) is taken as a linear function of Rm.

50 100 150 200 250 300

100000

110000

120000

130000

140000

Rm

R
t

50 100 150 200 250 300

80000

85000

90000

95000

100000

105000

Rm

R
t

Figure 3.1: Values of Rtc1 and Rtc2 with Rm ∈ [10, 300] (left: τ1 = 0.72, τ2 = 0.5) and (right:

τ1 = 1.2, τ2 = 1.5).

Rt is considered to be the control parameter of the model (2.1) in this article.

Therefore, we remark that the linear operator defined by (2.11) is depending on

Rt, and we denote the operator by LRt. Similarly, the eigenvalues βsJ(Rt) and

eigenfunctions ψsJ(Rt) are also depend on Rt. However, we may not specify the

dependence throughout the rest of the article for sake of simplicity.

4. Transition Induced by Real Eigenvalues

In this section, we consider the transition of the system (2.1) from a pair

of real eigenvalue β1
Jr

= β1
Jr

where Jr = (kr, 1), Jr = (−kr, 1) are in index set

I1. The transition can be characterized by introducing a non-dimensional real

number Γ(Rt) given by

Γ(Rt) =
iπ2kr〈

ψ1
Jr
, ψ1,∗

Jr

〉[2h1
Jr3

(
γ2
Jr

+ 1

γ2
Jr

PrRm
(
γ2
Jr − γ

2
Jr3

)
K2(Jr, 1)

+K∗2 (Jr, 1)

)
+ h1

Jr2
K∗0 (Jr, 1) + h2

Jr2
K∗1 (Jr, 1)

] (4.1)

in which h1
Jr2

, h2
Jr2

and h1
Jr3

are given in (4.14).

Remark 1. We will use abbreviations Γ for Γ(Rt).
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Theorem 4.1. For the system (2.1), assume that the first eigenvalue is real

and of algebraic multiplicity 2, we have the following conclusions:

(i) If Γ(Rtc1) < 0, the system undergoes a continuous transition from (Ψ,Rt) =

(0,Rtc1), and bifurcates on Rt > Rtc1 to a local attractor ΣRt, which is

homeomorphic to the one-dimensional sphere S1, as shown in Figure 4.1.

Furthermore, ΣRt consisting of steady state solutions of the problem. The

approximated solutions are given by

Ψ = 2

√
−
β1
Jr

(Rt)

Γ(Rt)
<
(
exp(−iθ)ψ1

Jr

)
+ o
(∣∣β1

Jr

∣∣ 12), for θ ∈ [0, 2π]. (4.2)

(ii) If Γ(Rtc1) > 0, the system undergoes a jump transition from (Ψ,Rt) =

(0,Rtc1), and bifurcates on Rt < Rtc1 to a repeller consisting of steady

state solutions of the problem.

Rt

H0

Rtc1

ΣRt

Figure 4.1: If the conditions in Theorem 4.1 (i) holds, the system bifurcates from (0,Rtc1 ) to

an attractor ΣRt ∈ H0, which consists of stationary states.

Proof. Due to foregoing arguments of decomposition of space H0, there exists

the decomposition

H0 = E0 ⊕Eh (4.3)

where the space E0 is spanned by the critical eigenvectors, i.e.

E0 = span
{
ψ1
Jr , ψ

1
Jr

}
.

And Eh is the orthogonal complement of E0.

We denote P0 and Ph the orthogonal projection onto E0 and Eh, respectively.

Thus, according to center manifold theorem, for any Ψ ∈ H0 the solution of the

model (2.1), the following decomposition is valid

Ψ = P0Ψ + PhΨ := ψJr + Φ(ψJr ) (4.4)
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where ψJr = sψ1
Jr

+sψ1
Jr
∈ E0 for s ∈ C and Φ : E0 → Eh is the center manifold

function. By center manifold reduction, the ODE

P0
dΨ

dt
=

dP0Ψ

dt
=

dψJr
dt

= P0LΨ + P0G(Ψ) = LψJr + P0G(Ψ) (4.5)

governs the local dynamics of the system. That is,

ds

dt

〈
ψ1
Jr , ψ

1,∗
Jr

〉
ψ1
Jr + c.c. =

(〈
LψJr , ψ

1,∗
Jr

〉
+
〈
G(Ψ), ψ1,∗

Jr

〉)
ψ1
Jr + c.c. (4.6)

where c.c. denotes the complex conjugate. The equivalent ODE for s reads

ds

dt
=

1〈
ψ1
Jr
, ψ1,∗

Jr

〉(〈LψJr , ψ1,∗
Jr

〉
+
〈
G(Ψ), ψ1,∗

Jr

〉)
,

ds

dt
= complex conjugate of above expression.

(4.7)

Hereinafter, we will calculate the approximation of above ODE. To do so,

the lower order terms of Φ is necessary. Due to the center manifold theorem,

the center manifold function have the following expansion

Φ = Φ2 +O
(
|s|3
)

(4.8)

where Φ2 is of order |s|2 and can be direct calculated by the formula purposed

in the appendix of [22]

Φ = (−L)−1PhG(ψJr ) + o(|s|2) +O
(∣∣<β1

Jr

∣∣|s|2). (4.9)

Thus, Φ2 is the first term on the right-hand side of the equation. A direct

calculation leads to

G(ψJr ) =


0

−2πkrα|s|2=(K0(Jr, 1)) sin(2πz)

−2πkrα|s|2=(K1(Jr, 1)) sin(2πz)

−2πkrα|s|2=(K2(Jr, 1)) cos(2πz) +
[
iπkrαs

2K2(Jr, 1)e2ikrαx + c.c.
]


(4.10)

Furthermore, considering the fact that K2(Jr, 1) ∈ R, we can denote G(ψJr )

in following summation of eigenvectors:

G(ψJr ) =
(
g1
Jr2
ψ1
Jr2

+ g2
Jr2
ψ2
Jr2

)
|s|2 +

[
g1
Jr3
ψ1
Jr3
s2 + c.c.

]
(4.11)

where Jr2 = (0, 2) ∈ I2, Jr3 = (2kr, 0) ∈ I3 and the coefficients are:

g1
Jr2

= −2πkrα=K0(Jr, 1),

g2
Jr2

= −2πkrα=K1(Jr, 1),

g1
Jr3

= iπkrαK2(Jr, 1).

(4.12)
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And we also notice that G(ψJr ) ∈ Eh, since direct calculation shows P0G(ψJr ) =

0. Therefore, PhG(ψJr ) = G(ψJr ), and the left-hand side of equation (4.9) (drop-

ping the higher order terms) can be denoted as:

Φ2 =
(
h1
Jr2
ψ1
Jr2

+ h2
Jr2
ψ2
Jr2

)
|s|2 +

[
h1
Jr3
ψ1
Jr3
s2 + c.c.

]
(4.13)

where the coefficients are

hiI = − g
i
I

βiI
, for (I, i) = (Jr2 , n), n = 1, 2 and (I, i) = (Jr3 , 1). (4.14)

With the approximated center manifold function at our disposal, the next

step to get the approximated ODE (4.5) is to calculate the lower order terms of

P0G(ψJr + Φ2). That is

P0G(ψJr + Φ2) = P0G(ψJr ) + P0G(ψJr ,Φ2) + P0G(Φ2, ψJr ) + o(|s|3)

= P0G(ψJr ,Φ2) + P0G(Φ2, ψJr ) + o(|s|3).
(4.15)

For this reason, a direct calculation show that

P0G(ψJr ,Φ2) =


−8iπα3k3r

γ2
Jr

PrRms|s|2h1
Jr3
K2(Jr, 1)eikrαx sin(πz) + c.c.

iπαkr|s|2 sin(πz)h1
Jr2

(
seiαk0x − se−iαk0x

)
iπαkr|s|2 sin(πz)h2

Jr2

(
seiαk0x − se−iαk0x

)
2iπαkrs|s|2h1

Jr3
cos(πz)eikrαx + c.c.


(4.16)

and

P0G(Φ2, ψJr ) =


2iπkrαPrRms|s|2h1

Jr3
K2(Jr, 1)eikrαx sin(πz) + c.c.

0

0

0

 .

(4.17)

Next, we require
〈
G(Ψ), ψ1,∗

Jr

〉
for reduced ODE (4.6).〈

G(Ψ), ψ1,∗
Jr

〉
=
〈
G(ψJr ,Φ2), ψ1,∗

Jr

〉
+
〈
G(ψJr ,Φ2), ψ1,∗

Jr

〉
+ o(|s|3)

=iπ2kr|s|2s

[
2h1

Jr3

(
K∗2 (Jr, 1)−

γ2
Jr3

(
γ2
Jr

+ 1
)

PrRmK2(Jr, 1)

γ2
Jr

)

+ h1
Jr2
K∗0 (Jr, 1) + h2

Jr2
K∗1 (Jr, 1)

]
+ 2π2i

(
γ2
Jr + 1

)
krPrRms|s|2h1

Jr3
K2(Jr, 1) + o(|s|3)

=Γ
〈
ψ1
Jr , ψ

1,∗
Jr

〉
s|s|2 + o(|s|3)

(4.18)
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In last equation, a bifurcation parameter Γ is defined, i.e.

Γ =
iπ2kr〈

ψ1
Jr
, ψ1,∗

Jr

〉[2h1
Jr3

(
γ2
Jr

+ 1

γ2
Jr

PrRm
(
γ2
Jr − γ

2
Jr3

)
K2(Jr, 1)

+K∗2 (Jr, 1)

)
+ h1

Jr2
K∗0 (Jr, 1) + h2

Jr2
K∗1 (Jr, 1)

] (4.19)

By the definition of eigenvectors and coefficients, we find that〈
ψ1
Jr , ψ

1,∗
Jr

〉
, γJr , γJr3 ,K2(Jr, 1),K∗2 (Jr, 1), h1

Jr2
, h2
Jr2
∈ R,

h1
Jr3
,K∗0 (Jr, 1),K∗1 (Jr, 1) ∈ C,

(4.20)

which suggests that Γ ∈ R. Therefore, ignoring the higher order terms o(|s|3),

the reduced equation (4.7) reads

ds

dt
= β1

Jrs+ Γ|s|2s,

ds

dt
= β1

Jrs+ Γ|s|2s.
(4.21)

By setting s = r(t)eiθ(t), (r(t) > 0), we obtain the reduced ODE in polar coor-

dinates
dr

dt
= β1

Jrr + Γr3

dθ

dt
= 0

(4.22)

Finally, analyzing dynamics of (4.22) near Rt = Rtc1 gives the theorem.

5. Transition Induced by Complex Eigenvalues

In this section, we consider the transition of the system (2.1) from two pairs

of complex eigenvalue β1
Jc

= β2
Jc

= β2
Jc

= β1
Jc

where Jc = (kc, lc), Jc = (−kc, lc)
are in index set I1. The transition is determined by three transition numbers

δ0(Rt), δ1(Rt) and δ2(Rt) and the quadratic form

<(A1)r4
1 + <(B6)r4

2 + <(A4 +B3)r2
1r

2
2, (5.1)

the definition of the coefficients are given in (5.41) and (5.44).

Theorem 5.1. For the system (2.1), assume that the first eigenvalue is a pair of

complex numbers with algebraic multiplicity 2, we have the following conclusions:
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(i) If (5.1) is negative definite, then the system (2.1) undergoes a continuous

transition from (Ψ,Rt) = (0,Rtc2), and bifurcates on Rt > Rtc2 to a

local attractor ΣRt. Furthermore, if δ0δ1 > 0 and δ0δ2 > 0 hold at Rt =

Rtc2 , the attractor have three double periodic solutions, denote by Ψj , (j =

0, 1, 2). And there is only one solution, say Ψ0, is stable, while the other

two is unstable, (see Figure 5.1b). The approximated formula for the stable

solution is

Ψ0 = 2

√
δ1
δ0
<(β1

Jc
)<
(
eiθ1tψ1

Jc

)
+ 2

√
δ2
δ0
<(β1

Jc
)<
(
eiθ2tψ2

Jc

)
, (5.2)

where

θ1 = =(β1
Jc) + =(A1)

δ1
δ0
<(β1

Jc) + =(A4)
δ2
δ0
<(β1

Jc),

θ2 = −=(β1
Jc) + =(B3)

δ1
δ0
<(β1

Jc) + =(B6)
δ2
δ0
<(β1

Jc).

(5.3)

(ii) If (5.1) is positive definite, then the system (2.1) undergoes a jump tran-

sition from (Ψ,Rt) = (0,Rtc2), and bifurcates on Rt < Rtc2 to a repeller

ΣRt.

The proof of foregoing theorem requires the approximation of a system of

reduced ODEs and the related dynamic analysis. Thus, we first investigate the

reduced ODEs, which gives us the following lemma.

Lemma 5.2. In the vicinity of Rt = Rtc2 , the stability and transition of the

system (2.1) for any small initial condition is equivalent to these of the following

ODEs:
ds1

dt
= β1

Jcs1 +A1|s1|2s1 +A4s1|s2|2,

ds2

dt
= β1

Jc
s2 +B3|s1|2s2 +B6|s2|2s2,

ds1

dt
= β1

Jc
s1 +A1|s1|2s1 +A4s1|s2|2,

ds2

dt
= β1

Jcs2 +B3|s1|2s2 +B6|s2|2s2,

(5.4)

where the coefficients are given in (5.41). By setting s1 = r1(t)eiθ1(t), s2 =

r2(t)eiθ2(t), (r1(t), r2(t) > 0), the reduced ODEs (5.4) in polar coordinates read

dr1

dt
= <(β1

Jc)r1 + <(A1)r3
1 + <(A4)r1r

2
2,

dr2

dt
= <(β1

Jc)r2 + <(B3)r2
1r2 + <(B6)r3

2,

(5.5a)

dθ1

dt
= =(β1

Jc) + =(A1)r2
1 + =(A4)r2

2,

dθ2

dt
= −=(β1

Jc) + =(B3)r2
1 + =(B6)r2

2,

(5.5b)
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0

(a) Rt < Rtc2

0

Ψ2

Ψ1

Ψ0

(b) Rt > Rtc2

Figure 5.1: Topological structure of continuous transition described in Theorem 5.1 (i), the

bifurcated attractor in (b) has two saddle points and a stable node.

Proof. Similar to the real case, the following decomposition of space is valid

H0 = E0 ⊕Eh

E0 = span
{
ψ1
Jc , ψ

1
Jc
, ψ2

Jc , ψ
2
Jc

}
.

(5.6)

And for any Ψ ∈ H0 the solution of the model (2.1), Ψ ∈ H0 has the following

decomposition

Ψ = P0Ψ + PhΨ := ψJc + Φ(ψJc) (5.7)

where ψJc = s1ψ
1
Jc

+s1ψ
1
Jc

+s2ψ
2
Jc

+s2ψ
2
Jc
∈ E0 for s1, s2 ∈ C and Φ : E0 → Eh

is the center manifold function.

Then accordingly, the reduced ODEs are

dsi
dt

=
1〈

ψiJc , ψ
i,∗
Jc

〉(〈LψJc , ψi,∗Jc 〉+
〈
G(Ψ), ψi,∗Jc

〉)
,

dsi
dt

= complex conjugate of above expression,

(5.8)

for i = 1, 2. The center manifold function also has the expansion

Φ = Φ2 +O
(
|s|3
)
, (5.9)

where |s|2 = s2
1 + s2

2 is different from the squared modulus in real case. And the

center manifold function Φ is determined by following (see A):

Φ = − 2=β1
Jci(−L)−1

(
(2=β1

Jci− L)−1Ĝ − (−2=β1
Jci− L)−1G̃

)
+ (−L)−1PhG(ψJc) + o(|s|2) +O

(∣∣<β1
Jc

∣∣|s|2) (5.10)

where Ĝ = PhG(s1ψ
1
Jc

+ s2ψ
2
Jc

) and G̃ = PhG(s1ψ
1
Jc

+ s2ψ
2
Jc

) = Ĝ. Next, we
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calculate the right-hand side of the formula term by term. By direct calculation,

G(ψJc) =



0

−2παkclc sin(2πlcz)=
((
|s1|2 + |s2|2 + 2s1s2

)
K0(Jc, 1)

)
−2παkclc sin(2πlcz)=

((
|s1|2 + |s2|2 + 2s1s2

)
K1(Jc, 1)

)
2παkclc

(
|s2|2 − |s1|2

)
cos(2πlcz)=K2(Jc, 1)

+iπαkclc(s1 + s2)e2iαkcx
(
s2K2(Jc, 1) + s1K2(Jc, 1)

)
+ c.c.,


(5.11)

which has the eigenfunction expansion

G(ψJc) =

4∑
n=1

gnJc2ψ
n
Jc2

+
[
g1
Jc3
ψ1
Jc3

+ c.c.
]

(5.12)

where Jc2 = (0, 2lc) ∈ I2, Jc3 = (2kc, 0) ∈ I3 and the coefficients are:

g1
Jc2

= −g1s
Jc2
=
((
|s1|2 + |s2|2 + 2s1s2

)
K0(Jc, 1)

)
,

g2
Jc2

= −g2s
Jc2
=
((
|s1|2 + |s2|2 + 2s1s2

)
K1(Jc, 1)

)
,

g1
Jc3

= g1s
Jc3

(s1 + s2)
(
s2K2(Jc, 1) + s1K2(Jc, 1)

)
,

(5.13)

in which

g1s
Jc2

= g2s
Jc2

= 2παkclc, g1s
Jc3

= iπαkclc. (5.14)

And the coefficients gjJc2
, (j = 3, 4) are solved from

g3
Jc2

+ g4
Jc2

= 0,

g3
Jc2
K2(Jc, 3) + g4

Jc2
K2(Jc, 4) = 2παkclc

(
|s2|2 − |s1|2

)
=K2(Jc, 1).

(5.15)

And for latter calculation, we define g3s
Jc2

and g4s
Jc2

by(
|s2|2 − |s1|2

)
g3s
Jc2

= g3
Jc2
,
(
|s2|2 − |s1|2

)
g4s
Jc2

= g4
Jc2
. (5.16)

We remark that P0G(ψJc) = 0. Next, we calculate Ĝ and G̃:

Ĝ =


0

2iπαkclcs1s2 sin(2πlcz)K0(Jc, 1)

2iπαkclcs1s2 sin(2πlcz)K1(Jc, 1)

iπαkclcs
2
1e

2iαkcxK2(Jc, 1)− iπαkclcs2
2e
−2iαkcxK2(Jc, 1)

 (5.17)

The eigenvector expansion of above term is:

Ĝ = ĝ1
Jc2
ψ1
Jc2

+ ĝ2
Jc2
ψ2
Jc2

+ ĝ1
Jc3
ψ1
Jc3

+ ĝ1
Jc3

ψ1
Jc3

(5.18)

20



where the coefficients are

ĝ1
Jc2

= ĝ1s
Jc2
s1s2, ĝ2

Jc2
= ĝ2s

Jc2
s1s2,

ĝ1
Jc3

= ĝ1s
Jc3
s2

1, ĝ1
Jc3

= ĝ1s
Jc3

s2
2,

(5.19)

in which

ĝ1s
Jc2

= 2iπαkclcK0(Jc, 1), ĝ2s
Jc2

= 2iπαkclcK1(Jc, 1),

ĝ1s
Jc3

= iπαkclcK2(Jc, 1), ĝ1s
Jc3

= −iπαkclcK2(Jc, 1).
(5.20)

With above results at our disposal, we next calculate the second order term

of center manifold function. Decomposing Φ2 into three parts:

Φ2 = Φ1
2 + Φ2

2 + Φ3
2 (5.21)

where
Φ1

2 = (−L)−1PhG(ψJc),

Φ2
2 = −2=β1

Jci(−L)−1
(
2=β1

Jci− L
)−1

PhĜ,

Φ3
2 = 2=β1

Jci(−L)−1
(
−2=β1

Jci− L
)−1

PhG̃.

(5.22)

For Φ1
2, calculation leads to

Φ1
2 =

4∑
n=1

hnJc2ψ
n
Jc2

+
[
h1
Jc3
ψ1
Jc3

+ c.c.
]
, (5.23)

in which the coefficients are

hjJ = −
gjJ
βjJ
, for (J, j) = (Jc2 , n), n = 1, 2, 3, 4 and (J, j) = (Jc3 , 1).

(5.24)

For latter calculation, we also define

hjsJ = −
gjsJ
βjJ

. (5.25)

As for Φ2
2 and Φ3

2, we have

Φ2
2 = ĥ1

Jc2
ψ1
Jc2

+ ĥ2
Jc2
ψ2
Jc2

+
[
ĥ1
Jc3
ψ1
Jc3

+ c.c.
]

Φ3
2 = Φ2

2

(5.26)

in which the coefficients are

ĥjJ = BjJ ĝ
j
J , for (J, j) = (Jc2 , n), n = 1, 2, 3, 4 and (J, j) = (Jc3 , 1),

(5.27)
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where

BjJ =
2=(β1

Jc
)i

βjJ(2=(β1
Jc

)i− βjJ)
. (5.28)

For latter calculation, let us also define

ĥjsJ = BjJ ĝ
js
J . (5.29)

To sum up, Φ2 have the following form

Φ2 =

4∑
n=1

fnJc2ψ
n
Jc2

+
[
f1
Jc3
ψ1
Jc3

+ c.c.
]
, (5.30)

in which

f1
Jc2

=h1
Jc2

+
[
ĥ1
Jc2

+ c.c.
]
,

f2
Jc2

=h2
Jc2

+
[
ĥ2
Jc2

+ c.c.
]
,

fmJc2 =hmJc2 , for m = 3, 4,

f1
Jc3

=h1
Jc3

+ ĥ1
Jc3

+ ĥ1
Jc3

.

(5.31)

Next, we calculate the lower order term of
〈
G(Ψ), ψj,∗Jc

〉
, for j = 1, 2.

〈
G(ψJc + Φ2), ψj,∗Jc

〉
=
〈
G(ψJc ,Φ2) + G(Φ2, ψJc), ψ

j,∗
Jc

〉
+ o(|s|2) (5.32)

For convenience, we renumber the variables and eigenfunctions

s3 = s1, s4 = s2, fn = fnJc2 , f5 = f1
Jc3
, f6 = f5,

σ1 = s1ψ
1
Jc , σ2 = s2ψ

2
Jc , σ3 = s3ψ

1
Jc
, σ4 = s4ψ

2
Jc
,

ρn = fnψ
n
Jc2
, ρ5 = f5ψ

1
Jc3

= ρ6, for n = 1, 2, 3, 4.

(5.33)

Using above notion, we define

snfmG
j
nm =

〈
G(σn, ρm) + G(ρm, σn), ψj,∗Jc

〉
, (5.34)

which means〈
G(ψJc + Φ2), ψj,∗Jc

〉
=

∑
n=1,2,3,4

m=1,2,3,4,5,6

snfmG
j
nm + o(|s|2). (5.35)
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For j = 1, 2, the total 24 terms in that summation are shown below: for q = 1, 2

Gjq1 = iπ2kclcK
∗
0 (Jc, j),

Gjq2 = iπ2kclcK
∗
1 (Jc, j),

Gjqp = iπ2kclc

[(
K2(Jc2 , p)K

∗
2 (Jc, j)

+
(γ2
Jc

+ 1)γ2
Jc2

γ2
Jc

(PrRmK2(Jc2 , p)K2(Jc, q) + 1)
)

− (K0(Jc, q)K
∗
0 (Jc, j) +K1(Jc, q)K

∗
1 (Jc, j)−K2(Jc, q)K

∗
2 (Jc, j),

+ (γ2
Jc + 1)(PrRmK2(Jc2 , p)K2(Jc, q) + 1))

]
, for p = 3, 4

Gjq5 = Gjq6 = 0.

(5.36)

When q = 3, 4,

Gjqp = 0, for p = 1, 2, 3, 4, 6,

Gjq5 = 2iπ2kclc

(
(γ2
Jc

+ 1)PrRm(γ2
Jc
− γ2

Jc3
)

γ2
Jc

K2(Jc, q − 2) +K∗2 (Jc, j)

)
.

(5.37)

Thus, by omitting the higher order terms, the reduced equation reads

ds1

dt
= β1

Jcs1 +A1|s1|2s1 +A2s
2
1s2 +A3|s1|2s2 +A4s1|s2|2 +A5s1s

2
2 +A6|s2|2s2

ds2

dt
= β1

Jc
s2 +B1|s1|2s1 +B2s

2
1s2 +B3|s1|2s2 +B4s1|s2|2 +B5s1s

2
2 +B6|s2|2s2

dsj
dt

= complex conjugate of above expressions, for j = 1, 2

(5.38)

By normal form theory (see [35]), the above system can be further reduced by

following change of variables(
s1

s2

)
=

(
ŝ1

ŝ2

)
+

 A2

2β1
Jc

ŝ2
1ŝ2 + A3

2β1
Jc

|ŝ1|2ŝ2 + A5

3β1
Jc
−β1

Jc

ŝ1ŝ
2
2 + A6

2β1
Jc

|ŝ2|2ŝ2

B1

2β1
Jc

|ŝ1|2ŝ1 + B2

3β1
Jc
−β1

Jc

ŝ2
1ŝ2 + B4

2β1
Jc

ŝ1|ŝ2|2 + B5

2β1
Jc

ŝ1ŝ
2
2.


(5.39)

By dropping the hat, we arrive at the normal form:

ds1

dt
= β1

Jcs1 +A1|s1|2s1 +A4s1|s2|2,

ds2

dt
= β1

Jc
s2 +B3|s1|2s2 +B6|s2|2s2,

ds1

dt
= β1

Jc
s1 +A1|s1|2s1 +A4s1|s2|2,

ds2

dt
= β1

Jcs2 +B3|s1|2s2 +B6|s2|2s2,

(5.40)
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in which the coefficients are

A1 = − h1s
Jc2
=(K0(Jc, 1))G1

11 − h2s
Jc2
=(K1(Jc, 1))G1

12

− h3s
Jc2
G1

13 − h4s
Jc2
G1

14 +
(
ĥ1s
Jc3

+ h1s
Jc3
K2(Jc, 1)

)
G1

35

A4 = 2h1s
Jc3
<(K2(Jc, 1))G1

45

+
(
−h1s

Jc2
=(K0(Jc, 1))− h1s

Jc2
<(K0(Jc, 1)) + ĥ1s

Jc2

)
G1

21

+
(
−h2s

Jc2
=(K1(Jc, 1))− h2s

Jc2
<(K1(Jc, 1)) + ĥ2s

Jc2

)
G1

22

− h1s
Jc2
=(K0(Jc, 1))G1

11 − h2s
Jc2
=(K1(Jc, 1))G1

12

+ h3s
Jc2
G1

13 + h4s
Jc2
G1

14

B3 = 2h1s
Jc3
<(K2(Jc, 1))G2

35

+
(
−h1s

Jc2
=(K0(Jc, 1)) + h1s

Jc2
<(K0(Jc, 1)) + ĥ1s

Jc2

)
G2

11

+
(
−h2s

Jc2
=(K1(Jc, 1)) + h2s

Jc2
<(K1(Jc, 1)) + ĥ2s

Jc2

)
G2

12

− h1s
Jc2
=(K0(Jc, 1))G2

21 − h2s
Jc2
=(K1(Jc, 1))G2

22

− h3s
Jc2
G2

23 − h4s
Jc2
G2

24

B6 = − h1s
Jc2
=(K0(Jc, 1))G2

21 − h2s
Jc2
=(K1(Jc, 1))G2

22

+ h3s
Jc2
G2

23 + h4s
Jc2
G2

24 +
(
ĥ1s
Jc3

+ h1s
Jc3
K2(Jc, 1)

)
G2

45

(5.41)

We next prove Theorem 5.1 by analyze the dynamics of the reduced equation.

Proof. To discuss the dynamics of the system, we only need to consider radius

equations (5.5a).

First, according to Theorem 5.2 of [23], the system (2.10) bifurcates to an

attractor when the origin is locally asymptotically stable for Rt = Rtc2 . To this

end, we define the energy E = r2
1 + r2

2. Hence,

1

2

dE

dt
= <(β1

Jc)E + <(A1)r4
1 + <(B6)r4

2 + <(A4 +B3)r2
1r

2
2 (5.42)

Therefore, the origin is locally asymptotically stable at Rt = Rtc2 when (5.1) is

negative definite. And if the quadratic form (5.1) is positive definite, we obtain

the subcritical bifurcation.

Second, we prove the statements concerning the double periodic solutions in

the attractor. By solving
drj
dt = 0 for j = 1, 2, we have three possible non-trivial
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solutions

R0 =

(√
δ1
δ0
<(β1

Jc
),

√
δ2
δ0
<(β1

Jc
)

)
,

R1 =

√−<(β1
Jc

)

<(A1)
, 0

,R2 =

0,

√
−
<(β1

Jc
)

<(B6)

 (5.43)

in which

δ0 = <(A4)<(B3)−<(A1)<(B6),

δ1 = <(B6)−<(A4),

δ2 = <(A1)−<(B3).

(5.44)

When Rt > Rtc2 , i.e. <(β1
Jc

) > 0, then each solution Rj exists under following

conditions

R0 : δ0δ1 > 0 and δ0δ2 > 0,

R1 : <(A1) < 0, R2 : <(B6) < 0.
(5.45)

Third, we investigate the stability of above three solutions. By solving the

standard eigenvalue problem of the linearized equation for R0, the eigenvalues

µ01 and µ02 are

µ01 = −2<(β1
Jc), µ02 =

2<(β1
Jc

)δ1δ2

δ0
. (5.46)

Hence, R0 is stable when δ0 < 0. Similarly, for R1, we obtain the eigenvalues

µ11 = −2<(β1
Jc), µ12 =

<(β1
Jc

)

<(A1)
δ2, (5.47)

which indicates the stability when δ2 > 0. And for R2, the eigenvalues are

µ21 = −2<(β1
Jc), µ22 =

<(β1
Jc

)

<(B6)
δ1, (5.48)

which indicates the stability when δ1 > 0.

Finally, if (5.1) is negative definite, then <(A1),<(B6) < 0 is valid, which

ensures the existence of R1 and R2. And R0 exists by the conditions δ0δ1 > 0

and δ0δ2 > 0. The conditions also indicate that δj have same signs for j = 0, 1, 2,

which suggest the stability of Rj for j = 0, 1, 2. Precisely, since δ0 < 0 can be

deduced from the fact that (5.1) is negative definite, thus R0 is stable while R1

and R2 are unstable.
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6. Numerical Investigations

We have investigated the transition of the system (2.1) theoretically in

preceding sections, and it is clarified that the type of transition can be de-

termined by several non-dimensional numbers. To determine the transition

and convection types of the system (2.1), we analyzed the effect of parameters

(Pr,Rm,Rs,Λc, α) on the critical values of Rtc1 , Rtc2 and transition types.

The effect of parameters on the critical values and the transition types is

numerically determined through several specimens listed in the Table 1, shown

in Figure 6.1-Figure 6.3. The parameters in region I, Π and Σ2 correspond

Specified parameters variational parameters

(Pr, α, Rs) = (1, 1, 20000) Λc ∈ [0.1, 3], Rm ∈ [10, 300]

(Pr, α, Rs) = (1, 3.9, 20000) Λc ∈ [0.1, 3], Rm ∈ [10, 300]

(Pr, α, Rm) = (1, 1, 150) Λc ∈ [0.1, 3], Rs ∈ [2000, 80000]

(Pr, α, Rm) = (1, 3.9, 150) Λc ∈ [0.1, 3], Rs ∈ [2000, 80000]

(Pr, Λc, α) = (1, 1, 1) Rs ∈ [2000, 80000], Rm ∈ [10, 300]

(Pr, Λc, α) = (1, 1, 3.9) Rs ∈ [2000, 80000], Rm ∈ [10, 300]

Table 1: Parameters with fixed τ1 = 0.72 and τ2 = 0.5 ).

to the jump transition from real-eigenvalues, continuous transition from real-

eigenvalues, continuous transition from complex-eigenvalues, respectively. And

the parameters in region Σ1 corresponds to transition from complex-eigenvalues.

Besides, the choice of parameter ranges is followed from [34], which is Pr ∈ [1, 7],

α ∈ [0.1, 4], Rm ∈ [10, 300], Rs ∈ [2000, 80000] and Λc ∈ [0.1, 3].
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Figure 6.1: Parameter regions: (Pr, α,Rs)=(1, 1, 20000)(left);

(Pr, α,Rs)=(1, 3.9, 20000)(right)

By observing Figure 6.1-Figure 6.3, we can obtain the that for τ1 = 0.72, τ2 =

0.5, there are total four cases are shown in the parameter ranges: jump transition
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Figure 6.2: Parameter regions: (Pr, α,Rm) = (1, 1, 150)(left); (Pr, α,Rm) =

(1, 3.9, 150)(right).
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Figure 6.3: the variational parameter regions: (Pr,Λc, α) = (1, 1, 1)(left); (Pr,Λc, α) =

(1, 1, 3.9)(right).

from real-eigenvalues, continuous transition from real-eigenvalues, continuous

transition from complex-eigenvalue, complex-eigenvalue.

We also performed numerical simulations for these parameters in Table 1

with 1 < τ1 = 1.2 < 1.5 = τ2. In that case, only continuous transition induced

by real-eigenvalue was found in parameter ranges. In what follows, we give some

specific examples to show our results.

Example 1. Let (τ1, τ2,Pr, α,Rm,Λc,Rs) = (1.2, 1.5, 1, 1, 150, 1.5, 40000), by

computation, the critical indexes are Jr = (±2, 1), and the critical values are

Rtc1 = 51299.2745 < Rtc2 = 77359.5917. Then, the first eigenvalues are real.

Besides, by computation, Γ(Rtc1) = −2.17481 < 0. The system (2.1) will un-

dergo a continuous transition, and a steady convection occurs. Let Rt = 51310 >

Rtc1 , by computation, Γ = −2.17471, K0(Jr, 1) = −0.14413i, K1(Jr, 1) =

−0.120118i and K2(Jr, 1) = 0.150957. Let θ = 0 in the first conclusion of the

theorem (4.1), then we plot the streamline (∂ψ∂z ,−
∂ψ
∂x ), magnetic field (∂A∂z ,−

∂A
∂x ),

temperature T and solute concentration C, see Figure 6.4 and Figure 6.5.
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Figure 6.4: Stream and magnetic field plot of the steady state solution with parameter choices

declared in Example 1. The steady state is a typical convective roll.

(a) Temperature plot (b) Solute Concentration plot

Figure 6.5: Temperature and solute concentration plot of the steady state solution with

parameter choices declared in Example 1. The plots exhibit positive correlation between

temperature and solute concentration in stable convection.

Example 2. Let (τ1, τ2,Pr, α,Rm,Λc,Rs) = (0.72, 0.5, 1, 1, 150, 2.5, 20000), by

computation, the critical indexes are Jr = (±2, 1), and the critical values are

Rtc1 = 61839.2567 < Rtc2 = 63799.6544. Then, the first eigenvalues are real.

Besides, by computation, Γ(Rtc1) = 64.037 > 0. The system (2.1) will undergo

a jump transition according to Theorem 4.1.

Example 3. Let (τ1, τ2,Pr, α,Rm,Λc,Rs) = (0.72, 0.5, 1, 1, 150, 1.5, 50000), by

computation, the critical indexes are Jc = (±2, 1), and the critical values are

Rtc1 = 94254.761 > 79566.405 = Rtc2 . Then, the first eigenvalues are complex.

Besides, by computation, δ0 = −1.46 × 106, δ1 = −2943.32, δ2 = −1132.57,

<A1 = <B6 = −1176.26 < 0 and <(A4 +B3) = 1723.38. Thus, δ0δ1 > 0,

δ0δ2 > 0 and 4(<A1)2− (<(A4 +B3))2 > 0. According to Theorem 5.1, the sys-

tem (2.1) will undergo a continuous transition, and and a oscillatory convection

28



0

1

z

0

1

z

0

1
z

0
π

2
π 3 π

2

2π

0

1

x

z

Figure 6.6: Snapshots of the stream plot for the stable oscillatory convection in a period,

taken at t = 0, t = 1
4
p, t = 1

2
p and t = 3

4
p from top to bottom, where p = 0.581776 is the

period of the solution. A traveling roll convection is observed.

occurs. Letting Rt = 79600 > Rtc2 , by computation δ0 = −1.44107× 106, δ1 =

−2958.44, δ2 = −1142.57, <A1 = <B6 = −1175.63, A4 = 1782.8 − 5809.68i,

B3 = −33.0642 + 1787.5i,θ1 = −θ2 = 10.8 and the period is p = 0.581776, we

plot the stream (∂ψ∂z ,−
∂ψ
∂x ) and magnetic field (∂A∂z ,−

∂A
∂x ) in 4 different moments

during one period. See Figure 6.6 and Figure 6.7.

7. Conclusion

We have investigated the bifurcation and dynamic transition of a double-

diffusive magnetoconvection of non-Newtonian fluid layer based on the model

purposed in [34] by a hybrid analysis-computation approach. It is shown that

PES condition holds at a critical control parameter Rtc, and the system (2.1)

undergoes a dynamic transition at that point. Two transition theorems are

established by reducing the original PDE to a finite dimensional ODE, which

have equivalent dynamical behavior near the critical value owing to the center

manifold theorem. According to the transition theorems, the transition type is

determined by several explicit calculated transition numbers.

By some careful numerical investigations based on the transition theorems,

there are three main conclusions we can draw: (i) If the diffusivities from big

to small are thermal, solute concentration and magnetic diffusion, i.e. 1 >

τ1 > τ2, then the system can not only undergo a continuous transition, but

also a jump one in some parameter configurations, and both stationary and

oscillatory convection can occur. This is differs from the classical Rayleigh

Bénard convection; (ii) If the diffusivities from large to small are magnetic,
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Figure 6.7: Snapshots of the magnetic field plot for the stable oscillatory convection in a

period, taken at t = 0, t = 1
4
p, t = 1

2
p and t = 3

4
p from top to bottom, where p = 0.581776 is

the period of the solution.

solute concentration and thermal diffusion, i.e. 1 < τ1 < τ2, the system seems

to prefer a continuous transition induced by real eigenvalues, which leads to a

stationary convection that is consistent with the Rayleigh Bénard convection;

(iii) For the case of (i), if the horizontal period is large (small α), then the

transition of the system is more likely to induced by complex eigenvalues and

less likely to be induced by real eigenvalues compare to the case when the

horizontal period is relatively smaller. Moreover, it is more likely to observe an

oscillatory convection when the period in x-direction is larger.

There are several directions in this article that we can develop further in

future work. We only consider two of six orders of the diffusivities, the dy-

namic transition of the system under other four orders of diffusivities are also

considerable. And we would like to prove that all transition are continuous and

induced by real eigenvalues when the thermal diffusivity is the smallest and the

magnetic diffusivity is largest, since we did not find the numerical exceptions.
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A. Appendix

In the appendix, we will prove the center manifold formula (5.10).

30



Theorem A.1. If the critical eigenvalues is two pairs of complex conjugate

numbers, the center manifold has the following approximation formula near the

critical threshold:

Φ = − 2=β1
Jci(−L)−1

(
(2=β1

Jci− L)−1Ĝ − (−2=β1
Jci− L)−1G̃

)
+ (−L)−1PhG(ψJc) + o(|s|2) +O

(∣∣<β1
Jc

∣∣|s|2) (A.1)

where Ĝ = PhG(s1ψ
1
Jc

+ s2ψ
2
Jc

) and G̃ = PhG(s1ψ
1
Jc

+ s2ψ
2
Jc

) = Ĝ.

Proof. According to Theorem A.1.1 of [22], the center manifold have the follow-

ing approximation formula:

Φ(ψ,Rt) =

∫ 0

−∞
e−τLRtρεPhG(eτLRtψ) dτ + o(‖ψ‖2) (A.2)

where ρε : E0 → [0, 1] is a C∞ cut-off function defined by

ρε(x) =

{
1, if ‖x‖ < ε,

0, if ‖x‖ > 2ε.
(A.3)

And ψ = s1ψ
1
Jc

+s1ψ
1
Jc

+s2ψ
2
Jc

+s2ψ
2
Jc
∈ E0. Since ψ ∈ E0, then the application

of an operator eτLRt on ψ can be replaced by multiplication of eβ
1
Jc (or eβ

1
Jc ).

And if Rt is near Rtc2 , then <(β1
Jc

) is considered to be small, which leads to

following derivation (together with integration by parts):

Φ(ψ,Rt) =(−LRt)
−1

∫ 0

−∞
e−τLRtρεPhG(eτLRtψ) d(−τLRt) + o(‖ψ‖2)

=(−LRt)
−1

∫ 0

−∞
ρεPhG(eτLRtψ) de−τLRt + o(‖ψ‖2)

=(−LRt)
−1e−τLRtPhG(eτLRtψ)|0−∞

−
∫ 0

−∞
e−τLRtρε

d

dτ

(
PhG(eτLRtψ)

)
dτ + o(‖ψ‖2)

=−
∫ 0

−∞
e−τLRtρε

d

dτ

(
e2=(β1

Jc
)iτ Ĝ + e−2=(β1

Jc
)iτ G̃

)
dτ

+ (−LRt)
−1PhG(ψ) + o(|s|2) +O

(∣∣<β1
Jc

∣∣|s|2)
=−

∫ 0

−∞
e−τLRtρε(2=(β1

Jc)ie
2=(β1

Jc
)iτ Ĝ − 2=(β1

Jc)ie
−2=(β1

Jc
)iτ G̃) dτ

+ (−LRt)
−1PhG(ψ) + o(|s|2) +O

(∣∣<β1
Jc

∣∣|s|2)
=− 2=β1

Jci(−LRt)
−1
(

(2=β1
Jci− LRt)

−1Ĝ − (−2=β1
Jci− LRt)

−1G̃
)

+ (−LRt)
−1PhG(ψ) + o(|s|2) +O

(∣∣<β1
Jc

∣∣|s|2).
(A.4)
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Hence, (5.10) is proved.
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