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Abstract

Extracellular production of target proteins simplifies downstream processing due to obsolete cell disruption. However, optimal

combinations of a heterologous protein, suitable signal peptide and secretion host can currently not be predicted, resulting

in large strain libraries that need to be tested. On the experimental side, this challenge can be tackled by miniaturization,

parallelization and automation, which provide high-throughput screening data. These data need to be condensed into a candidate

ranking for decision making to focus bioprocess development on the most promising candidates. We screened for Bacillus subtilis

signal peptides mediating Sec secretion of two polyethylene terephthalate degrading enzymes (PETases), leaf-branch compost

cutinase (LCC) and polyester hydrolase (PE-H) mutants, by Corynebacterium glutamicum. We developed a fully automated

screening process and constructed an accompanying Bayesian statistical modeling framework, which we applied in screenings for

highest activity in 4-nitrophenyl palmitate degradation. In contrast to classical evaluation methods, batch effects and biological

errors are taken into account and their uncertainty is quantified. Within only two rounds of screening, the most suitable signal

peptide was identified for each PETase. Results from LCC secretion in microliter-scale cultivation were shown to be scalable

to laboratory-scale bioreactors. This work demonstrates an experiment-modeling loop that can accelerate early-stage screening

in a way that experimental capacities are focused to the most promising strain candidates. Combined with high-throughput

cloning, this paves the way for using large strain libraries of several hundreds of strains in a Design-Build-Test-Learn approach.
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Abstract

Extracellular production of target proteins simplifies downstream processing due to

obsolete cell disruption. However, optimal combinations of a heterologous protein,

suitable signal peptide and secretion host can currently not be predicted, result-

ing in large strain libraries that need to be tested. On the experimental side, this

challenge can be tackled by miniaturization, parallelization and automation, which

provide high-throughput screening data. These data need to be condensed into a

candidate ranking for decision making to focus bioprocess development on the most

promising candidates.

We screened for Bacillus subtilis signal peptides mediating Sec secretion of two

polyethylene terephthalate degrading enzymes (PETases), leaf-branch compost cuti-

nase (LCC) and polyester hydrolase (PE-H) mutants, by Corynebacterium glutam-

icum. We developed a fully automated screening process and constructed an ac-

companying Bayesian statistical modeling framework, which we applied in screenings

for highest activity in 4-nitrophenyl palmitate degradation. In contrast to classical

evaluation methods, batch effects and biological errors are taken into account and

their uncertainty is quantified. Within only two rounds of screening, the most suit-

able signal peptide was identified for each PETase. Results from LCC secretion in

microliter-scale cultivation were shown to be scalable to laboratory-scale bioreac-

tors.

This work demonstrates an experiment-modeling loop that can accelerate early-

stage screening in a way that experimental capacities are focused to the most

promising strain candidates. Combined with high-throughput cloning, this paves

the way for using large strain libraries of several hundreds of strains in a Design-

Build-Test-Learn approach.

Keywords

secretion, high-throughput screening, polyethylene terephthalate hydrolase, Bayesian

statistical modeling, experiment-modeling loop
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1 Introduction

Plastics are widely used for packaging, building and construction among other appli-

cations. In the European Union, Norway, Switzerland and the United Kingdom, 29

million tons of post-consumer plastic waste were collected in 2020. Of this waste,

still 23.4% were sent to landfill, instead of recycling or at least energy recovery

(PlasticsEurope, 2022). The discovery of a PETase from the bacterium Ideonella

sakaiensis in 2016 has strongly promoted research in the field of biotechnological

plastics degradation (Yoshida et al., 2016). Reviews on this topic and subsequent

plastic upcycling can be found elsewhere (Kawai et al., 2019; Taniguchi et al.,

2019; Tiso et al., 2021). Other examples for PETases are the thermostable LCC,

whose mutant ICCG outperforms the I. sakaiensis PETase (Sulaiman et al., 2012;

Tournier et al., 2020). The PETase PE-H from the marine mesophilic bacterium

Pseudomonas aestusnigri in contrast shows higher activity at lower temperatures

already. The rationally engineered PE-H mutant Y250S is also able to hydrolyze

polyethylene terephthalate (PET) film substrates from PET bottles (Bollinger et al.,

2020). Both PETases are presumably secreted by their native host mediated by a

signal peptide (Bollinger et al., 2020; Sulaiman et al., 2012).

Since it is not possible to predict a suitable combination of a signal peptide and

target protein for the selected host for heterologous protein secretion, a set of com-

binations have to be tested (Brockmeier et al., 2006; Degering et al., 2010; Müller

et al., 2022). Such signal peptide screenings can be accelerated using automation,

parallelization and miniaturization by using a microbioreactor integrated into a liquid

handling platform (Hemmerich et al., 2016). Müller et al. (2022) established auto-

mated workflows from strain construction to enable high-throughput screening for

heterologous Sec-dependent secretion with C. glutamicum mediated by B. subtilis

signal peptides. The Gram-positive C. glutamicum is a promising host for protein

secretion because it has been used for decades for large-scale industrial production

of amino acids and other small molecules and has low extracellular protease activity

(Freudl, 2017; Liu et al., 2021; Vertès, 2013). Best performing B. subtilis signal

peptides for heterologous Fusarium solani f. sp. pisi cutinase secretion were identi-

fied using automated workflows (Müller et al., 2022). This cutinase is also able to

degrade amorphous PET, albeit with lower activities than the LCC (Tournier et al.,

2020; Vertommen et al., 2005).

We demonstrate in this study that the workflows for strain construction and, in

particular, secretion screening for B. subtilis signal peptides are transferable to the

LCC mutant ICCG and PE-H mutant Y250S as target proteins. To our knowledge,
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this is the first approach to secrete PETases with C. glutamicum. We have op-

timized and extended the workflow for comparing 24 different strains in one run.

The aforementioned techniques pave the way for generating and testing hundreds

of combinations; experimental design and efficient data analysis thus become in-

creasingly important topics.

Notably, early-stage screening experiments need to reliably reduce the number of

candidate strains before process optimization and validation in laboratory and pilot

scale bioreactors (Hemmerich et al., 2018), even if microbioreactors are used. In

other words, small-scale screenings need to result in a candidate ranking regarding a

key performance indicator (KPI) that is the decision criterion for later stages. These

KPIs often cannot be observed directly, but rather need to be derived using models,

e.g., small regression models (Hemmerich et al., 2018; Neubauer et al., 2013). A

second challenge is the batch-wise screening process, which demands to select, in

the case of this study, 24 variants for each round of cultivation. However, with

the number of potential candidates exceeding this number, many strategies can be

applied, e.g., selecting the same number of replicates for each strain and distribute

them randomly over batches or performing a pre-screening with few replicates before

investigating the top x-percent in more detail. Especially if experiments are prone

to batch effects between runs, the experimental design decisions become more and

more complex. Moreover, experimental capacity needs to be focused to the most

promising candidate strains to obtain exact KPIs with low uncertainty, while low

performers need to be immediately sorted out, not wasting unnecessary replicate

experiments on them.

Generally, these challenges constitute a classical exploration-exploitation tradeoff:

First, a detailed examination of all variants as much as possible could be aimed

at, which corresponds to the goal of exploration (i.e. choosing new variants).

Second, expensive or time-intensive experiments may require maximizing the ex-

ploitation (i.e. choosing known variants) in such a way that a greedy algorithm

would choose the candidate with the so far highest mean KPI to make use of the

obtained knowledge (Russo et al., 2018). For an efficient screening, both objectives

need to balanced to make sure that novel variants are explored but no replicates

are wasted for unpromising candidates that have little probability to outperform the

others. A heuristic to balance this exploration–exploitation trade-off is Thompson

sampling (Thompson, 1933), which recently gained popularity in various fields due

to its simple implementation and good efficiency (Agrawal & Goyal, 2012; Chapelle

& Li, 2011). The broad range of applications include the exploration of chemical

design spaces (Hernández-Lobato et al., 2017), mobile health applications (Tomkins
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et al., 2021) or real-time content selection for web pages (Hill et al., 2017).

In this paper, we present a model-based screening strategy to obtain the KPIs and

apply probability-based decision making. We make use of a Bayesian process model

that accounts for various experimental effects such as pipetting errors or batch ef-

fects between different cultivations. The probability distributions for the KPIs are

the basis for Thompson sampling, which we use to suggest replicates to be cul-

tivated in sequential batch cultivation rather than in the same batch cultivation.

Together with the aforementioned automation workflow, this study presents an ef-

ficient screening of signal peptides for secretion of two PETases by C. glutamicum

and demonstrates how the interaction of experiment and model in a Design-Build-

Test-Learn (DBTL) (Carbonell et al., 2018; Pouvreau et al., 2018) approach can

enhance early bioprocess development. This versatile approach can be universally

applied to other secretory target proteins of interest and signal peptide libraries of

larger sizes from various species.

2 Methods

2.1 Cultivation media and strains

C. glutamicum ATCC 13032 (Kinoshita et al., 1957) was cultivated at 30 ◦C in

CGXII (Unthan et al., 2014) or brain heart infusion (BHI) medium. Cultivation in

flasks was done in baffled flasks with a filling volume of 0.1x flask volume and a

shaking diameter of 25mm. For cultivation on plates, 10 g L−1 agar were added to

BHI medium with additional 91 g L−1 d-sorbitol. Media were supplemented with

30 µgmL−1 kanamycin. E. coli strains DH5α and TOP10 (both Thermo Fisher

Scientific, USA) were used for DNA cloning and cultivated in lysogeny broth (LB)

with Miller’s modifications (Miller, 1972) and 50 µgmL−1 kanamycin at 37 ◦C. Solid

LB was prepared with additional 15 g L−1 agar-agar.

2.2 Preparation of PETase secretion strains

C. glutamicum strains with pCMEx8-based secretion of PE-H mutant Y250S or

LCC mutant ICCG mediated by B. subtilis signal peptides were prepared as de-

scribed elsewhere (Müller et al., 2022). All plasmids used in this study are listed

in the supplementary Table S1. Briefly, the signal peptide sequence of B. sub-

tilis yncM in pCMEx8 was exchanged by cassette mutagenesis (Wells et al., 1985).

Oligonucleotides were purchased from Eurofins (Germany, supplementary Table S2),
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hybridized and ligated with NdeI/EcoRI-digested pCMEx8 to generate plasmids

pCMEx8-[SP2] with SP2 = 10 different B. subtilis signal peptide sequences. Syn-

thetic PETase genes lccICCG and pe-hY250S were provided by Synbio Technologies

(USA) in pUC57-based plasmids and cloned into plasmids pCMEx8-[SP1] (Müller

et al., 2022) and pCMEx8-[SP2] by Golden Gate assembly. After sequence veri-

fication by Eurofins (Germany), C. glutamicum ATCC 13032 was transformed by

electroporation as previously described (van der Rest et al., 1999).

2.3 Determination of cell density

The optical density (OD) was measured at 600 nm. 0.9% (w/v) NaCl solution was

used as a blank and for sample dilution to fit OD 0.1–0.3 in the linear range. For

cell dry weight determination, weighed 1.5mL reaction tubes were dried at 90 ◦C

for 24 h and put into a desiccator. 1.5mL cultivation samples were transferred

into these reaction tubes and centrifuged at 21 500×g and 4 ◦C for 10min. The

supernatant was discarded, cells were washed with 0.9% (w/v) NaCl and dried at

90 ◦C for 24 h before weight determination.

2.4 Strain maintenance

Strain master cell banks were prepared in BHI medium inoculated from a single

transformant. After overnight incubation at 30 ◦C and 250 rpm, 750 µL culture

were mixed with 750 µL 100% (w/v) glycerol in a cryogenic vial to a final glycerol

concentration of 50% (w/v). For working cell banks, 3.5mL CGXII per well of a

Riplate® SW 10mL 24 Wells plate (Ritter, Germany) were inoculated with 100 µL
of a respective master cell bank and incubated overnight at 30 ◦C and 900 rpm. After

centrifugation for 5min at 2 000×g, the supernatant was discarded and cells were

washed with 1.5mL fresh CGXII. Cells were resuspended in 3.5mL fresh CGXII

medium and incubated for 5 h at 30 ◦C and 900 rpm. 100 µL culture was mixed

with 100 µL 50% (w/v) glycerol in a 96-well microtiter plate (MTP). The MTP

was sealed with aluminium foil and stored at −80 ◦C. For bioreactor cultivations,

additional working cell banks were prepared in flasks. 50mL CGXII were inoculated

with 250 µL of a master cell bank and incubated for around 15 h at 250–300 rpm

at 30 ◦C with online biomass monitoring (SFR vario, PreSense Precision Sensing,

Germany). Cells were harvested in the late exponential phase by centrifuging with

9 283×g for 5min. Sedimented cells were resuspended to an OD 60 with 0.9%

(w/v) NaCl and 2x diluted with 50% (w/v) glycerol. 1mL aliquots were stored in
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cryogenic vials at −80 ◦C.

2.5 High-throughput PETase secretion screening

High-throughput PETase secretion screenings were conducted using a Tecan Free-

dom EVO® robotic platform with washable fixed tips made of stainless steel and

coated with polytetrafluoroethylene (PTFE). The robotic platform includes an in-

tegrated BioLector® Pro microcultivation device (Beckman Coulter), centrifuge

(Rotanta 460 Robotic, Hettich), cooled sample storage (cooling carrier connected

to a Microcool MC 600, Lauda) and microplate reader (Infinite® M Nano, Tecan).

A 96-well MTP with cryo-conserved cultures and CGXII medium in a trough were

placed on deck of the robotic platform. For pre-cultures, 760 µL CGXII was trans-

ferred to 10–24 wells of a FlowerPlate® with pH and DO optodes covered with a

gas-permeable sealing foil with perforated silicone layer for automation (Beckman

Coulter). 40 µL of each cryo-conserved culture was used to inoculate one of the

pre-culture wells. Remaining cryo culture wells in the MTP not used for pre-culture

were discarded.

Standard cultivation conditions were 30 ◦C, 1 400 rpm and ≥85% relative humidity

with measurement of backscatter, pH and DO every 13min. Data from BioLec-

tor online measurements was parsed during the cultivation using the bletl package

(Osthege et al., 2022a, 2022b). For full automation of the process, backscatter-

triggered inoculation and induction as well as time-triggered sampling are managed

by worklists written with the robotools package (Osthege & Helleckes, 2021) and

executed by a device control system developed by M. Osthege and J. Hemmerich

(Forschungszentrum Jülich GmbH, in preparation).

As soon as a pre-culture exceeded a certain device-dependent backscatter threshold

in the exponential phase, wells for one or three main cultures were filled with 780 µL
CGXII and inoculated with 20 µL of the respective pre-culture. Target protein ex-

pression in the main cultures was induced by addition of isopropyl-β-d-thiogalactopy-

ranoside (IPTG) to a final concentration of 500 µm triggered by a device-dependent

backscatter signal in the early exponential phase. Cells were harvested 4 h after in-

duction by centrifugation for 6min at 3 756×g and 4 ◦C. Supernatants were stored

in a 1mL deep well plate on a cooling carrier until all cultivations were finished for

subsequent cutinase activity assay. A scheme for the screening workflow with 24

pre-cultures and 24 main cultures is depicted in Fig 1.

For the second round of LCC screening, in which only two different signal peptide

variants were chosen by the algorithm described in Section 2.10, the design was
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changed to the workflow described by Müller et al. (2022) in order to require less

cryo cultures and increase the number of main cultures. Here, only the twelve wells

in the outer columns were used for pre-culture cultivation. The remaining 36 wells

were used for main culture cultivation in triplicates inoculated from respective pre-

cultures.

2.6 Bioreactor cultivation

A pre-culture of 50mL CGXII medium in a baffled flask was inoculated from a

cryo-conserved C. glutamicum PETase secretion strain. Cells were incubated for

16 h at 30 ◦C and 300 rpm with online biomass monitoring (SFR vario, PreSense

Precision Sensing, Germany) until the late exponential growth phase. After cen-

trifugation at 9 283×g for 5min at 4 ◦C, cells were resuspended in 0.9% (w/v) NaCl.

The main culture was carried out in four parallel 1.5 L DASGIP® bioreactors equipped

with two Rushton-type impellers (6 blades, 1 cm height, 3 cm distance). Included

DASGIP® modules were TC4SC4 for temperature and agitation control, PH4PO4

for control of DO and pH, MF4 for mass flow controlled gassing, MP8 for control

of feed flow rates and GA4 exhaust analyzer. DO was measured with VisiFerm

DO 225 optical probe and pH with 405-DPAS-SC-K8S electrodes. Deviating from

the standard CGXII medium with 20 g L−1 glucose, 3-(morpholin-4-yl)propane-1-

sulfonic acid and urea were omitted in bioreactor CGXII medium and 50 µgmL−1

kanamycin as well as an appropriate amount of Antifoam 204 (Sigma-Aldrich, USA)

were added. 1 L CGXII in a bioreactor was inoculated to an OD of 0.3 from a re-

spective pre-culture, and cells were incubated in batch mode at 30 ◦C. The DO was

kept ≥ 40% with a constant air flow rate qin = 1 vvm by adjusting the agitation

speed n = 400–1 500 rpm. The pH was adjusted to pH 7 with 18% (w/w) NH4OH

and 30% (w/w) H3PO4.

PETase secretion was induced around OD 1 by adding IPTG to a final concentra-

tion of 200 µm. If necessary, further sterile Antifoam 204 (Sigma-Aldrich, USA) was

added. Samples for measuring OD, cell dry weight and activity assay were taken

after inoculation as well as at six time points over the course of the fermentation

(see supplementary information).
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2.7 Cutinase activity assay

Activity of PETases in cultivation supernatant samples was determined spectropho-

tometrically by degradation of 4-nitrophenyl palmitate as a substrate analogue (Win-

kler & Stuckmann, 1979) as described by Müller et al. (2022). Briefly, 9 parts reac-

tion buffer (2.3 g L−1 Na-desoxycholate, 1.1 g L−1 gum arabic in 50mm potassium

phoshate buffer, pH 8) were mixed with 1 part 3 g L−1 4-nitrophenyl palmitate in

2-propanol. 200 µL were filled into MTP wells and pre-warmed to 37 ◦C. Super-

natant samples were appropriately diluted with 50mm potassium phosphate buffer

pH 8 (72x for BioLector samples and 12x for bioreactor samples). 40 µL diluted

supernatant were pipetted into two wells filled with the reaction mix for technical

duplicates. 4-nitrophenol formation was measured at 410 nm and 37 ◦C for 40min

in a microplate reader.

40 µL 0–2.3mm 4-nitrophenol were mixed with 200 µL reaction mix in triplicates (fi-

nal concentration 0–0.38mm) and absorption was measured to convert absorption

into product concentration.

In the traditional data analysis, enzymatic activities in UmL−1 were calculated

in relation to the assay volume with the absorption A410 in a.u., slope of the 4-

nitrophenol standard mstandard in a.u.mm−1 and the unitless supernatant dilution

factor DF (Eq 1). 95% confidence intervals were calculated with t values from

replicates.

EA = ∆A410 ·
1

mstandard
· DF (1)

2.8 Software

All analyses and plots presented in this study were performed with recent versions

of Python 3.8, PyMC ≥4.0.0b2 (Wiecki et al., 2022), ArviZ ≥0.11.4 (Kumar et al.,

2019), matplotlib ≥3.5 (Hunter, 2007), NumPy ≥1.20 (Harris et al., 2020), pan-

das ≥1.3 (McKinney et al., 2010; Reback et al., 2021), SciPy ≥1.7 (Virtanen et al.,

2020) and related packages. For calibration models, the in-house developed, pub-

licly available calibr8 package was used with versions ≥6.2.1 (L. M. Helleckes et al.,

2022; Osthege & Helleckes, 2022). For parsing of BioLector data, the bletl pack-

age (Osthege et al., 2022a, 2022b) was applied. Photometric measurement were

analysed using the in-house developed retl package (not published). The robotools

Python package was used to facilitate multi-step liquid-handling instructions on the

robotic platform (Osthege & Helleckes, 2021). For a full list of dependencies see

the accompanying GitHub repository (L. Helleckes & Osthege, 2022).
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2.9 Process model

With the term process model, we refer to a model describing the enzymatic assay

and the experimental effects influencing it, rather than a description of the unit op-

erations in cultivation and analytics. The process model constructed in this paper is

a Bayesian hierarchical model build with the PyMC Python package. Accordingly,

prior distributions were chosen for each parameter of the model. A graphical repre-

sentation can be found in Fig 2.

Starting in the lower left, the measured product absorbance in the cutinase assay

is evaluated against the modeled concentration using a customized likelihood. For

this, we used a calibration model that was fitted with the calibr8 Python pack-

age (L. M. Helleckes et al., 2022), assuming a linear relationship between product

absorbance and concentration and a Student-t-distributed measurement noise. A

plot of the fitted calibration model can be found in the appendix.

The product concentration during the assay was assumed to follow a first order

mass action law, such that

Pt = S0 ·
(
1− e(−kassay·t)

)
, (2)

with Pt as the product concentration at time t, S0 as initial substrate concentration

and kassay as the rate constant.

An additional absorbance offset was observed at the beginning of each measure-

ment, which could not be explained with the offset obtained from the calibration

model. It was therefore modeled by the parameter absorbance intercept. While

kassay is the parameter that is observed in each reaction well in the MTP, the KPI of

interest for the strain ranking is the actual rate kstrain of each variant. However, we

found several biological and technical effects that influence this rate constant, e.g.,

an effect of the position in the assay MTP (assay effect), which is further dis-

cussed in Section 3.1. Moreover, variance between batch runs, for example caused

by small differences in viable cells in cryo cultures, as well as the pipetting error of

robotic liquid handling are taken into account.

A mathematical notation of the model can be found in the supplementary informa-

tion. Additionally, the code for the process model can be found on the accompanying

GitHub repository.

Posterior probability distributions, according to Bayes theorem, are calculated using

probability distributions for prior beliefs as well as the likelihood. In this work, they

were obtained by Markov chain Monte Carlo sampling, using the No-U-Turn sam-

pler (Hoffman, Gelman, et al., 2014) in PyMC. For a more detailed introduction on
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Bayesian methods, we refer the reader to van de Schoot et al., 2021. Convergence

checks and inspection of the traces were performed using ArviZ.

2.10 Thompson sampling for experimental design

As described in Section 2.9, the reaction kinetics of PETases in the cutinase activity

assay are modeled by a first order mass action, where kstrain is the rate constant of

each strain in this reaction. The model inherently assumes that the reaction rate is

proportional to the amount of secreted enzyme, thus k was chosen as the KPI for

a strain ranking. The posterior probabilities after each cultivation round were used

as the basis for Thompson sampling. In this process, a batch of strain replicates for

the following round was drawn by parallel Thompson sampling (Kandasamy et al.,

2017) using the sample batch function from the pyrff package (Osthege & Felton,

2020) and then randomly assigned to pre-culture wells in the FlowerPlate®. The

obtained process data was then used to re-run the process model to obtain posterior

probabilities of KPIs for the next round and so on.

3 Results and Discussion

3.1 Model building and experimental learning

An essential part of the screening workflow is the Bayesian process model described

in Section 2.9. Before applying the process model to the LCC and PE-H secretion

strain libraries, the influence of different experimental effects was investigated and

an iterative cycle of model building and experimental improvements was performed.

In the following, two findings of this workflow improvement are highlighted: first,

the choice of the reaction kinetics is explained, second, a bias in the detected ac-

tivities caused by the position of samples in the assay MTP is detailed.

In previous studies (Hemmerich et al., 2018; Müller et al., 2022), the slope of absorp-

tion in the cutinase activity assay has been used to calculate enzymatic activities.

Therefore, a process model assuming linear reaction kinetics was constructed first

(Fig 3a and c). Fig 3a shows the trajectory of absorbance value over the incubation

time of 40min for the LCC combined with LipB as a signal peptide, a variant with

a comparably high activity (see Fig 8). After 35min assay reaction time, the model

significantly deviates from the measurements, which is also evident from the lack-

of-fit indicated in the residual plot (Fig 3a and c). The trajectory indicates that

the lower substrate concentration seems to limit the reaction rate towards the end

11



of measurement. Therefore, the kinetics was changed to a first order mass action

law (Fig 3b and d). This exponential trajectory describes the kinetics with a lower

lack-of-fit (Fig 3d). The first order kinetics were thus chosen in the final process

model.

As part of model building, the influence of pipetting errors, batch effects and posi-

tional effects was investigated within the different MTPs of the automated screening

workflow (Section 2.5). Fig 4 shows one finding, namely a positional effect, where

all 8 wells in the first column of the 96-well MTP show a systematically lower activ-

ity of the PETases (Section 2.9). The plot includes the median (white dot) as well

as intervals of 94% probability (whiskers) for the parameter assay effect in all 12

columns of the assay MTP. A value of 1 indicates that the respective column has no

influence on the activity, values smaller and greater than 1 correspond to lower and

higher activities caused by the position in the MTP. The probability distributions

are deduced from replicate data of the same signal peptide which lie in different

columns. Fig 4a shows the assay effect before experimental optimization. Here, it

can be seen that wells in the first column show systematically lower activities with

a median of around 0.85. However, the probability distribution interval of the first

column is similar to all other columns, indicating that all wells of this column are

affected in the same manner. With this feedback from the model, the experimental

workflow of the cutinase activity assay was re-examined.

The robotic liquid handler uses fixed tips, which distribute the substrate solution

column-wise. The substrate solution dispense step of the last column is followed

by a washing step with water to clean the needles and to prevent carry-over of

substrate. However, dispense of the substrate in the first column was done with

needles that were not conditioned with the organic substrate solution. Since the

pipettes were not wetted initially, the first column contained slightly less substrate.

Wetting of the PTFE coating of the stainless steel tips with the organic substrate

4-nitrophenyl palmitate diminished the positional effect of the first column. The

experimental procedure was thus changed to include a step of tip wetting before

the substrate is distributed into the assay MTP. The improved result can be seen

in Fig 4b.

After optimization, the positional effect of the first column was resolved and the pos-

terior probabilities of the parameter assay effect are now similar for all columns.

The prior for the assay effect is fassay effect ∼ LogNormal(µ = 0, σ = 0.1), which

was chosen to allow for fluctuation of the activity around 20%. The highest density

interval containing 94% of the prior probability mass is approximately [0.83, 1.21].

Overall, the distributions for all columns fluctuate in a similar range, with the me-

12



dian close to 1. This shows that the remaining certainty in the parameter assay

effect is now reflecting random noise, rather than the systematic bias that was

previously seen due to the positional effect. This shows that the assay effect was

strongly reduced by the improvements of the pipetting operation and it can be ne-

glected in the process model for future experiments.

To conclude, the examples show that the Bayesian process parameters are easy to

interpret, since they mimic experimental errors. The width of their probability dis-

tributions can give an insight on how well the respective effect is characterized by

the observed data. The analysis can also point out experimental sources of error

and targets for workflow improvements, as it was demonstrated for the parameter

assay effect. It was thus shown how the process model can guide experimental

developments in an iterative cycle, where experimental improvements can simplify

the required process model. An additional influential factor, namely a batch effect

between different cultivation rounds, is discussed in section Section 3.3.

3.2 Screening of PE-H

After the successful strain construction of the C. glutamicum variants secreting

the PETases PE-H mutant Y250S and LCC mutant ICCG mediated by 24 differ-

ent B. subtilis signal peptides, secretion performance was examined. It has to

be noted here that enzymatic activities and reaction kinetics are determined as

4-nitrophenyl palmitate hydrolytic activities rather than PET degradation. Never-

theless, the degradation of 4-nitrophenyl palmitate is a valid measure to compare

the secretion performance between different signal peptides for the secretion of the

same enzyme. However, secretion performance cannot be compared in absolute val-

ues regarding PET hydrolysis. This is due to the structural differences of the LCC

and the PE-H (Bollinger et al., 2020; Sulaiman et al., 2014), which is why they

can presumably convert the 4-nitrophenyl palmitate substrate to different extents.

Moreover, for method development, which is the actual focus of this work, it is

helpful to use an already established and automated activity assay for the detection

of secreted target proteins.

Firstly, the process model was applied to the strain library of 24 signal peptides

combined with the PE-H mutant Y250S. In order to facilitate the process of model

building and assess model parameters such as the batch effect, the first round

of screening consisted of two batch cultivations as described in Section 2.5. In

each batch cultivation, all 24 variants were cultivated, resulting in 24 main cultures

which were automatically inoculated from the respective 24 pre-cultures, induced
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with IPTG and harvested. The supernatant of each culture was subjected to the

cutinase activity assay in duplicates (Section 2.7). Accordingly, the two batch cul-

tivations led to four replicates for activity measurements per variant, which were

simultaneously analyzed with the process model. In the following, the combined

analysis of these two batch cultivations is always referred to as round 1.

As a KPI for finding the most suitable signal peptide for PE-H secretion, the rate

constant k of the first order reaction kinetics (Section 2.9) was chosen. The more

active enzyme is present in the supernatant, the higher the rate constant k of the

variant. The resulting probability of the KPI for round 1 is depicted in Fig 5a.

The plot reveals that more than half of the signal peptides lead to a low rate con-

stant, indicating that little active enzyme was present in the supernatant. This can

be the consequence of either low overall secretion or misfolding and thus inactive

enzyme. Strikingly, four technical replicates are enough to distinguish these un-

promising candidates from the remaining top 6 B. subtilis signal peptides, namely

YpjP, YolA, Pel, LipA, YoaW and Mpr. Biological as well as technical errors such

as the pipetting, which are taken into account by the model, cause uncertainty in

the estimation, which is reflected by the broad distributions for k for the best signal

peptides. For example, the 94% probability range (highest density interval) of the

rate constant k for variant YpjP lies between [0.53, 1.09] 1
min . The distributions

shown here are the basis for the Thompson sampling algorithm to draw variants for

the next cultivation round. To understand this process, the probability for each vari-

ant to be the best signal peptide so far was calculated as described in Section 2.10.

The results are shown in Fig 6a.

After the first round of two biological replicates per variant with four technical repli-

cates of the assay, only four signal peptides have a probability significantly greater

than zero to be the best performing one. This demonstrates the exploitation part of

Thompson sampling. Since the process model can clearly distinguish low performing

variants from the top ones, they have no chance to be chosen for the next rounds.

However, exploration is still necessary to distinguish the top four variants. Within

these, YpjP has the highest probability of being the best signal peptide at around

46%. It is followed by YolA with around 30%, Pel with around 22% and LipA with

less than 2%. For comparison, using C. glutamicum and the same plasmid expres-

sion system for secretion of a heterologous cutinase resulted in very poor secretion

performance for the B. subtilis signal peptides from Pel and YpjP(Müller et al.,

2022). These results confirm that the selection of an appropriate signal peptide is

heavily dependent on the target protein.

As indicated by the text in subplot a, the choice for the next round reflects the
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probabilities of a signal peptide being the best, while small deviations in the ratio

are caused by the small batch size of only 24 main culture wells. The whole screen-

ing workflow was conducted a second time with the respective replicates. Fig 6b

shows the results after the second screening round. With overall 28 replicates from

three batch cultivations, YpjP shows the highest probability of around 80% to be

the best signal peptide, while YolA, Pel, LipA and Mpr show significantly lower

probabilities smaller than 10%. The resulting probability distributions for the KPIs

can be seen in Figure Fig 6b. For comparison, in a strategy with equal numbers

of replicates per signal peptide, it would have taken 14 rounds of cultivation and

thus more than four times longer to obtain the same certainty about the KPI for

the most suitable signal peptide YpjP for PE-H secretion. This shows the efficiency

of combined process model and Thompson sampling algorithm.

3.3 Screening of LCC

For signal peptide screening for secretion of the LCC mutant ICCG, the same strat-

egy was used as for the successful screening with the secretory PE-H target protein.

The first round comprised four technical replicates per variant accordingly, while

the second was composed of suggestions from Thompson sampling. The resulting

rankings after each round concerning the rate constant k are shown in Fig 7.

Again, compared to the heterologous secretion of the F. solani f. sp. pisi cutinase

(Müller et al., 2022) or to the PE-H, two other signal peptide sequences, namely

those of LipA and LipB, led to the highest extracellular LCC activities. All other

signal peptides showed significantly less activity in the enzyme assay, more precisely

less than half the rate constant. These results highlight the need to determine an

appropriate signal peptide sequence for each target protein and thus the potential

for combining automation and process models with Thompson sampling for accel-

erated screening. Moreover, it can be seen for round 1 (Fig 7a) that the activities

after secretion mediated with signal peptides LipA and LipB were very similar when

taking measurement uncertainties into account, where the median (white dot) of

LipB is slightly higher.

For round 2 (Fig 7b), Thompson sampling selected to an equal amount of repli-

cates accordingly. With these data, the variants can be separated to a higher

extend, where LipA shows a higher median in the probability distribution for k.

Moreover, the higher number of replicates lead to narrower intervals of 95% proba-

bility (whiskers) compared to round 1. Although the variants other than LipA and

LipB were not measured in round 2, their distributions are wider than before. This
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is caused by the the parameter batch effect of the process model (Section 2.9),

which assumes an experimental error between different biological replicates in differ-

ent rounds. Between round 1 and round 2, it could be observed that the activities

increased for both LipA and LipB (compare Fig 10 in section Section 3.5) due to an

apparent batch effect. After only one round, no such effect could be assumed and

the width of distributions is thus mainly influenced by deviation between technical

replicates in the assay. However, with the information gained from LipA and LipB

in both rounds, the process model can now account for the batch effect. Since

the other variants were only measured in round 1, but uncertainty is added by the

batch effect, the posterior distributions in Fig 7b are wider. The batch effect will

be further discussed in section Section 3.5.

Taking the probability distributions for k from Fig 7, the question which signal pep-

tide has the highest probability to be the best variant can be answered (Fig 8).

As for the ranking, Fig 8a illustrates that LipA and LipB were very close after

round 1, with LipB having a slightly higher probability to be advantageous con-

cerning secretion. In Thompson sampling, the candidates for the next round are

drawn randomly according to their probability of being optimal based on the avail-

able data.Here, probabilities of LipA and LipB are close to 50%, which results in 18

main cultures of each variant being suggested for round 2.

Fig 8b shows the results after analysis of all 22 technical replicates of LipA and

LipB after two rounds. Although the measurements were very similar for both vari-

ants (see classical statistical analysis in Section 3.5), the pairwise comparison of

posterior samples results in a probability of around 75% that LipA is the best signal

peptide. This shows the advantages of the process model, as no distinction between

LipA and LipB could be seen in the classical statistical analysis. Importantly, the

previously discussed positional effects and the batch effect between round 1 and 2

are taken into account, assuring that the rate constant k of the secreted enzyme is

the dominant factor in the ranking. To investigate whether the screening is repre-

sentative for pre-selection of variants, both LipA and LipB, as well as the third-best

variant YoaW, were chosen for a scale-up application.

3.4 Comparison with batch fermentation in liter-scale biore-

actors

In order to examine the scalability of the microcultivation process and to validate the

results, C. glutamicum was cultivated in laboratory-scaled stirred-tank reactors with

1 L working volume. LCC secretion mediated by the best B. subtilis signal peptides
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from microcultivation in the BioLector, i.e., LipA, LipB and YoaW, were compared

with laboratory-scale cultivation data depicted in the supplementary information

(Figs S1 and S2). Maximum oxygen transfer rates of almost 100mmol L−1 h−1

were reached after approximately 12 h and the final cell dry weights were around

9.1–9.6 g L−1. The probability distributions of the rate constant k between the

microliter- and liter-scale are compared in Fig 9.

The laboratory bioreactor data (red) show a similar ranking for the LipA and LipB

signal peptides with YoaW approximately 40% behind. In comparison to the first

BioLector run (blue), the laboratory-scale bioreactor data shows a very similar per-

formance ranking. Thus, protein production with C. glutamicum could be trans-

ferred from the shaken cultivation in the BioLector in microliter-scale to the 1 L

stirred tank reactor in the liter-scale, as demonstrated elsewhere for cutinase secre-

tion by C. glutamicum (Rohe et al., 2012). However, uncertainties are higher for

LipA and LipB in the liter-scale bioreactor despite the equal number of biological

replicates (n = 2). The higher uncertainty is likely to be caused by the different

scheme of sampling. While all BioLector experiments were sampled 4 hours after

induction, which corresponds to the early stationary phase, the fermentation was

sampled at six different time points before and after induction. Due to different

growth behaviors at the two scales, samples cannot be compared at the exact same

process time. However, it is possible to take samples in identical growth phases.

Accordingly, all available time points in the stationary phase were used for analysis

of liter-scale bioreactor data. In case of LipA and LipB, these correspond to 22, 25

and 26 h process time (see supplementary information). The combination of three

different sampling points with slightly different activities is likely to account for the

higher uncertainty in the estimated rate constant k of LipA and LipB.

For the YoaW signal peptide, which was measured with four biological replicates in

the bioreactor, the uncertainties are more similar to those of BioLector replicates.

Moreover, only one time point lied within the stationary phase, which was after

23.5 hours process time. This also suggests that the different time points have

an influence on the uncertainty. In the future, a time-dependent analysis for the

activity could be conducted for both scales. However, the obtained results for the

rate constant k are in good accordance for different scales. This demonstrate the

advantage of the high-throughput approach, which is representing the larger scale

well.

The probabilities in Fig 9 shown in green are the results of combining round 1

of microliter-scale cultivation and the liter-scale bioreactor data with BioLector

round 2, where additional 18 biological replicates of LipA and LipB were mea-
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sured. In contrast to the other probabilities, rate constants k for LipA and LipB can

be better distinguished in the combined case. Moreover, a batch effect becomes

evident, which can be detected from the higher overall median in the combined

case. This is caused by overall higher activities in BioLector round 2, which are

further discussed later in this section.

Overall, the scale-up shows that a large number of replicates is necessary to see

differences of strain variants with a very similar secretion performance. This is of-

ten not feasible in laboratory-scale cultivations due to the higher costs and efforts.

For this purpose, microliter-scale cultivations are beneficial as they allow for a large

number of replicates and thus a better resolution of very similar variants.

3.5 Comparison to linear regression analysis

As a final validation of the method, a classical statistical analysis by linear regression

of the absorbance measurements was conducted as described in Section 2.7 (Fig 10).

After the first round, LipA (dark blue) and LipB (light blue) cannot be distinguished,

which can be seen by the overlapping 95% confidence intervals between the variants.

While the activities are still similar between the variants in the second round, the

higher number of replicates leads to smaller confidence intervals and indicates that

LipA is the better signal peptide. However, the large batch effect between round 1

and round 2 for both variants makes it difficult to combine the results of both rounds

in a purely statistical analysis. A main challenge is that technical and biological error

could not be separated if all data are pooled for the linear regression, leading to

large confidence intervals that do not allow to distinguish the variants. This is

important though to exclude that LipA is favored by positional or batch effect in

the second round. Batch effects most likely result from the activity assay and not

from the cultivation, since differences in cryo culture viability are compensated by

backscatter-triggered individual inoculation of the main cultures and induction of

target protein expression and secretion (Müller et al., 2022). In the activity assay, the

reaction mix has a limited stability only (Hemmerich et al., 2018). Although directly

prepared before each assay, the reaction mix could impact enzymatic 4-nitrophenyl

palmitate degradation due to minor deviations in the composition and the poor

solubility of the organic substrate. Here, the process model proves advantageous,

since the uncertainty can be assigned to several experimental and biological effects

and the data from different rounds can inform the probability of both, batch effects

and pipetting errors. Using the process model we determined a probability of around

75% for LipA being the best signal peptide (see Fig 8). Overall, this demonstrates
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how the approach sampling can lead to more insight and faster screening and is

thus promising for large libraries.

4 Conclusion

To our knowledge, Sec-dependent secretion of the heterologous PETases LCC mu-

tant ICCG and PE-H mutant Y250S could be shown for the first time using C. glu-

tamicum as a secretion host. Utilizing our automated workflows for high-throughput

screening and the accompanying modeling, the best suitable out of 24 B. subtilis

Sec-type signal peptides was identified within two rounds of screening only. Even

strain variants that were indistinguishable with classical methods due to batch ef-

fects could be resolved. The successful transfer from shaken cultivation in the

BioLector to 1 L stirred tank reactors demonstrates the scalability of the secretion

screening results.

Combined with the automated workflows for high-throughput cloning, this paves

the way for screening of hundreds of strains or different process conditions in the

DBTL cycle. Especially for application examples with much increased design space,

where screening of all variants in multiple replicates becomes infeasible due to re-

strictions of resources in terms of both time and cost, model-based decision making

as presented in this study is a valuable addition to the experimental high-throughput

platforms.

In the future, the process model could be further extended by process conditions

such as temperature. By solving these complex optimization problems such as strain

and process conditions, our modeling approach can become an even more powerful

tool to tackle the exploration–exploitation dilemma even in expanded design spaces

in the future.
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Figure legends

Figure 1: Screening workflow for 24 pre- and main cultures. Pre-cultures are in-
oculated from cryo cultures frozen in MTPs. Upon reaching a certain backscatter
level, 20 µL of the respective pre-culture was used to inoculate a main culture in the
adjacent well. IPTG induction was triggered by backscatter in the early exponential
phase. Harvesting of cells and centrifugation took place after 4 h. Samples were
duplicated in a MTP for usage in the cutinase assay.

Figure 2: Graphical representation of the process model. The KPI used for ranking
is the rate constant of each strain, kstrain (upper right).

Figure 3: Comparison of linear (a, c) and exponential (b, d) model for reaction
kinetics in wells E04 and E10 of PE-H screening in round 1. Plots c and d show the
residuals between data and model fit. The density bands visualize the distribution
of predicted absorbance by the model.

Figure 4: Influence of position in assay MTP before (a) and after (b) experimental
optimization of the assay. The probability distributions of the assay effect for each
column is shown. An assay effect of 1 indicates that the position has no influence
while smaller and higher values indicate a negative and positive influence on the
activity, respectively.

Figure 5: Posterior probability distributions of rate constant k for each signal peptide
variant of PE-H after round 1 (a) and round 2 (b).

Figure 6: Probability for each signal peptide to be the best variant for PE-H secretion
after first and second round of screening.

Figure 7: Probability distributions of rate constant k for each signal peptide variant
of LCC after round 1 (a) and round 2 (b).
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Figure 8: Probability for each signal peptide to be the best variant for LCC secretion
after first (a) and second (b) round of screening.

Figure 9: Comparison of LCC rankings after microliter-scale BioLector cultivation
1, fermentation in liter-scale bioreactors and the combined analysis of all BioLector
and fermentation runs.

Figure 10: Results for LipA (dark blue) and LipB (light blue) for two rounds of
screening with classical data analysis by linear regression. Error bars represent the
95% confidence intervals. The number of replicates refers to the technical replicates.
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