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Abstract

Population dynamics with complex biological interactions, accounting for uncertainty quantification, are critical for many

application areas. However, due to the complexity of biological systems, the mathematical formulation of the corresponding

problems faces the challenge that the corresponding stochastic processes should, in most cases, be considered in bounded

domains. We propose a model based on a coupled system of reflecting Skorokhod-type stochastic differential equations with

jump-like exit from a boundary. The setting describes the population dynamics of active and passive populations. As main

working techniques, we use compactness methods and Skorokhod’s representation of solutions to SDEs posed in bounded

domains to prove the well-posedness of the system. This functional setting is a new point of view in the field of modelling and

simulation of population dynamics. We provide the details of the model, as well as representative numerical examples, and

discuss the applications of a Wilson-Cowan-type system, modelling the dynamics of two interacting populations of excitatory

and inhibitory neurons. Furthermore, the presence of random input current, reflecting factors together with Poisson jumps,

increases firing activity in neuronal systems.
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Summary

Population dynamics with complex biological interactions, accounting for uncer-
tainty quantification, are critical for many application areas. However, due to the
complexity of biological systems, the mathematical formulation of the correspond-
ing problems faces the challenge that the corresponding stochastic processes should,
in most cases, be considered in bounded domains. We propose a model based on a
coupled system of reflecting Skorokhod-type stochastic differential equations with
jump-like exit from a boundary. The setting describes the population dynamics of
active and passive populations. As main working techniques, we use compactness
methods and Skorokhod’s representation of solutions to SDEs posed in bounded do-
mains to prove the well-posedness of the system. This functional setting is a new
point of view in the field of modelling and simulation of population dynamics. We
provide the details of the model, as well as representative numerical examples, and
discuss the applications of a Wilson-Cowan-type system, modelling the dynamics of
two interacting populations of excitatory and inhibitory neurons. Furthermore, the
presence of random input current, reflecting factors together with Poisson jumps, in-
creases firing activity in neuronal systems.
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1 INTRODUCTION

In recent years, the modelling of population dynamics arising from biological systems offers many challenging questions to
some of the most advanced areas of science and technology. In order to model reliably population dynamics, accounting for
the complexity in the interactions among populations, considering for uncertainty quantification is critical for many application
areas. One of the main challenges is that the corresponding stochastic processes should, in most cases, be considered in bounded
domains. Before studying such stochastic models in detail, the question of well-posedness has to be addressed. There are several
results for stochastic differential equations (SDEs) with reflecting boundary conditions1,2,3,4,5, one of them being the seminal
contribution of Skorokhod in6, where the author provided the existence and uniqueness to one-dimensional stochastic equations
for diffusion processes in a bounded region. A direct approach to the solution of the reflecting boundary conditions and reductions
to the case of nonsmooth domains are reported in7. Extending results by Tanaka, the author of8 proved the existence and
uniqueness of solutions to the Skorokhod equation posed in a bounded domain in ℝd where a reflecting boundary condition
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was applied. In9, the authors studied the strong existence and uniqueness of the stochastic differential equations with reflecting
boundary conditions for domains that might have conners. In addition, the existence, uniqueness and stability of solutions
of multidimensional SDE’s with reflecting boundary conditions were provided in10, where the author obtained results on the
existence and uniqueness of strong and weak solutions to the SDE for any driving semimartingale and in a more general domain.
The models of stochastic differential equations in a bounded domain have been known for a long time and yet, only a few
relevant results are available in the context of population dynamics for the problems posed in confined domains. As far as we
are aware, one of the first questions in this setting was posed in the modelling and simulation study11 while considering the
evacuation dynamics of a mixed active-passive pedestrian populations in a complex geometry in the presence of a fire as well
as of a slowly spreading smoke curtain. From a stochastic processes perspective, various lattice gas models for active-passive
pedestrian dynamics have been recently explored in12 and13. See also14 for a result on the weak solvability of a deterministic
system of parabolic partial differential equations describing the interplay of a mixture of flows for active-passive populations of
pedestrians. In general, the purely diffusive Brownian motion with random fluctuations of continuous sample paths is used to be
assumed as noise in a dynamical system. However, the diffusive fluctuations are large and abrupt events that appear at random
times throughout the time series. Therefore, the description of such diffusive fluctuations is incomplete to demonstrate real
population dynamics, and the jump-diffusion stochastic processes provide a more accurate descriptions for population dynamics
models15,16,17.
Motivated by18,19,20, we are interested in a coupled system of reflecting Skorokhod-type stochastic differential equations with

jumps, modelling the dynamics of active and passive populations. In this paper, we prove the well-posedness of a coupled system
of reflecting Skorokhod-type stochastic differential equations with jump-like exit from a boundary for active-passive population
dynamics. From the modelling perspective, our approach is novel, opening new routes for investigation of population dynamics,
including the computability of solutions and identification of model parameters. Taking the inspirations from the applications
of population dynamics and neuroscience21,22, we provide details of an application of our active-passive population dynamics
model in a Wilson-Cowan-type system describing the dynamics of two interacting populations of excitatory and inhibitory
neurons.

2 MATHEMATICAL MODEL: COUPLED STOCHASTIC PROCESSES IN BOUNDED
DOMAIN

We start from considering the dynamics of active-passive population dynamics. Each population is considered in a one-
dimensional domain, then the whole system will be embeded in a two-dimensional domain, which we refer to as Ω. Let D ⊂ ℝ
satisfies the assumption (A2) in Section 2.3. We denote S = (0, T ) for some T ∈ ℝ+. We refer to D̄ × S as DT , note that D̄
denotes the closure of D.

2.1 Active particle population
Our main focus in the remainder of this section is to find an explicit formula for a solution of the reflection problem, which is
similar to the Skorokhod-like problem but involves the possibility of a jump-like exit from zero. For t ∈ S, fA ∶ DT ←→ ℝ,
and gA ∶ DT × DT ←→ ℝ2, let XA denote the active population at time t. We assume that the dynamics of active population is
governed by the following model (see, e.g.,18,19)

{

dXA(t) = fA(XA(t), XP (t))dt + gA(XA(t), XP (t))dWA(t) + d�A(t) + ∫ℝ �A(XA(s), y)�(dy, ds)
XA(0) = XA,0,

(1)

where �A is a measurable function such that �A ∶ ℝ → ℝ,WA = (WA(t))t∈[0,T ] is a two-dimensional standard Brownian motion,
while � is a Poisson random measure with finite jump intensity, associated with a scalar compound Poisson process (clarified
below by relationship (7)).

2.2 Passive particle population
The case of passive particle populations is treated in a way similar described above. For t ∈ S, fP ∶ DT ←→ ℝ, and gP ∶
DT ×DT ←→ ℝ2, letXP denote the passive population inside the domain D̄. The dynamics of the passive population is described
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here by a system of stochastic differential equations as follows (see, e.g.,18,19):
{

dXP (t) = fP (XP (t), XP (t))dt + gP (XA(t), XP (t))dWP (t) + d�P (t) + ∫ℝ �P (XP (s), y)�(dy, ds)
XP (0) = XP ,0,

(2)

where �P is a measurable function �P ∶ ℝ → ℝ, WP = (WP (t))t∈[0,T ] is a 2-dimensional standard Brownian motion, while �
is a Poisson random measure with finite jump intensity, associated with a scalar compound Poisson process (clarified below by
relationship (7)).
The proposed dynamics (1)-(2) are the general structures of our active-passive population dynamics. We will discuss further

detailed model descriptions as well as the applications of the population dynamics in Section 4.

2.3 The Skorokhod equation
Now, having representations for active and passive populations, we would like to consider a system of stochastic Skorokhod-type
equations and analyze their properties. We consider the following equation (see, e.g.,18,19)

dX(t) = df (XA(t), XP (t))dt + dg(XA(t), XP (t))dW (t) + dΦ(t) + ∫
ℝ

�(X(s), y)�(dy, ds) (3)

Let {W (t), t ≥ 0} be a Wiener process and let {J (t), t ≥ 0} be a nondecreasing Lévy process independent of {W (t), t ≥ 0}
with finite Lévy measure �. The jump measure � is a Poisson random measure with finite jump intensity, associated with a
compound Poisson process that can be represented by the following form

J (t) =
N(t)
∑

n=1
�k, (4)

where N(t), t ≥ 0 is a Poisson process with intensity � = �((0,∞)) and {�n, n ≥ 1} are independent identically distributed
random variables independent ofN(t), t ≥ 0 such that P (�n ≤ x) = �((0, x])∕�.

2.3.1 Assumptions
We rely on the following assumptions:

(A1) The functions f ∶ DT ×DT ←→ ℝ ×ℝ, and g ∶ DT ×DT ←→ ℝ2 ×ℝ2 satisfy the global Lipschitz conditions.

(A2) )D is C2,� with � ∈ (0, 1).

(A3) There exists a constant C� ∈ (0,∞) such that the jump coefficient � ∶ ℝ × ℝ → ℝ satisfies the following inequality for
all x ∈ ℝ (see, e.g.,19):

∫
ℝ

‖�(x, y)‖2 (dy) ≤ C�(1 + ‖x‖2) (5)

and for all x, z ∈ ℝ,

∫
ℝ

‖�(x, y) − �(z, y)‖2 (dy) ≤ C�‖x − z‖2, (6)

where  is the distribution of �. Moreover, � is a bounded function.

It is worth mentioning that assumptions (A1) and (A2) correspond to the modeling of the situation in Section 4, while (A3)-
(A6) are of technical nature, corresponding to the type of solution we are searching for; clarifications in this direction are given
in the next Sections.
Let us denote �(x, y) = y ⋅ �(x). Then, the jump process can be considered as a compound Poisson process, that is for all

t ∈ [0, T ] we have (see, e.g.,19):
t

∫
0

∫
ℝ

�(X(s), y)�(dy, ds) =
Nt
∑

k=1
�k ⋅ �(X(�k)) =

∑

0<s≤t
�(X(s))ΔJ (s) =

t

∫
0

�(X(s))dJ (s). (7)
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2.3.2 Concept of solution
Take x ∈ )D arbitrarily fixed. We define the setx of inward normal unit vectors at x ∈ )D by

x = ∪r>0x,r,
x,r =

{

n ∈ ℝ2 ∶ |n| = 1, B(x − rn, r) ∩D = ∅
}

, (8)

where B(z, r) = {y ∈ ℝ2 ∶ |y − z| < r}, z ∈ ℝ2, r > 0. Mind that, in general, it can happen that x = ∅. In this case, the
uniform exterior sphere condition is not satisfied (see, for instance, the examples provided in Fig. 5 in23 and in page 4 in24).
We complement our list of assumptions (A1)–(A3) with three specific conditions on the geometry of the domain D:

(A4) (Uniform exterior sphere condition). There exists a constant r0 > 0 such that

x =x,r0 ≠ ∅ for any x ∈ )D.

(A5) There exist constants � > 0 and �′ ∈ [1,∞) with the following property: for any x ∈ )D there exists a unit vector lx such
that

⟨lx,n⟩ ≥ 1∕�′ for any n ∈
⋃

y∈B(x,�)∩)D
y,

where ⟨⋅, ⋅⟩ denotes the usual inner product in ℝ2.

(A6) There exist �′′ > 0 and � > 0 such that for each x0 ∈ )D we can find a function f ∈ C2(ℝ2) satisfying

⟨y − x,n⟩ + 1
�
⟨∇f (x),n⟩|y − x|2 ≥ 0, (9)

for any x ∈ B(x0, �′′) ∩ )D, y ∈ B(x0, �′′) ∩ )D̄ and n ∈x.

The following relation is called the Skorokhod equation: Find (�, �) ∈ C(S̄,ℝ2) × C(S̄) such that

�(t) = w(t) + �(t), (10)

wherew ∈ C(S̄,ℝ2) is given so thatw(0) ∈ D̄. The solution of (10) is a pair (�, �), which satisfies the following two conditions:

(a) � ∈ C(S̄, D̄);

(b) � ∈ C(S̄) with bounded variation on each finite time interval satisfying �(0) = 0 and

�(t) =

t

∫
0

n(y)d|�|y,

|�|t =

t

∫
0

1)D(�(y))d|�|y, (11)

where

n(y) ∈�(y) if �(y) ∈ )D,
|�|t = total variation of � on [0, t]

= sup
 ∈([0,t])

n
∑

k=1
|�(tk) − �(tk − 1)|. (12)

In (12), we denote by ([0, t]) the family of all partitions of the interval [0, t] and take a partition  = {0 = t0 < t1 <
… < tn = t} ∈ ([0, t]). The supremum in (12) is taken over all partitions of type 0 = t0 < t1 <… < tn = t.

Conditions (a) and (b) guarantee that � is a reflecting process on D̄.
It is easily seen from the definition that

�1(t) = w1(t),… , wd−1(t) = �d−1,

and

�d(t)) = wd(t) + �(t),

t

∫
0

1�d (y)∉)Dd|�|y.
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We define a multidimensional Skorokhod’s map Γ ∶ C(S̄) ←→ C(S̄) such that

Γw(t) = Γ(w1,… , wd)(t) = (Γw1(t),… ,Γwd−1(t),Γwd(t)). (13)

Hence, the pair (�d , �) is the exact solution of the one-dimensional Skorokhod problem �d . Therefore, it holds

�(t) = − min
y∈[0,t]

{wd(y), 0}, �d(t) = wd(t) − min
y∈[0,t]

{wd(y), 0} = Γwd(t). (14)

The multidimensional Skorokhod’s map Γ satisfies the Lipschitz condition in a space of continuous functions.

Theorem 1. Assume conditions (A4) and (A5). Then for any w ∈ C(S̄,ℝ2) with w(0) ∈ D̄, there exists a unique solution
�(t, w) of the equation (10) such that �(t, w) is continuous in (t, w).

For the proof of this Theorem, we refer the reader to Theorem 4.1 in8.
To come closer to the model equations for active-passive population dynamics described above in Sections 2.1-2.3, we

introduce the mappings
f ∶ DT ×DT ←→ ℝ2, g ∶ DT ×DT ←→ ℝ2×2

and consider the Skorokhod-like system on the probability space (Ω, , P )

dX(t) = f (X(t))dt + g(X(t))dW (t) + ∫
ℝ

�(X(s), y)�(dy, ds) + dΦ(t) (15)

with

X(0) = X0 ∈ D̄, (16)

where the inital value X0 is assumed to be an 0−measurable random variable and B(t) is a 2 × 2−dimensional t−Brownian
motion with B(0) = 0. Here, {t} is a filtration such that 0 contains all P−negligible sets and t = ∩">0t+", while Φt(t)
is defined in the Definition 1 below. Further properties of the structure of (15)-(16) are listed in Section 3. Similarly to the
deterministic case, we can now define the following concept of solutions to (15).

Definition 1. A pair (X(t),Φ(t)) is called solution to (15)–(16) if the following conditions hold:

(i) X(t) is a D̄−valued t−adapted continuous process;

(ii) Φ(t) is anℝ2−valued t−adapted continuous process with bounded variation on each finite time interval such thatΦ(0) =
0 with

Φ(t) =

t

∫
0

n(y)d|Φ|y,

|Φ|(t) =

t

∫
0

1)D(X(y))d|Φ|y. (17)

(iii) n(s) ∈X(s) ∈ )D.

Note that the Definition 1 ensures that X(t) entering (15)-(16) is a reflecting process on D̄.

3 WELL-POSEDNESS OF SKOROKHOD-TYPE SYSTEM

In this section, we establish the well-posedness of the Skorokhod-type system by showing the existence, uniqueness and stability
of solutions to the problem (15)–(16) in the sense of Definition 1.
We use the compactness method together with the continuity result of the deterministic case stated in Theorem 1 for proving

the existence of solutions to (15)-(16). We follow the arguments by G. Da Prato and J. Zabczyk (2014) (cf.25, Section 8.3) and
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a result of F. Flandoli (1995) (cf.26) for martingale solutions. The starting point of this argument is based on considering a
sequence {Xn

t } of solutions of the following system of Skorokhod-type stochastic differential equations
{

dXn(t) = f (Xn(ℎn(t)))dt + g(Xn(ℎn(t)))dW (t) + ∫ℝ �(X
n(s), y)�(dy, ds) + dΦn(t),

Xn(0) = X0 ∈ D̄,
(18)

where Xn
0 ∈ D̄ is given.

For convenience, we recast the solution to the system (1) and (2) in terms of the vector Xn
t (t), n ∈ ℕ, such that

Xn(t) ∶= (Xn
A(t), X

n
P (t)), f (X

n(t)) ∶= (fA(Xn
A(t), X

n
P (t)), fP (X

n
A(t), X

n
P (t))),

g(Xn(t)) ∶= (gA(Xn
A(t), X

n
P (t)), gP (X

n
A(t), X

n
P (t))),Φ

n(t) ∶= (�nA(t), �
n
P (t)),

J (t) ∶= (JA(t), JP (t)), Xn(0) ∶= (XA,0, XP ,0), X(t) ∶= (XA(t), XP (t)),
f (X(t)) ∶= (fA(XA(t), XP (t)), fP (XA(t), XP (t))),
g(X(t)) ∶= (gA(XA(t), XP (t)), gP (XA(t), XP (t))),
Φ(t) ∶= (�A(t), �P (t)), J (t) ∶= (JA(t), JP (t)),W (t) ∶= (WA(t),WP (t)).

Let us introduce the following step functions:

ℎn(0) = 0, (19)
ℎn(t) = (k − 1)2−n, (20)

(k − 1)2−n < t ≤ k2−n, k = 1, 2,… , n and n ≥ 1. (21)

Using Theorem 1, we have a unique solution of (18). Furthermore, each value of Xn
t (t) is obtained within 0 ≤ t ≤ k2−n and

Xn
t (t) is attained for k2

−n < t ≤ (k + 1)2−n that is uniquely determined as the solution of the following Skorokhod equation:

Xn(t) = Xn(k2−n) + f (Xn(k2−n))(t − k2−n) + g(Xn(k2−n)){W (t) −W (k2−n)} + ∫
ℝ

�(Xn(k2−n), y)�(dy, ds) + Φn(t). (22)

Let us denote

Y n(t) ∶= X0 +

t

∫
0

f (Xn(ℎn(y)))dy +

t

∫
0

g(Xn(ℎn(y)))dW (y) +

t

∫
0

∫
ℝ

�(Xn(k2−n), y)�(ds, dy). (23)

Then Xn(t) = (ΓY nt )(t), we also have

Y n(t) ∶= X0 +

t

∫
0

f ((ΓY n)(ℎn(y)))dy +

t

∫
0

g((ΓY n)(ℎn(y)))dW (y) +

t

∫
0

∫
ℝ

�(Xn(ℎn(s)), y)�(ds, dy). (24)

We define the family of laws

{(Y n); 0 ≤ t ≤ T , n ≥ 1} . (25)

Accordingly, (25) is a family of probability distributions of Y n. Let n be the laws of Y n.

3.1 Statement of the main theoretical results of the paper
The main theoretical results of this paper are stated in Theorems 2-4 below. In this section, the focus lies on ensuring the
well-posedness of Skorokhod solutions with jump-like exit from a boundary to our population dynamics problem.

Theorem 2 (Existence). Assume that (A1)-(A3) hold. There exists at least a weak solution to the Skorokhod-type system (15)–
(16) in the sense of Definition 1.

Theorem 3 (Uniqueness). Assume that (A1)-(A6) hold. There is a unique strong solution to (15)–(16).

Theorem 4 (Dependence on parameters). Assume that (A1)-(A3) hold and

lim
k→∞

E(|Xk
0 −X0|

2) = 0. (26)
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Suppose that Xn
t (t) ∈ C(S̄; D̄ × D̄) solves

{

dXn(t) = f (Xn(t))dt + g(Xn(t))dW (t) + ∫ℝ �(X
n(s), y)�(ds, dy) + dΦn(t),

Xn(0) = Xn
0 ∈ D̄,

(27)

where Xn
0 ∈ D̄ is given and Φn(t) is defined as a sequence of Φ(t) in Definition 1. Then

lim
n→∞

E(max
0≤t≤T

|Xn(t) −X(t)|2) = 0, (28)

where Xt ∈ C(S̄; D̄ × D̄) is the unique solution of the following problem:
{

dX(t) = f (X(t))dt + g(X(t))dW (t) + ∫ℝ �(X(s), y)�(ds, dy) + dΦ(t),
X(0) = X0 ∈ D̄.

(29)

These statements are proven in the next subsections 3.1.1-3.1.3.

3.1.1 Proof of the existence
Let us start with handling the tightness of the laws {n} through the following Lemma.

Lemma 1. Assume that (A1)-(A3) hold. Then, the family {n} given by (25) is tight in C(S̄,ℝ2 ×ℝ2).

Proof. Let us introduce the following relative compact set in C(S̄,ℝ2 ×ℝ2)

KM1M2
=
{

f ∈ C(S̄;ℝ2 ×ℝ2) ∶ ‖f‖L∞(S;ℝ2×ℝ2) ≤M1, [f ]C�(S̄;ℝ2×ℝ2) ≤M2
}

. (30)

Now, we will show that for a given " > 0, there areM1,M2 > 0 such that

P (Y n(⋅) ∈ KM1M2
) ≤ ", for all n ∈ ℕ. (31)

This means that

P (‖Y n(t)‖L∞(S;ℝ2×ℝ2) > M1 or [Y n(⋅)]C�(S̄;ℝ2×ℝ2) > M2) ≤ ". (32)

A sufficient condition for this to happen is

P (‖Y n(t)‖L∞(S;ℝ2×ℝ2) > M1) <
"
2
and P ([Y n(⋅)]C�(S̄;ℝ2×ℝ2) > M2) <

"
2
, (33)

where Y (⋅) denotes either Y (t) or Y (r).
We consider first P (‖Y n(⋅)‖L∞(S,ℝ2×ℝ2) > M1) <

"
2
. Using Markov’s inequality (see e.g.27, Corollary 5.1), we get

P (‖Y n(t)‖L∞(S;ℝ2×ℝ2) > M1) ≤
1
M1

E[sup
t∈S̄

|Y n(t)|], (34)

but

sup
t∈S̄

|Y n(t)| = sup
t∈S̄

{
|

|

|

|

|

|

|

XA,0 +

t

∫
0

fA((ΓY n)(ℎn(y)))dy +

t

∫
0

gA((ΓY n)(ℎn(y)))dWA(y)
|

|

|

|

|

|

|

,

|

|

|

|

|

|

|

XP ,0 +

t

∫
0

fP ((ΓY n)(ℎn(y)))dy +

t

∫
0

gP ((ΓY n)(ℎn(y)))dWP (y)
|

|

|

|

|

|

|

}

. (35)

We estimate

sup
t∈S̄

|Y n(t)| ≤ sup
t∈S̄

{

|

|

XA,0
|

|

+
|

|

|

|

|

|

|

t

∫
0

fA((ΓY n)(ℎn(y)))dy
|

|

|

|

|

|

|

+
|

|

|

|

|

|

|

t

∫
0

gA((ΓY n)(ℎn(y)))dW (y)
|

|

|

|

|

|

|

,

|

|

XP ,0
|

|

+
|

|

|

|

|

|

|

t

∫
0

fP ((ΓY n)(ℎn(y)))dy
|

|

|

|

|

|

|

+
|

|

|

|

|

|

|

t

∫
0

gP ((ΓY n)(ℎn(y)))dW (y)
|

|

|

|

|

|

|

}

. (36)
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Since F1, F2 are bounded, then we have
T

∫
0

fA((ΓY n)(ℎn(y)))dy ≤ C and
T

∫
0

fP ((ΓY n)(ℎn(y)))dy ≤ C. (37)

Taking the expectation on (36), we are led to

E
[

sup
t∈S̄

|Y n(t)|
]

≤ C + E
⎡

⎢

⎢

⎣

sup
t∈S̄

|

|

|

|

|

|

|

t

∫
0

g((ΓY n)(ℎn(y)))dW (y)
|

|

|

|

|

|

|

⎤

⎥

⎥

⎦

. (38)

On the other hand, the Burlkholder-Davis-Gundy’s inequality i implies

E
⎡

⎢

⎢

⎣

sup
t∈S̄

|

|

|

|

|

|

|

t

∫
0

g((ΓY n)(ℎn(y)))dB(y)
|

|

|

|

|

|

|

⎤

⎥

⎥

⎦

≤ K1∕2E
⎡

⎢

⎢

⎣

t

∫
0

|g((ΓY n)(ℎn(y)))|2dy
⎤

⎥

⎥

⎦

1∕2

≤ K1∕2t
1∕2, (39)

for K1∕2 > 0.
Then, we have the following estimate

E
[

sup
t∈S̄

|Y n(t)|
]

≤ C + E
⎡

⎢

⎢

⎣

t

∫
0

|g((ΓY n)(ℎn(y)))|2dy
⎤

⎥

⎥

⎦

1∕2

≤ C. (40)

Hence, for " > 0, we can chooseM1 > 0 such that P (‖Y n‖L∞(S;ℝ2×ℝ2) > M1) <
"
2
.

In the sequel, we consider the second inequality P ([Y n(⋅)]C�(S̄;ℝ2×ℝ2) > M2) <
"
2
, this reads

P ([Y n(⋅)]C�(S̄;ℝ2×ℝ2) > M2) = P

(

sup
t≠r;t,r∈S̄

|Y n(t) − Y n(r)|
|t − r|�

> M2

)

≤ "
2
. (41)

Let us introduce another class of compact sets now in the Sobolev space
W �,p(0, T ;ℝ2 × ℝ2) (which for suitable exponents �p − 
 > 1 lies in C
 (S̄;ℝ2 × ℝ2)). Additionally, we recall the relatively
compact sets K ′

M1M2
, defined as in A, such that

K ′
M1M2

=
{

f ∈ C(S̄;ℝ2 ×ℝ2) ∶ ‖f‖L∞(S;ℝ2×ℝ2) ≤M1, [f ]W �,p(S;ℝ2×ℝ2) ≤M2
}

, (42)

where �p > 1 (see e.g.26,13). Having this in mind, we wish to prove that there exits � ∈ (0, 1) and p > 1 with �p > 1 together
with the property: given " > 0, there isM2 > 0 such that

P ([Y n(⋅)]W �,p(S;ℝ2×ℝ2) > M2) <
"
2
for every n ∈ ℕ. (43)

Using Markov’s inequality, we obtain

P ([Y n(⋅)]W �,p(S;ℝ2×ℝ2) > M2) ≤
1
M2

E
⎡

⎢

⎢

⎣

T

∫
0

T

∫
0

|Y n(t) − Y n(r)|p

|t − r|1+�p
dtdr

⎤

⎥

⎥

⎦

= C
M2

T

∫
0

T

∫
0

E[|Y n(t) − Y n(r)|p]
|t − r|1+�p

dtdr. (44)

For t > r, we have

Y n(t) − Y n(r) =
[

∫ t
r fA((ΓY

n
A)(ℎ

n(y)), (ΓY nP )(ℎ
n(y)))dy

∫ t
r fP ((ΓY

n
A)(ℎ

n(y)), (ΓY nP )(ℎ
n(y)))dy

]

+
[

∫ t
r gP ((ΓY

n
A)(ℎ

n(y)), (ΓY nP )(ℎ
n(y)))dWA(y)

∫ t
r gP ((ΓY

n
A)(ℎ

n(y)), (ΓY nP )(ℎ
n(y)))dWP (y)

]

+
[

∫ t
r �A(y)dJA(y)
∫ t
r �P (y)dJP (y)

]

. (45)

iSee e.g. 28, Theorem 3.28 (The Burlkholder-Davis-Gundy’s inequality). LetM ∈c,loc andM∗
t ∶= max0≤s≤t |Ms|. For every m > 0, there exists universal positive

constants km, Km (depending only on m), such that the inequalities

kmE(⟨M⟩

m
T ≤ E[(M∗

T )
2m] ≤ KmE(⟨M⟩

m
T )

hold for every stopping time T . Note thatc,loc denotes the space of continuous local martingales and ⟨X⟩ represents the quadratic variance process of X ∈c,loc.
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Let us introduce some further notation. For a vector u = (u1, u2), we set |u| ∶= |u1| + |u2|. At this moment, we consider the
following expression

|Y n(t) − Y nr (r)| =
|

|

|

|

|

t

∫
r

fA((ΓY nA)(ℎ
n(y)), (ΓY nP )(ℎ

n(y)))dy +

t

∫
r

gA((ΓY nA)(ℎ
n(y)), (ΓY nP )(ℎ

n(y)))dWA(y)
|

|

|

|

|

+
|

|

|

|

|

t

∫
r

fP ((ΓY nA)(ℎ
n(y)), (ΓY nP )(ℎ

n(y)))dy +

t

∫
r

gP ((ΓY nA)(ℎ
n(y)), (ΓY nP )(ℎ

n(y)))dWP (y)
|

|

|

|

|

+
|

|

|

|

|

|

|

t

∫
r

�A((ΓY nA)(ℎ
n(y)))dJA(y) +

t

∫
r

�P ((ΓY nP )(ℎ
n(y)))dJP (y)

|

|

|

|

|

|

|

. (46)

Taking the modulus up to the power p > 1 and applying Minkowski inequality, we have

|Y nt (t) − Y
n
r (r)|

p =

(

|

|

|

|

|

t

∫
r

fA((ΓY nA)(ℎ
n(y)), (ΓY nP )(ℎ

n(y)))dy +

t

∫
r

gA((ΓY nA)(ℎ
n(y)), (ΓY nP )(ℎ

n(y)))dWA(y)
|

|

|

|

|

+
|

|

|

|

|

t

∫
r

fP ((ΓY nA)(ℎ
n(y)), (ΓY nP )(ℎ

n(y)))dy +

t

∫
r

gP ((ΓY nA)(ℎ
n(y)), (ΓY nP )(ℎ

n(y)))dWP (y)
|

|

|

|

|

+
|

|

|

|

|

|

|

t

∫
r

�A((ΓY nA)(ℎ
n(y)))dJA(y) +

t

∫
r

�P ((ΓY nP )(ℎ
n(y)))dJP (y)

|

|

|

|

|

|

|

)p

≤ C

(

|

|

|

|

|

t

∫
r

fA((ΓY nA)(ℎ
n(y)), (ΓY nP )(ℎ

n(y)))dy +

t

∫
r

gA((ΓY nA)(ℎ
n(y)), (ΓY nP )(ℎ

n(y)))dWA(y)
|

|

|

|

|

p

+
|

|

|

|

|

t

∫
r

fP ((ΓY nA)(ℎ
n(y)), (ΓY nP )(ℎ

n(y)))dy +

t

∫
r

gP ((ΓY nA)(ℎ
n(y)), (ΓY nP )(ℎ

n(y)))dWP (y)
|

|

|

|

|

p

+
|

|

|

|

|

|

|

t

∫
r

�A((ΓY nA)(ℎ
n(y)))dJA(y) +

t

∫
r

�P ((ΓY nP )(ℎ
n(y)))dJP (y)

|

|

|

|

|

|

|

p
)

≤ C

( t

∫
r

|fA((ΓY nA)(ℎ
n(y)), (ΓY nP )(ℎ

n(y)))|pdy +

t

∫
r

|gA((ΓY nA)(ℎ
n(y)), (ΓY nP )(ℎ

n(y)))|pdWA(y)

+

t

∫
r

|fP ((ΓY nA)(ℎ
n(y)), (ΓY nP )(ℎ

n(y)))|pdy +

t

∫
r

|

|

gP ((ΓY nA)(ℎ
n(y)), (ΓY nP )(ℎ

n(y)))|
|

p dWP (y)

+

t

∫
r

|

|

|

|

|

�A((ΓY nA)(ℎ
n(y)))

|

|

|

|

|

p

dJA(y) +

t

∫
r

|

|

|

|

|

�P ((ΓY nP )(ℎ
n(y)))

|

|

|

|

|

p

dJP (y)

)

. (47)

Taking the expectation on (47), we obtain the following estimate

E[|Y n(t) − Y n(r)|p] ≤ C(t − r)p + CE
⎡

⎢

⎢

⎣

|

|

|

|

|

|

|

t

∫
r

�((ΓY n)(ℎn(y)))dW (y)
|

|

|

|

|

|

|

p
⎤

⎥

⎥

⎦

. (48)

Applying the Burkholder-Davis-Gundy’s inequality to the second term of the right hand side of (48), we obtain

E
⎡

⎢

⎢

⎣

|

|

|

|

|

|

|

t

∫
r

�((ΓY n)(ℎn(y)))dW (y)
|

|

|

|

|

|

|

p
⎤

⎥

⎥

⎦

≤ CE

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

t

∫
r

dy
⎞

⎟

⎟

⎠

p∕2
⎤

⎥

⎥

⎥

⎦

≤ C(t − r)p∕2. (49)
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On the other hand, if � < 1
2
, then

T

∫
0

T

∫
0

1

|t − r|1+(�−
1
2
)p
dtdr <∞. (50)

Consequently, we can pick � < 1
2
. Taking now p > 2 together with the constraint �p > 1, we can findM2 > 0 such that

P ([Y n(t)]W �,p(S;ℝ2×ℝ2) > M2) <
"
2
. (51)

This argument completes the proof of the Lemma.

From Lemma 1, we have obtained that the sequence {n} is tight in C(S̄;ℝ2 × ℝ2). Applying the Prokhorov’s Theorem,
there are subsequences {nk} which converge weakly to some (Y (t)) as n → ∞. For simplicity of the notation, we denote
these subsequences by {n}. This means that we have {n} converging weakly to some probability measure  on Borel sets in
C(S̄;ℝ2 ×ℝ2).
Since we have that n(Y n(t)) converges weakly to (Y (t)) as n → ∞, by using the “Skorokhod Representation Theorem”,

there exists a probability space (Ω̃, ̃ , P̃ ) with the filtration {̃t} and Ỹ n(t), Ỹ (t) belonging to C(S̄;ℝ2 × ℝ2) with n ∈ ℕ, such
that (Ỹ ) = (Y ), (Ỹ n(t)) = (Y n(t)), and Ỹ n(t) → Ỹ (t) as n → ∞, P̃−a.s. Moreover, let (X̃n(t), Φ̃n(t)) and (X̃(t), Φ̃(t)) be
the solutions of the following Skorokhod equations

X̃n(t) = Ỹ n(t) + Φ̃n(t),
X̃(t) = Ỹ (t) + Φ̃(t), (52)

respectively. Then the continuity result in Theorem 1 implies that the sequence (X̃n(t), Φ̃n(t)) converges to (X̃(t), Φ̃(t)) ∈
C(S̄; D̄ × D̄) × C(S̄) uniformly in t ∈ S̄, P̃−a.s as n → ∞. Hence, we still need to prove that Ỹ n(t) converges to Ỹ (t) in some
sense, where we denote

Ỹ n(t) ∶= X̃0 +

t

∫
0

f (X̃n(ℎn(y))dy +

t

∫
0

g(X̃n(ℎn(y))dW̃ (y) +

t

∫
0

�(Xn(y))dJ (y), (53)

and

Ỹ (t) ∶= X̃0 +

t

∫
0

f (X̃n(y))dy +

t

∫
0

g(X̃n(y))dW̃ (y) +

t

∫
0

�(X(y))dJ (y). (54)

To complete the proof of the existence of solutions to the problem (15)-(16) in the sense of Definition 1, we consider the following
Lemma.

Lemma 2. The pair (X̃(t), Φ̃(t)) ∈ C(S̄; D̄ × D̄) × C(S̄) cf. (52) is a solution of the Skorokhod-type system

X̃(t) = Ỹ (t) + Φ̃(t), (55)

where

Ỹ (t) ∶= X̃0 +

t

∫
0

f (X̃n(y))dy +

t

∫
0

g(X̃n(y))dW̃ (y), (56)

and X̃0 ∈ D̄.

Proof. We consider the term ∫ t
0 g(X̃

n(ℎn(y)))dW̃ (y) with the step process
g(X̃n(ℎn(y))). Approximating this stochastic integral by Riemann-Stieltjes sums (see e.g.29), it yields

t

∫
0

g(X̃n(ℎn(y)))dW̃ (y) =
n−1
∑

k=0
g(X̃n(ℎn(t)))(W (tnk+1) −W (tnk)). (57)



Thi Kim Thoa Thieu ET AL 11

By taking the limit n→∞ in (57), this gives

lim
n→∞

t

∫
0

g(X̃n(ℎn(y)))dW̃ (y) = lim
n→∞

n−1
∑

k=0
g(X̃n(ℎn(t)))(W (tnk+1) −W (tnk))

=
n−1
∑

k=0
g(X̃(t))(W (tk+1) −W (tk)) =

t

∫
0

g(X̃(y))dW̃ (y). (58)

By using the fact that (X̃n(t), Φ̃n(t)) converges to (X̃(t), Φ̃(t)) ∈ C(S̄; D̄ × D̄) × C(S̄) uniformly in t ∈ [0, T ] P̃−a.s as n → ∞
together with (58), we obtain that

X̃n(t) = X̃0 +

t

∫
0

f (X̃n(ℎn(y)))dy +

t

∫
0

g(X̃n(ℎn(y)))dW̃ (y)

+

t

∫
0

�(Xn(ℎn(y)))dJ (y) + Φ̃n(t)

= Ỹ n(t) + Φ̃n(t) (59)

converges to

X̃(t) = X̃0 +

t

∫
0

f (X̃(y))dy +

t

∫
0

g(X̃(y))dW̃ (y) +

t

∫
0

�(X(y))dJ (y) + Φ̃(t)

= Ỹ (t) + Φ̃(t), P̃ − a.s as n→∞. (60)

3.1.2 Proof of the uniqueness
We take X(t), X′(t) ∈ C(S̄; D̄ × D̄) as two solutions to (15)-(16) with the same initial values X(0) = X′(0).
Moreover, suppose that the supports of b and � are included in the same ball B(x0, �) for some x0 ∈ )D. Let us recall the

assumption (A6), where D satisfies the following condition: There exists a positive number � such that for each x0 ∈ )D we
can find ℎ ∈ C2(ℝ2) satisfying

⟨y − x,n⟩ + 1
�
⟨∇ℎ(x),n⟩|y − x|2 ≥ 0

for any x ∈ B(x0, �′) ∩ )D, y ∈ B(x0, �′′) ∩ )D̄ and n ∈ x. Using the proof idea of Lemma 5.3 in8, we consider f (x) =
⟨l, x − x0⟩. Then, we have

⟨X(s) −X′(s), dΦ(s) − dΦ′(s)⟩ − 1
�
|X(s) −X′(s)|2⟨l, dΦ(s) − dΦ′(s)⟩

= −(⟨X(s) −X′(s), dΦ(s)⟩ + 1
�
|X(s) −X′(s)|2⟨l, dΦ(s)⟩)

−(⟨X(s) −X′(s), dΦ′(s)⟩ + 1
�
|X(s) −X′(s)|2⟨l, dΦ′(s)⟩). (61)

Moreover, using the assumption (A6), we have the following estimates

⟨X(s) −X′(s), dΦ(s)⟩ + 1
�
|X(s) −X′(s)|2⟨l, dΦ(s)⟩ ≥ 0 (62)

and

⟨X(s) −X′(s), dΦ′(s)⟩ + 1
�
|X(s) −X′(s)|2⟨l, dΦ′(s)⟩ ≥ 0. (63)

Combinning (61)-(63), we obtain the following estimate

⟨X(s) −X′(s), dΦ(s) − dΦ′(s)⟩ − 1
�
|X(s) −X′(s)|2⟨l, dΦ(s) − dΦ′(s)⟩ ≤ 0, (64)

where l is the unit vector appearing in Condition (A5).
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Using similar ideas as in7 (see Proposition 4.1), we have the following estimate

|X(t) −X′(t)|2 exp
{

−1
�
(Φ(X(t)) − Φ′(X(t)))

}

≤ 2

(

exp
{

−1
�
(Φ(X(y)) − Φ′(X(y)))

}

t

∫
0

(b(X(y)) − b(X′(y)))dy

+ exp
{

−1
�
(Φ(X(y)) − Φ′(X(y)))

}

t

∫
0

(�(Xy(y)) − �(X(y)))dW (y)

)2

+ exp
{

−1
�
(Φ(X(y)) − Φ′(X(y)))

}

×

t

∫
0

(

2⟨X(y) −X′(y), l⟩ − 1
�
|X(y) −X′(y)|2

)

dΦ(y) + exp
{

−1
�
(Φ(X(y)) − Φ′(X(y)))

}

×

t

∫
0

(

2⟨X(y) −X′(y), l⟩ − 1
�
|X(y) −X′(y)|2

)

dΦ′(y) + 2

t

∫
0

|

|

b(X(y)) − b(X′(y))|
|

2 exp
{

−2
�
(Φ(X(y)) − Φ′(X(y)))

}

dy

+ 2

t

∫
0

|�(X(y)) − �(X(y))|2 exp
{

−2
�
(Φ(X(y)) − Φ′(X(y)))

}

dy +

t

∫
0

(

2⟨X(y) −X′(y), l⟩ − 1
�
|X(y) −X′(y)|2

)

× exp
{

−1
�
(Φ(X(y)) − Φ′(X(y)))

}

dΦ(y) +

t

∫
0

(

2⟨X(y) −X′(y), l⟩ − 1
�
|X(y) −X′(y)|2

)

× exp
{

−1
�
(Φ(X(y)) − Φ′(X(y)))

}

dΦ′(y). (65)

On the other hand, taking the expectation on both sides of (65) and using the Lipschitz condidion to the first term of the right
hand side together with (61), we are led to

E
(

|X(t) −X′(t)|2 exp
{

−1
�
(Φ(X(t)) − Φ′(X(t)))

})

≤ C

t

∫
0

E
(

|X(y) −X′(y)|2 exp
{

−2
�
(Φ(X(y)) − Φ′(X(y)))

}

)

dy.

(66)
This also implies that

E[|X(t) −X′(t)|2] ≤ C

t

∫
0

E[|X(y) −X′(y)|2]dy. (67)

Hence, X(t) = X′(t) for all t ∈ [0, T ]. Then, the pathwise uniqueness of solutions to (15)-(16) holds true. Moreover, the
pathwise uniqueness implies the uniqueness of strong solutions (see in30, Theorem IV-1.1). On the other hand, combining the
Lemma 2 and the result provided in31, the system of reflected SDEs (15)-(16) admits a unique strong solution (X(t),Φ(t)) ∈
C(S̄; D̄ × D̄) × C(S̄).

3.1.3 Proof of the dependence on the parameters
Proof. Let us recall our system of SDEs from (18), Section 3:

{

dXn(t) = f (Xn(t))dt + g(Xn
t (t))dW (t) + ∫ℝ �(X

n(t), y)�(dy, dt) + dΦn(t),
Xn(0) = Xn

0 ∈ D̄ for n ≥ 1.
(68)

For its solution, we have
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Xn
t (t) = X

n
0 +

t

∫
0

f (Xn
z (z))dz +

t

∫
0

g(Xn(z))dB(z) + Φn(t). (69)

Let us consider the following equation

Xn(t) −Xt(t) = Xn
0 −X0 +

t

∫
0

f (Xn(y))dy −

t

∫
0

f (X(y))dy +

t

∫
0

g(Xn(y))dW (y) −

t

∫
0

g(X(y))dW (y)

+

t

∫
0

�(Xn(y))dJ (y) +

t

∫
0

�(X(y))dJ (y) + Φn(t) − Φ(t). (70)

Since (a + b + c + d + e)2 ≤ 5a2 + 5b2 + 5c2 + 5d2 for any a, b, c, d, e ∈ ℝ, we have the following estimate

|Xn(t) −X(t)|2 ≤ 5|Xn
0 −X0|

2 + 5
|

|

|

|

|

|

|

t

∫
0

f (Xn(y))dy −

t

∫
0

f (X(y))dy
|

|

|

|

|

|

|

2

+ 5
|

|

|

|

|

|

|

t

∫
0

g(Xn(y))dW (y) −

t

∫
0

g(X(y))dW (y)
|

|

|

|

|

|

|

2

+ 5
|

|

|

|

|

|

|

t

∫
0

�(Xn(y))dJ (y) −

t

∫
0

�(X(y))dJ (y)
|

|

|

|

|

|

|

2

+ 5|Φn(t) − Φ(t)|2. (71)

Taking the expectation on both sides of (71), we have

E(|Xn(t) −X(t)|2) ≤ 5E(|Xn
0 −X0|

2) + 5E

⎛

⎜

⎜

⎜

⎝

|

|

|

|

|

|

|

t

∫
0

f (Xn(y))dy −

t

∫
0

f (X(y))dy
|

|

|

|

|

|

|

2
⎞

⎟

⎟

⎟

⎠

+ 5E

⎛

⎜

⎜

⎜

⎝

|

|

|

|

|

|

|

t

∫
0

g(Xn(y))dW (y) −

t

∫
0

�(X(y))dW (y)
|

|

|

|

|

|

|

2
⎞

⎟

⎟

⎟

⎠

+ 5E

⎛

⎜

⎜

⎜

⎝

|

|

|

|

|

|

|

t

∫
0

�(Xn(y))dJ (y) −

t

∫
0

�(X(y))dJ (y)
|

|

|

|

|

|

|

2
⎞

⎟

⎟

⎟

⎠

+ 5E
(

|Φn(t) − Φ(t)|2
)

. (72)

To begin with, we consider the second and the third terms of the right-hand side of (72). Using Cauchy-Schwarz inequality
together with the assumption that f, g are Lipschitz functions, we are led to

E

⎛

⎜

⎜

⎜

⎝

|

|

|

|

|

|

|

t

∫
0

f (Xn(y))dy −

t

∫
0

f (X(y))dy
|

|

|

|

|

|

|

2
⎞

⎟

⎟

⎟

⎠

≤ CE
⎛

⎜

⎜

⎝

t

∫
0

|f (Xn(y)) − f (X(y))|2dy
⎞

⎟

⎟

⎠

≤ C

t

∫
0

E(|Xn(y) −X(y)|2)dy (73)



14 Thi Kim Thoa Thieu ET AL

and

E

⎛

⎜

⎜

⎜

⎝

|

|

|

|

|

|

|

t

∫
0

g(Xn(y))dW (y) −

t

∫
0

g(X(y))dW (y)
|

|

|

|

|

|

|

2
⎞

⎟

⎟

⎟

⎠

= E
⎛

⎜

⎜

⎝

t

∫
0

|g(Xn(y)) − g(X(y))|2dy
⎞

⎟

⎟

⎠

≤ C

t

∫
0

E(|Xn(y) −X(y)|2)dy. (74)

Moreover, using (14), it yields

|Φn(t) − Φ(t)| ≤ 2|Xn
0 −X0| + 2

|

|

|

|

|

|

|

t

∫
0

f (Xn(y))dy −

t

∫
0

f (X(y))dy
|

|

|

|

|

|

|

+ 2
|

|

|

|

|

|

|

t

∫
0

g(Xn(y))dW (y) −

t

∫
0

g(X(y))dB(y)
|

|

|

|

|

|

|

+ 2
|

|

|

|

|

|

|

t

∫
0

�(Xn(y))dJ (y) −

t

∫
0

�(X(y))dJ (y)
|

|

|

|

|

|

|

. (75)

Since (a + b + c + d)2 ≤ 4a2 + 4b2 + 4c2 + 4d2 for all a, b, c, d ∈ ℝ, we have

|Φn(t) − Φ(t)|2 ≤ 8|Xn
0 −X0|

2 + 8
|

|

|

|

|

|

|

t

∫
0

f (Xn(y)) −

t

∫
0

f (X(y))dy
|

|

|

|

|

|

|

2

+ 8
|

|

|

|

|

|

|

t

∫
0

g(Xn(y))dW (y) −

t

∫
0

g(X(y))dW (y)
|

|

|

|

|

|

|

2

+ 8
|

|

|

|

|

|

|

t

∫
0

�(Xn(y))dJ (y) −

t

∫
0

�(X(y))dJ (y)
|

|

|

|

|

|

|

2

. (76)

Taking the expectation on both sides of (76), we are led to

E(|Φn
t (t) − Φt(t)|2) ≤ 8E(|Xn

0 −X0|
2) + 8E

⎛

⎜

⎜

⎜

⎝

|

|

|

|

|

|

|

t

∫
0

f (Xn(y)) −

t

∫
0

f (X(y))dy
|

|

|

|

|

|

|

2
⎞

⎟

⎟

⎟

⎠

+ 8E

⎛

⎜

⎜

⎜

⎝

|

|

|

|

|

|

|

t

∫
0

g(Xn(y))dW (y) −

t

∫
0

g(X(y))dW (y)
|

|

|

|

|

|

|

2
⎞

⎟

⎟

⎟

⎠

+ 8E

⎛

⎜

⎜

⎜

⎝

|

|

|

|

|

|

|

t

∫
0

�(Xn(y))dJ (y) −

t

∫
0

�(X(y))dJ (y)
|

|

|

|

|

|

|

2
⎞

⎟

⎟

⎟

⎠

. (77)

By applying Cauchy-Schwarz’s inequality to the second and third terms of the right-hand side of (77), we have the following
estimate

E(|Φn(t) − Φ(t)|2) ≤ 8E(|Xn
0 −X0|

2) + CE
⎛

⎜

⎜

⎝

t

∫
0

|f (Xn(y))dy − f (X(y))|2dy
⎞

⎟

⎟

⎠

+ 8E
⎛

⎜

⎜

⎝

t

∫
0

|g(Xn(y))dW (y) − g(X(y))|2 dy
⎞

⎟

⎟

⎠

+ 8E
⎛

⎜

⎜

⎝

t

∫
0

|�(Xn(y)) − �(X(y))|2 dJ (y)
⎞

⎟

⎟

⎠

. (78)
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Using again the assumption that b, � are Lipschitz functions, we get next the following estimate

E(|Φn(t) − Φ(t)|2) ≤ 8E(|Xn
0 −X0|

2) + C

t

∫
0

E(|Xn(y) −X(y)|2)dy

+C

t

∫
0

E(|Xn(y) −X(y)|2)dy + C

t

∫
0

E(|Xn(y) −X(y)|2dJ (y)). (79)

Then, by using (73), (74) and (79), the inequality (69) becomes

E(|Xn(t) −X(t)|2) ≤ CE(|Xn
0 −X0|

2) + C

t

∫
0

E(|Xn(y) −X(y)|2)dy + C

t

∫
0

E(|Xn(y) −X(y)|2dJ (y)), (80)

for 0 ≤ t ≤ T . Applying Gronwall’s inequality to (80) yields

E(|Xn(t) −X(t)|2) ≤ CE(|Xn
0 −X0|

2). (81)

Moreover, we have that

max
0≤t≤T

|Xn(t) −X(t)|2 ≤ 5|Xn
0 −X0|

2 + C

T

∫
0

|Xn(t) −X(t)|2dt + 5 max
0≤t≤T

|

|

|

|

|

|

|

T

∫
0

g(Xn(t)) − g(X(t))dB(t)
|

|

|

|

|

|

|

2

+ C max
0≤t≤T

T

∫
0

|Xn(y) −X(y)|2 dJ (y) + 5 max
0≤t≤T

|Φn
t (t) − Φt(t)|2. (82)

After taking the expectation on both sides of (82), we apply the martingale inequality to the third term on the right-hand side of
the resulting inequality, which reads

E
(

max
0≤t≤T

|Xn
t (t) −Xt(t)|2

)

≤ 5E(|Xn
0 −X0|

2) + C

T

∫
0

E(|Xn
t (t) −Xt(t)|2)dt

+ C

T

∫
0

E(|Xn
t (t) −Xt(t)|2)dt + 5E

(

max
0≤t≤T

|Φn
t (t) − Φt(t)|2

)

+ C

t

∫
0

E(|Xn(y) −X(y)|2dJ (y))

≤ CE(|Xn
0 −X0|

2) + C

T

∫
0

E(|Xn
t (t) −Xt(t)|2)dt + C

t

∫
0

E(|Xn(y) −X(y)|2dJ (y)). (83)

Finally, using (79) and (81), we obtain the desired estimate:

E
(

max
0≤t≤T

|Xn(t) −X(t)|2
)

≤ CE(|Xn
0 −X0|

2). (84)

By using the fact that limn→∞ E(|Xn
0 −X0|

2) = 0, we obtain the following estimate

lim
n→∞

E
(

max
0≤t≤T

|Xn(t) −X(t)|2
)

= 0. (85)

4 APPLICATIONS OF COUPLED STOCHASTIC PROCESSES IN BOUNDED DOMAINS

In general, in the study of biological systems, the descriptions of individual cells may be appropriate for primitive systems.
However, to model reliably living systems with complex biological interactions, a large number of cells needs to be accounted
for. For instance, the human brain consists of approximately 1011 neurons and is connected to 104 other neurons32,33. To better
understand the resulting neural activity requires appropriate models that can track the average firing rate across many areas
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of a neuronal network. Therefore, from a large population of densely coupled neurons, Wilson and Cowan21,22 have derived
an effective system for the proportion of cells in a population that are active per unit time. In this section, we consider an
application of our active-passive population dynamics in the model of synaptically coupled excitatory and inhibitory neurons in
the neocortex. In particular, we study a system of stochasticWilson-Cowan-type equations with reflection and possible jump-like
exit from a boundary that allows us to model the dynamics of two interacting populations of excitatory and inhibitory neurons
(see, e.g., Fig. 1). Let us recall the following Wilson-Cowan system, considering a 2-dimensional dynamic case (see, e.g.21)

{

�E
drE
dt
= −rE(t) + (1 − �ErE(t))FE(wEErE(t) −wEIrI (t) + IextE , �E , aE),

�I
drI
dt
= −rI (t) + (1 − �IrI (t))FI (wIErE(t) −wIIrI (t) + IextI , �I , aI ),

(86)

where rE(t) and rI (t) are the proportions of excitatory and inhibitory cells firing per unit time at the instant t, respectively. Here,
wEE and wII represent the strengths of connection between excitatory and inhibitory cells, respectively, while wEI describes
the strength of connection from excitatory cells to inhibitory cells and wIE denotes the strength of connection from inhibitory
cells to excitatory cells. Moreover, �E and �I denote the refractory periods of excitatory and inhibitory cells after a trigger,
respectively, while rE and rI are the absolute refractory periods, �E and �I are the threshold of the excitatory and inhibitory
populations. We also assume that rE = 0 and rI = 0 correspond to a low-activity resting states of excitatory and inhibitory cells.
In (86), functions FE and FI represent the nonlinearities typically chosen to be sigmoidal defined as (see, e.g.21)

F (x, �, a) ∶= 1
1 + exp[−a(x − �)]

− 1
1 + exp(a�)

. (87)

Figure 1 [Color online] Sketch of networks of interacting excitatory and inhibitory populations.

In general, an excitatory transmitter generates an electrical signal called an action potential in the receiving neuron, while
an inhibitory transmitter prevents such electrical signals (see, e.g.,34). Hence, we assume that an excitatory population can
be considered an active population, while an inhibitory population can be seen as a passive population. Neuron dynamics are
intensively computed and often deal with many challenges from severe accuracy degradation if the input data is corrupted with
noise. Furthermore, the noise is normally assumed as purely diffusive noise, namely, as random fluctuations with continuous
sample paths. However, such a description is incomplete due to the fact that the diffusive fluctuations are large and abrupt
events appear at random times throughout the time series17,16,35. Additionally, in some cases, we can observe also negative firing
rates, while the firing rates are normally positive36. We know that a negative firing rate is not physiologically plausible and the
dynamical model can be interpreted to capture activity relative to a baseline resting-state rather than total activity37. In this work,
we observe that under some cases of random input current, the firing rates of excitatory and inhibitory cells go below the low-
activity resting state level. Thus, we can set a reflecting boundary to our population dynamics to avoid such negative firing rate
cases. To get closer to the real scenarios in biological systems, jump-diffusion stochastic processes provide a more appropriate
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framework to model these data. In particular, using the descriptions provided in the previous sections, we focus on investigating
the system of stochasticWilson-Cowan-type equations with reflection and possible jump-like exit from a boundary, which reads:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

drE(t) = 1
�E
(−rE(t) + (1 − �ErE(t))F̃E(wEErE(t) −wEIrI (t) + IextE , �E , aE))dt

+ �extE

�E
(1 − �ErE(t))dWE(t) + d�E(t) + ∫ℝ �E(rE(t))dJE(t),

drI (t) = 1
�I
(−rI (t) + (1 − �IrI (t))F̃I (wIErE(t) −wIIrI + IextI , �I , aI ))dt

+ �extI

�I
(1 − �IrI (t))dWI (t) + d�I (t) + ∫ℝ �I (rI (t))dJI (t),

(88)

In (88), we assume that FE(wEErE − wEIrI + IextE , �E , aE) = F̃E(wEErE − wEIrI + IextE , �E , aE)) + �extE dWE(t) and FI =
(wIErE −wIIrI + IextI , �I , aI )) + �extI dWI (t). Note that fA(XA(t), XP (t)) and fP (XA(t), XP (t)) (in (1)) become 1

�E
(−rE + (1 −

�ErE)F̃E(wEErE − wEIrI + IextE , �E , aE)) and
1
�I
(−rI + (1 − �IrI )F̃I (wIErE − wIIrI + IextI , �I , aI )), respectively. Similarly,

gA(XA(t), XP (t)) and gP (XA(t), XP (t))
(in (1)) become �extE

�E
(1 − �ErE) and

�extI

�I
(1 − �IrI ), while �A, �P , �A, �P can be considered as �E , �I , �E , �I , respectively.

The simulations presented in this section have been carried out by using by a discrete-time integration based on the Euler
method inplemented in Python. In this section, for t ≥ 0, we consider the case of rE(t), rI (t) ≥ 0 with L(0) = 0 and

�E(t) =

t

∫
0

1rE (s)=0d�E , and �I (t) =
t

∫
0

1rI (s)=0d�I . (89)

This condition implies that the process can increase only when rE and rI hit 0 (see, e.g.,18). In other words, this is the reflecting
boundary condition at 0 in one-dimensional for each population in the domainD = [0,∞). Moreover, we use a set of compound
Poission process as in (4) to describe the jump-like exit at the boundary.
In the simulations, we choose the parameter set as follows: rE = rI = 0.2, �E = 1 (ms), �I = 2 (ms), �E = 2.8, �I = 4,

aE = 1.2, aI = 1, wEE = 12, wEI = 4, wIE = 13, wII = 11, dt = 0.1 (ms). These parameters have also been used in21.
Let {V (t) ∶ t ≥ 0} be an Ornstein-Uhlenbeck process (see, e.g., Fig. 2) defined on [r,∞) with drift (�−V (t)∕
) and constant

diffusion parameter �. Then, the process {V (t) ∶ t ≥ 0} satisfies the following SDE:

{

dV (t) = (� − 1


V (t))dt + �dW (t),

V (0) ∈ [r,∞),
(90)

whereW (t) denotes Gaussian white noise.
Themain representative numerical results of our analysis are shown in Fig. 3, where we have plotted the population trajectories

of excitatory and inhibitory populations.
In particular, in the top left panel of Fig. 3, we have plotted the population trajectories of excitatory and inhibitory populations

under only Gaussian white noise input current. We see that there are fluctuations in the time evolution of the proportions of both
excitatory and inhibitory cells firing. However, in the top right panel of Fig. 3, when we replace the Gaussian white noise current
with the Ornstein-Uhlenbeck input current presented in Fig. 2, we observe that the firing activity of excitatory and inhibitory
cells fluctuates to values less than zero. Therefore, we add the reflecting factor to our system with the Ornstein-Uhlenbeck input
current and we see that the firing activity increases to values larger than 0 (the resting states of excitatory and inhibitory cells)
in the bottom left panel of Fig. 3. Moreover, in the presence of Poisson jumps and the reflecting factor in our system with
Ornstein-Uhlenbeck input current, the firing activities of excitatory and inhibitory cells increase dramatically, as seen in the
bottom right panel of Fig. 3, compared to the case presented in the bottom left panel of the same figure. Specifically, the firing
rate of excitatory cells increases to 0.1 at t = 27 (ms) and the firing rate of the inhibitory cells increases to 0.02 at the same time.
However, the firing rate of inhibitory cells is less than the firing rate of excitatory cells in the presence of jumps in the system.
Additionally, we have observed that in the presence of Ornstein-Uhlenbeck input current, reflecting factors together with the

Poisson jumps increase the firing activity of excitatory and inhibitory populations. This effect may lead to an improvement in
the response of neurons to each stimulus in neuronal systems.
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Figure 2 [Color online] Ornstein-Uhlenbeck input current profile satifies the Ornstein-Uhlenbeck process (90). Parameters:
� = 0, 
 = 1 and � = 0.1.

5 CONCLUSIONS

We have proposed a model based on a coupled system of reflecting Skorokhod-type stochastic differential equations with jumps.
We have analyzed the well-posedness of such systems. In particular, using compactness methods and Skorokhod’s representation
of solutions to SDEs with the jump-like exit from a boundary, we have shown the existence and uniqueness of the solutions of
these systems. Additionally, the structure of the Skorokhod problem allowed us to prove also the solution dependence on the
parameters of our system. On the other hand, the mathematical setting of our system of SDEs has demonstrated a new point
of view useful for the field of modelling and simulations of population dynamics. We provided details of the models along
with representative numerical examples and discussed the applications of our population dynamics in applications to neuronal
dynamics. In particular, we have considered a system of stochastic Wilson-Cowan-type equations with reflection and possible
jump-like exit from a boundary. Our numerical results have shown that the presence of Ornstein-Uhlenbeck input current,
reflecting factors together with the Poisson jumps, strongly affects the firing activities of excitatory and inhibitory populations
in a neuronal system.
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APPENDIX

A TECHNICAL PRELIMINARIES FOR SECTION 3

In the proof of existence in Section 3, we used compactness arguments. Here, we provide necessary details for such arguments
to hold. We recall the classical Ascoli-Arzelà Theorem38:
A family of functions U ⊂ C(S̄;ℝd) is relatively compact (with respect to the uniform topology) if

i. for every t ∈ S̄, the set {ℎ(t);ℎ ∈ U} is bounded.

ii. for every " > 0 and t, s ∈ S̄, there is �̄ > 0 such that

|ℎ(t) − ℎ(s)| ≤ ", (A1)

whenever |t − s| ≤ �̄ for all ℎ ⊂ U .

For a function ℎ ∶ S̄ → ℝd , we introduce the definition of Hölder seminorms as

[ℎ]C�(S̄;ℝd ) = sup
t≠s;t,s∈S̄

|ℎ(t) − ℎ(s)|
|t − s|�

, (A2)

for � ∈ (0, 1) and the supremum norm as

‖ℎ‖L∞(S;ℝd ) = ess sup
t∈S̄

|ℎ(t)|. (A3)

We refer to39 and40 for more details on the used function spaces.
In fact, the simple sufficient conditions for i. and ii. are

i’. there isM1 > 0 such that ‖ℎ‖L∞(S;ℝd ) ≤M1 for all ℎ ∈ U ,

ii’. for some � ∈ (0, 1), there is anM2 > 0 such that [ℎ]C�(S̄;ℝd ) ≤M2 for all ℎ ∈ U .

Hence, we have the sets

KM1M2
∶= U =

{

ℎ ∈ C(S̄;ℝd); ‖ℎ‖L∞(S;ℝd ) ≤M1, [ℎ]C�(S̄;ℝd ) ≤M2
}

(A4)

are relatively compact in C(S̄;ℝd).
For � ∈ (0, 1), T > 0 and p > 1, the spaceW �,p(S;ℝd) is defined as the set of all ℎ ∈ Lp(S;ℝd) such that

[ℎ]W �,p(S;ℝd ) ∶=

T

∫
0

T

∫
0

|ℎ(t) − ℎ(s)|p

|t − s|1+�p
dtds <∞.

This space is endowed with the norm

‖ℎ‖W �,p(S;ℝd ) = ‖ℎ‖Lp(S;ℝd ) + [ℎ]W �,p(S;ℝd ).

Moreover, we have the following embedding

W �,p(S;ℝd) ⊂ C
 (S̄;ℝd) for �p − 
 > 1

and [ℎ]C
 (S̄;ℝd ) ≤ C
,�,p‖ℎ‖W �,p(S;ℝd ) (see e.g. in Theorem 6, Chapter 5 in41). Relying on the Ascoli-Arzelà Theorem, we have
the following situation:

ii”. for some � ∈ (0, 1) and p > 1 with �p > 1, there isM2 > 0 such that [ℎ]W �,p(S;ℝd ) ≤M2 for all ℎ ∈ U ′ ⊂ C(S̄;ℝd).

If i’ and ii” hold, then the set

K ′
M1M2

∶= U ′ =
{

ℎ ∈ C(S̄;ℝd); ‖ℎ‖L∞(S;ℝd ) ≤M1, [ℎ]W �,p(S;ℝd ) ≤M2
}

(A5)

is relatively compact in C(S̄;ℝd), if �p > 1 (see e.g.26,13). In the main part of the manuscript, this result was formulated in
formula (42).
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