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Abstract

More than 120 million mice and rats are used yearly for scientific purposes. While tracking their motion behaviors has been an
essential issue for the past decade, present techniques, such as video-tracking and IMU-tracking have considerable problems,
including requiring a complex setup or relatively large IMU modules that cause stress to the animals. Here, we introduce
a wireless IoT motion sensor (i.e., weighing only 2 grams) that can be attached and carried by mice to collect motion data
continuously for several days. We also introduce a combined segmentation method and an imbalanced learning process that
are critical for enabling the recognition of common but random mouse behaviors (i.e., resting, walking, rearing, digging, eating,
grooming, drinking water, and scratching) in cages with a macro-recall of 94.55%.
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ToC Figure

Figure 1: ToC Figure. A wireless IoT motion sensor (weighing only 2 grams; 5 grams including a coin-cell
battery) is demonstrated for continuously collecting mice motion data without a complex setup. Further-
more, a combined segmentation method and an imbalanced learning process with higher segmentation and
classification accuracy are presented. The final macro-recall of eight common behaviors in the cage is 94.55
percent.

Introduction

Because their genome is similar to those of humans(Mural et al., 2002; Dawson, 2011; Yue et al., 2014),
mice have been widely used in the preclinical stage of drug/vaccine discovery and mammalian organ injury
and recovery mechanism research(Li et al., 2004; Nakamura et al., 2004). Mouse responses could help
researchers predict drug effects in humans(Hoehndorf et al., 2013). Moreover, mouse responses could also
help understand different genome expressions(Sasamura et al., 1992; Perrin, 2014). Hence, the efficacy
and safety of drugs would often require continuous long-term monitoring of mouse behaviors and responses
through live and recorded videos(Zhang et al., 2012). Thus, prolonged observation, such as a behavioral test,
is necessary since it would be utilized to measure the recovery or injury level of the mice. Preclinical trials
and behavior tests on mice are widely used. However, there is an extremely critical problem: it is highly
time-consuming for researchers to study the recorded videos and observe and analyze mouse behaviors and
responses.

With the rise of machine learning and behavior recognition algorithms, the above problem could be effectively
solved if the entire monitoring process of mice could be automated without much human involvement. One
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commonly used approach is to apply computer vision techniques to analyze the recorded videos and classify
mouse behaviors. Another approach, which is discussed in this paper, is to capture mouse motion (e.g., x-,
y-, z- accelerations and angular velocities) directly by micro-inertial measurement unit (IMUs) sensors. Due
to the advancements in microelectromechanical systems (MEMS) technology in the past two decades, the
small-size and considerably low-cost IMUs have led to the popularity of applying these sensing devices in
sectors such as robotics, sports, and navigation(Ahmad et al., 2013). These compact sensing devices have
also been widely utilized in animal studies for drug discovery and monitoring animal health.

Thirteen recent animal behavior research(Venkatraman et al., 2007; Venkatraman et al., 2010; Soltis et al.,
2012; Wang et al., 2015; Hammond et al., 2016; Krschel et al., 2017; Barwick et al., 2018; Wang et al.,
2018; Kumpulainen et al., 2018; Kadar et al., 2020; Eerdekens et al., 2021; Yang et al., 2021) involving
twelve different animals of diverse physical sizes with IMUs are shown in Figure 2. The twelve animals are
subdivided into three categories according to their weight. Most of the IMUs have been deployed on relatively
large animals (i.e., canine and broiler) and megafauna(STUART, 1991) (i.e., elephant and cow), and only
a few studies have been conducted with small lab animals such as guinea pigs and mice. Venkatraman
et al.(Venkatraman et al., 2007) built a wireless accelerometer and tested it on rats (in 2007), which could
recognize three behaviors of rats (i.e., eating, standing, and grooming) with an average recall of approximately
94.3%. However, the sensor size was large (32 mm x 25 mm) and heavy (10.2 g, i.e., 25-33% of a typical
full-grown laboratory mouse). Then, in 2010, Venkatraman et al.(Venkatraman et al., 2010) designed a
headstage that contained an accelerometer to measure an animal’s acceleration, but it needed a connected
cable to transmit collected data. Currently, the major limitation in applying IMUs for small animal motion
tracking and recognition is still the overall size and running time of the sensing device. However, with
the continual advancement of microfabrication technology, much smaller and lower power-consuming IMU
sensors with wireless data transmission are now available. Thus, by applying artificial intelligence (AI) or
machine learning algorithms to process the data from these new class of ”Internet of Things” (IoT) sensors,
we envision a new paradigm shift for tracking and recognizing small animal motions – the AI-enabled micro
motion sensors could supplement or replace vision-based tracking in the near future due to their small size,
light weight, low-cost, and increased functionality in providing real-time motion recognition results without
considering ambient lighting conditions.

Our group has recently developed a wireless IoT sensor-based system for laboratory mice motion data
collection(Chen et al., 2022). By rudimentary data analyses, we were able to classify five behaviors, including
resting, walking, rearing, digging, and shaking, of mice using a support vector machine (SVM) with an average
recall of 76.23%. In this work, we discuss the extremely important work of selecting the proper AI algorithms
in order to enable small motion sensor data to be applicable for real-time tracking and recognition of small
animal motions. For example, a mouse’s motions in a cage over several days are random and with unevenly
distributed temporal durations; hence, the proper segmentation and imbalanced data set learning algorithms
must be utilized. We will show that using a combined segmentation method and an imbalanced learning
process, the recognition of common but random mouse behaviors (i.e., resting, walking, rearing, digging,
eating, grooming, drinking water, and scratching) in cages is possible with a macro-recall of 94.55%.
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Small Animal Big Animal Megafauna

Our work

A

Data transmission 
method

Average Macro-recall/%

Sampling rate/HzB

Behavior number

Sensor mass/g

Our work

Ref 18: Roe deer behavior recognition
Ref 21: Canine behavior recognition
Ref 22: Port Jackson Shark behavior recognition

Ref 14: Broiler behavior recognition

Ref 11: Rat behavior recognition

Ref 17: Chipmunk behavior recognition

Ref 12: Mouse behavior recognition

Figure 2: IMU-based animal behavior recognition work review. (A) Relationship between the animal
mass and sensor mass in previous animal behavior studies. (B) Comparison between eight small animal and
big animal behavior studies

The importance of an appropriate data segmentation method has been emphasized before. There are two
main segmentation categories: fixed-window segmentation and adaptive-window (dynamic-window) seg-
mentation. In the fixed-window segmentation method (FWS), the window size is constant throughout
the segmentation process. This method has been widely used in many previous behavior recognition re-
search(Brugarolas et al., 2013; Winters et al., 2015; Gutierrez-Galan et al., 2018; Schlecht et al., 2004; Ungar
et al., 2005; Nakamoto et al., 1999; Lavanya & Mallappa, 2018). Some researchers explored the impact of
window size on activity recognition accuracy. Banos et al.(Banos et al., 2014) concluded that the 1-2 s size
would be a good trade-off between speed and accuracy.

In contrast, the window size in the adaptive-window segmentation varies with input signals by deciding
turning points between different behavior signals. Nearly all the existing methods of adaptive-window
algorithms have only been applied to deciphering human motions. Most adaptive window segmentations
are inspired by detecting change points along with the signal, which is utilized as the boundaries between
behaviors. In(Hong & Nugent, 2009), Hong et al. adapted the location context to determine the breakpoints.
In this method, the changes in the location context in sensors indicate activity changes. This method is
effective when various activities are related to different locations. In(Laguna et al., 2011), Ortiz et al.
proposed a dynamic sliding window approach in which window boundaries are created when important
events, such as sensor-state changings occur. Their team tested that approach on two public datasets, the
Kasteren Dataset(van Kasteren et al., 2008) and Patterson Dataset(Patterson et al., 2005). The optimal
result recall values using the dynamic window approach are 91.38% and 96.76%, which are much higher than
those for the static sliding window approach (80.08% and 86.57%).

The systems designed by Sheng et al.(Sheng et al., 2015) and Noor et al.(Noor et al., 2017) were more
relevant. Sheng et al. developed an adaptive time window method for quasi-periodic human activities (walk-
ing, running, upstairs, and downstairs). For quasi-periodic activities, it uses the normalized autocorrelation
method to determine the period for those behaviors. Noor et al. built an adaptive sliding window seg-
mentation model with a transition behavior detector that could recognize ten behaviors (one dynamic, four
static, and five transitional). The adaptive-window segmentation method was inspired by the probability
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density function with a multivariate Gaussian distribution, and an additional transition behavior detector
was created to process the transition behaviors. This method achieved an average recall of 95.38% on the
internal University of Auckland (UoA) dataset(Anguita et al., 2013) and an overall recall of 96.5% for the
public smartphone-based HAR (SBHAR) dataset(Reyes-Ortiz et al., 2016).

Figure 3: Conceptual illustration of an attachable IMU-based mouse tracking system. (A)
Conceptual illustration (B) Data flow of the mouse tracking system

In this paper, we present our latest development of a combined segmentation method for laboratory mouse
common behavior recognition based on our IMU-based wireless motion sensor. The entire data flow and
structure of the tracking system are shown in Figure 3. In the data segmentation process, a combined
segmentation method (CSM) consists of both fixed-window segmentation (FWS) and adaptive-window seg-
mentation (AWS). AWS is designed for dynamic behaviors (i.e., walking, rearing, digging, grooming, and
scratching), and the window size is adjusted according to the input signals. In contrast, FWS is designed

5
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for other static behaviors (i.e., resting, eating, and drinking water). A preliminary status classifier (PSC)
is adopted to decide whether an input sequence of signals belongs to a static or dynamic status, which
determines the appropriate segmentation method. After segmentation, all the segmented data are input into
an SVM model after undergoing feature extraction and principal component analysis (PCA).

Experimental Section/Methods

Experiment setup

Our IMU sensor in Figure 3 consists of a Bluetooth System on a Chip (i.e., Dialog Semiconductor DA14583),
an IMU chip (i.e., Bosch BMI160), an antenna, a PCB board, and a button cell. Basically, the system contains
one cage, one monitoring camera that is used to record the mouse behaviors, one Wi-Fi router providing the
network connection, one IMU sensor recording the mouse behavior data, and one network-connected storage
storing the video and sensor data. The experiment setup is shown in Figure S1A. The sensor is attached to
the mice by tape, and its orientation is the same during all the experiments since the different orientations
would affect the recognition accuracy in the following process. The size of the IMU is only 12 mm x 7 mm
x 5 mm (weighing 2 g), which is relatively small to ensure that the behavior of the mice would not be
affected. The sensor collects the acceleration and angular velocity at 25 Hz; hence, a 25x6 matrix of data
can represent the behavior of mice in a second. Figure S1B shows 5-second collected IMU readings.

Mice (C57BL/65) are placed into a mouse cage to capture their motions using our tracking device. The
entire experimental procedures (Internal Reference No. A-0358) were approved by the City University
of Hong Kong’s Animal Research Ethics Sub-Committee and were in accordance with the guidelines and
policies in Hong Kong’s Code of Practice for Care and Use of Animals for Experimental Purposes. The food
and water are both placed on the top of the cage, and the mouse inside needs to stand up (i.e., rearing)
before it can obtain food and water. The cage bottom is deeply lined with bentonite mouse litter to keep
the environment clean and allow the mouse to dig into the bedding. Cameras are set on the side of the
cages to record the mouse’s behavior day and night. The recorded videos are used to manually label mouse
behaviors, including resting, walking, rearing, digging, eating, grooming, drinking water, and scratching.
Sample videos of these behavior motions are included in the Supporting information Section. The details
of the eight behaviors are also shown in Table S1 of the section. The corresponding start and stop times of
each behavior are recorded. This information will be used for later supervised machine learning, as well as
for classification model performance validation. The sensor data used in following data analysis section was
collected from 4 experiments with a total time of 29 hours and 4 minutes.

Combined Segmentation Method (CSM)

The combined segmentation method (CSM), a core contribution of this work, handles data processing,
including behavior status classification and signal segmentation. CSM has two major segmentation methods:
traditional fixed-window segmentation (FWS) and adaptive-window segmentation (AWS). AWS consists of
two methods: probability density function segmentation (PDFS) and Bayesian online change point detection
segmentation (BOCDS). The working principle of CSM is shown in Figure S2. We assume a behavior signal
sequence in the figure contains one static and three dynamic behaviors. In CSM, a two-second-window signal
is first analyzed using a preliminary status classifier (PSC), which determines the status of the sample. The
status can be either static or dynamic. If the sample status is determined to be static, the FWS is assigned
to it. The two-second-window signal can be segmented into two one-second slices, and then the subsequent
two-second-window data from the endpoint of this sample is the next input into PSC. Otherwise, the sample
status can be dynamic, and AWS can be assigned to it. AWS divides the sample into slices according to
several calculated changepoints. Then, the last changepoint inside the sample is taken as the starting point
of the next two-second-window signal.

6
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The segmented results using only FWS and our CSM are plotted in Figure S2. It is apparent that the
signal would likely be segmented into more slices in CSM than in FWS. Static behavior 1 and dynamics 1
and 2 are divided into 7.4 slices in the FWS and 9 slices in the CSM. When FWS is applied to the whole
signal, segmentation errors occur for slices FW2, FW6, and FW8. These static-dynamic-mixed slices can
directly affect the following feature extraction process. The segmentation might indirectly interfere with the
final classification through the feature vectors. However, for CSM, the AWS would stop at the behavior
signal sequence boundary. Thus, when using our CSM, the chance of segmentation error occurring is greatly
reduced.

Preliminary Status Classifier (PSC)

Our mouse behavior classification system is designed to classify eight mouse behaviors: resting, walking,
rearing, digging, eating, grooming, drinking water, and Scratching. These eight types of mouse behaviors
are separated into two statuses (static and dynamic) according to mouse body movement. Static status
includes resting, eating, and drinking water; the other five behaviors are marked as dynamic. The sensor
signal of mice is almost constant for static behaviors; however, the signal oscillates rapidly and largely
for dynamic behavior, and any FWS error might cause false recognition. Due to this consideration, the
FWS is assigned to static behavior signals, and the AWS deals with dynamic behavior signals. Therefore,
an additional preliminary status classifier (PSC) is designed for initial signal sequence classification. This
classifier is used to identify whether a signal sequence is suitable for either AWS or FWS. The classifier
utilizes two parameters as inputs, one of which is the fast Fourier transform (FFT) energy, and the other
parameter is the acceleration variance of the signal sequence.

We choose the random forest as the preliminary classifier and use 75% of the dataset as the training dataset
to train the random forest model and the remaining 25% as the validation dataset. It can classify static and
dynamic behaviors accurately with high speed. Considering that the data length would highly affect the two
input features, we fixed the size of the input signal sequence as 2 seconds.

Segmentation Method

As discussed above, several segmentation methods were applied to analyze the mice’s behavioral data, includ-
ing FWS, PDFS, BOCDS, and two other combined segmentation methods (i.e., CSM-1 and CSM-2). The
mathematical representations of these segmentation methods are discussed in the Supporting Information
Section.

Feature Extraction and Model training and validation

The following process after sample segmentation is feature extraction, which refers to the data transformation
technique performed on the slices. The raw data slices are unsuitable for direct use by conventional machine
learning algorithms, such as naive Bayes classifiers, SVMs, and decision trees. Therefore, feature extraction
is necessary, and it can reduce the segment data dimension without losing information and increase the
computing speed of the final classification(Lima et al., 2019).

For each slice after the CSM, six time-domain features are calculated for each axis of the slice, and five
frequency-domain features are extracted for total acceleration and angular velocity. Thus, 38 features, which
form a 1 x 38 vector and represent the segmented sample, are extracted from the six axes slice. The details of
the 38 features are shown in Table S2 in the Supporting information. The features are used for the following
model training and validation.

Before putting a feature vector into the training model, we applied principal component analysis (PCA)(Abdi
& Williams, 2010) to reduce its dimensionality. It would rearrange its data representation to increase its
interpretability without losing information. We selected the support vector model (SVM) for the final
supervised learning model due to its satisfactory performance in higher-dimensional space. This work used
4-fold cross-validation to evaluate the classification model performance. The collected behavior samples

7
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were randomly split into four groups of the same size. Then, three groups of datasets were used for model
training, and the other was used for model validation. This step was repeated until four groups were included
in the validation set. Then, a confusion matrix was calculated to evaluate the performance of our trained
model, along with another three metrics. The definitions of these metrics are provided in the Supporting
information Section.

Due to the sample size imbalance between different behaviors, training an effective classification model that
can recognize both large-sample-size mouse behavior (i.e., Resting, Eating) and small-sample-size behavior
(i.e., Drinking, Scratching) is difficult. In our previous work(Chen et al., 2022), Chen et al. proposed
and proved the effectiveness of an imbalanced learning method to improve classification accuracy. This
paper also applied the imbalanced learning method during the classification process. The ClusterCentroids
algorithm was adapted to perform the under-sampling function. It would remove some data samples from
the large-sample-size behaviors to maintain a balance between each behavior class.

Results

Behavior signal analysis and PSC results

The images of eight typical behaviors and the corresponding acceleration data in the x-, y-, and z-axes are
presented in Figure 4A. The eight mouse behaviors are divided into two statuses (i.e., static and dynamic)
according to the mouse posture or position changes during the behavior. From the figure, it is evident that
the acceleration changes are more significant in the five dynamic behaviors, while the acceleration values
only slightly change near their average values in static behaviors. We display two or three behavior positions
for the five dynamic behaviors to represent the complete behavior sequence.

8
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Figure 4: Typical acceleration data for eight behaviors and SVM classification result based on
FWS. (A) Images and acceleration signals for eight behavior signals. (B) Relationship between F-score and
window size (in seconds) for FWS.

The data processing ensues after data collection, including segmentation, feature extraction, and classifi-
cation. After collecting signals of eight behaviors, we took the experiment to determine the relationship
between the recognition accuracy and the segmentation window size of the FWS. Considering the conclusion
from32 and the actual behavior time length of mice, our window size test ranges from 0.4 s to 2 s without
sliding. We use the F-score as the criterion for classification accuracy. The relationship between window size
and the F-score for eight behaviors is shown in Figure 4B.

The maximum average F-score of 0.8171 is obtained at 1.6 s; however, not all the behavior recognition
accuracies reach their highest at that size. The window size influences on static and dynamic behaviors
are quite different. Most of the static behaviors’ F-scores are over 0.9 and only change slightly when the
window size increases. The F-score for dynamic behavior varies greatly as the window size increases, and
there is no linear or other mathematical relationship between the window size and the accuracy. The five

9
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dynamic behaviors reach their maximum at five different window sizes. This result proves our estimation
that different window sizes influence the behavior classification accuracy and that FWS with one window
size is NOT suitable for all behaviors. Therefore, AWS should be applied to dynamic behaviors to find an
appropriate segmentation process.

Then, the preliminary status classifier (PSC) is designed to primarily classify the behavior status according
to the data changing trend. We calculate the FFT energy and acceleration variance in the 2-second window,
consistent with the PSC window, to quantify the changing trends for each behavior type. Figure 5A and
Figure 5B show the distribution of FFT energy and acceleration variance. The FFT energy and acceleration
variance of static behaviors (i.e., resting, eating, and drinking water) are much lower than those of the
other five dynamic behaviors (i.e., walking, rearing, digging, grooming, and scratching). These obvious value
differences make it easier for the PSC to separate the two categories, except that some abnormal values
might cause a classification error. We choose the random forest as the preliminary classifier and use 4-fold
cross-validation to evaluate the performance. The result of PSC is shown in Figure 5C. The total recognition
accuracy is over 95%, which means that the preliminary status classifier performs appropriately, and most
of the signal is segmented by a suitable segmentation method.

A B C

Figure 5: Preliminary status classifier and combined segmentation result. (A) The acceleration
variance box plot for eight behaviors. (B) The FFT energy box plot for eight behaviors. (C) The classification
result of the preliminary status classifier

Final Behavior Classification Results

We constructed five segmentation methods (FWS, BOCDS, PDFS, CSM-1, and CSM-2) and tested them,
then compared the performance of the five segmentation methods. The window size in FWS was set as 1.6
seconds as the optimal for eight behaviors, and the FWS size used in CSM-1 and CMS-2 was 1 second due
to its optimal performance for static behaviors. We used the recall value for each behavior to represent its
classification performance and the average recall to describe the overall performance of model training and
validation. The details of the final behavior classification result are shown in Figure 6.

10
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Figure 6: Comparison of six segmentation and classification methods on recall values with 4-fold
cross validation

The CSM-2 method achieved a 92.06% average recall, approximately a 12.02% increase compared with FWS.
Most behaviors could be classified with a recall value higher than 88%. Although the CSM-1 method was
relatively poor in terms of the average recall, it achieved much higher scratching performance. This figure
shows that the combined segmentation method performs better than any single segmentation method, and
almost all the maximum recall values for each behavior are obtained in the two CSMs.

The influence of a segmentation method difference on static and dynamic behaviors is dissimilar, and the
classification accuracy of static behaviors in both CSM-1 and CSM-2 changed slightly compared to FWS.
The recall value increase in dynamic behaviors is apparent, and the maximum increase is achieved in walking
with CSM-2 at 29.84%. The maximum increasing value of the five behaviors was achieved with CSM-2 at
18.28% on average. As previously demonstrated, we were curious whether combining CSM and imbalanced
learning would increase classification accuracy. The ClusterCentroids method was used to reduce the sample
size of the large-sample-size behavior, and then the reduced feature samples were taken to train the SVM
model and to be validated. After implementing the imbalanced learning steps, the classification result of
each behavior class is also shown in Figure 6.

The chosen CSM was CSM-2 (PSC+FWS+BOCDS) due to its optimal performance discussed above, and
imbalanced learning was utilized to remove samples from four major behavior classes (i.e., Resting, Eating,
Walking, and Rearing). After combining CSM-2 with the imbalanced learning algorithm, the macro-recall
of the eight behaviors can be improved to 94.55%, an increase of 14.51% compared with the FWS. The
macro-recall value also increased by 2.49% compared with CSM-2, but the performance of each behavior
class was dissimilar. The recall value of three static behaviors and walking decreased, while the other four
dynamic behaviors largely increased. This situation occurred because the data sample ratio between eight
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behaviors changed after the under-sampling.

The CSM-2 method achieved a 92.06% average recall, approximately a 12.02% increase compared with FWS.
Most behaviors could be classified with a recall value higher than 88%. Although the CSM-1 method was
relatively poor in terms of the average recall, it achieved much higher scratching performance. This figure
shows that the combined segmentation method performs better than any single segmentation method, and
almost all the maximum recall values for each behavior are obtained in the two CSMs.

The influence of a segmentation method difference on static and dynamic behaviors is dissimilar, and the
classification accuracy of static behaviors in both CSM-1 and CSM-2 changed slightly compared to FWS.
The recall value increase in dynamic behaviors is apparent, and the maximum increase is achieved in walking
with CSM-2 at 29.84%. The maximum increasing value of the five behaviors was achieved with CSM-2 at
18.28% on average. As previously demonstrated, we were curious whether combining CSM and imbalanced
learning would increase classification accuracy. The ClusterCentroids method was used to reduce the sample
size of the large-sample-size behavior, and then the reduced feature samples were taken to train the SVM
model and to be validated. After implementing the imbalanced learning steps, the classification result of
each behavior class is also shown in Figure 6.

The chosen CSM was CSM-2 (PSC+FWS+BOCDS) due to its optimal performance discussed above, and
imbalanced learning was utilized to remove samples from four major behavior classes (i.e., Resting, Eating,
Walking, and Rearing). After combining CSM-2 with the imbalanced learning algorithm, the macro-recall
of the eight behaviors can be improved to 94.55%, an increase of 14.51% compared with the FWS. The
macro-recall value also increased by 2.49% compared with CSM-2, but the performance of each behavior
class was dissimilar. The recall value of three static behaviors and walking decreased, while the other four
dynamic behaviors largely increased. This situation occurred because the data sample ratio between eight
behaviors changed after the under-sampling.

Discussion

Although CSM-1 and CSM-2 have already achieved higher classification accuracy, the reasons why AWS
performed better in dynamic behavior signals and why FWS is more suitable for static behavior signals must
be further analyzed. Two examples demonstrating the difference in IMU readings segmentation and final
classification among the FWS, BOCDS, and PDFS approaches are shown in Figure 7. The total acceleration,
its corresponding label, the segmentation boundary of the three methods, and the final classification error
area are displayed in both examples. The first test is based on a static behavior signal, a 16-second sequence
of collected mouse sensor data. According to the F-score in Figure 4, the FWS window size is chosen as 1.6
seconds, and the entire signal is segmented into 12 slices by FWS. The slice number of BOCDS is smaller (i.e.,
8), and PDFS’s number is larger (i.e., 27). Then, the slices are extracted to feature vectors and are classified
in the following steps. As the entire static signal is labeled ”Eating,” the correctness of the segmentation
inside the ”Eating” behavior is challenging to evaluate. Therefore, we only consider the final prediction
result as the metric for the three segmentation methods. The prediction error is chosen as the assessment
metric, which is defined as follows:

ERRpredict =

m∑
j=1

Lerr (j) (1)

where ERRpredict is the total prediction error, m is the number of false predicted slices, and Lerr (j) is the
length of the jth false predicted slice.

In the final classification result shown in Figure 7C, the corresponding prediction error of FWS is much
smaller than that of the two AWS methods, which means that FWS is more appropriate for static signals.
The reasons behind false prediction are different in PDFS and BOCDS. The slices of PDFS are shorter than
slices of FWS, and some of the slices of BOCDS are much longer. Shorter or longer slices can influence

12



P
os

te
d

on
9

A
u
g

20
22

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
66

00
53

21
.1

07
8
7
50

1/
v
1

—
T

h
is

is
a

p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

the prediction by affecting the calculated feature vectors. For example, the long slices of ”Eating” can be
predicted as ”Scratching,” and the short slices might be predicted as ”Resting.” It could also explain the
low classification recall of BOCDS and PDFS for the behavior ”Eating” in Figure 6.

The other test is conducted on a 15.6-second dynamic signal sequence that contains six mouse behaviors. The
red dotted lines in the figures are the actual behavior segmentation boundary generated by human labeling.
The entire signal is segmented into 10 slices by FWS, while the signal is divided into more slices by BOCDS
and PDFS (i.e., 25 and 18 respectively). In the segmentation result of FWS, many slices contain sharp signal
changes in the middle, which usually indicates the start of new behavior and should be taken as behavior
boundaries. Using the BOCDS or PDFS approach would provide more slices and window boundaries that
are closer to the actual behavior interval boundaries. We define the segmentation error as the number of
reading differences between the segmentation boundary and the nearest human-labeled boundary, which is
expressed as follows:

ERRseg =

n∑
i=1

(Bi −Hnearest) (2)

where ERRseg is the total segmentation error, Bi is the reading position of the ith segmentation boundary,
and Hnearest is the human-labeled behavior boundary, which is nearest to Bi. The segmentation error values
for BOCDS and PDFS are much less than those in FWS, and the two AWS approaches are more sensitive
to these changes among the signals. In addition, the prediction errors of the two AWSs are smaller than the
value of the FWS, and the two AWSs both perform better in the dynamic signal test.
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Figure 7: Comparison between three different segmentation methods. (A) The performance of three
segmentation methods (FWS, BOCDS, and PDFS) on static behavior signal sequences. (B) The performance
of three segmentation methods (FWS, BOCDS, and PDFS) on dynamic behavior signal sequences
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Conclusion

A smart and lightweight (i.e., weighs 5 to 6.6% of typical laboratory mice) wireless IMU sensing device
is developed and attached to laboratory mice to collect their motion data over several days continuously.
Machine learning algorithms are then used to classify and recognize the daily activities of the mice. A new
combined segmentation method is introduced, consisting of fixed-window segmentation, adaptive-window
segmentations, and one preliminary status classifier for mouse behavior recognition. The raw signal of the
mouse behavior collected by the IMU sensor is first analyzed by the preliminary classifier and then segmented
by the combined segmentation method. The segmented slices are used in the feature extraction process. The
final SVM model returns the recognition of the behavior using the feature vectors. Compared to the low per-
formance of the traditional fixed-window segmentation method at only 80.04%, the combined segmentation
method, especially CSM-2 (PSC+FWS+BOCDS), could increase the accuracy in the segmentation process,
which can also result in a significant improvement in the final recognition result. The average recall of the
combined segmentation method for eight behaviors (resting, walking, rearing, digging, eating, grooming,
drinking water, and scratching) increases to 92.06% in the SVM model training process. After combining
the imbalanced learning techniques, the average recall reaches 94.55%. In addition, the average recall is even
higher for less frequent behaviors, such as rearing, digging, grooming, drinking water, and scratching, which
achieves 98.09%.
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