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Introduction

Real world Time on Treatment (rwToT), also known as real world time to treatment discontinuation
(rwTTD), is defined as the length of time observed in real world data (as distinct from controlled clin-
ical trials) from initiation of a medication to discontinuation of that medication1,2. The ending of the
treatment can be caused by adverse events, deaths, switches of treatment and loss of follow up. Because
time to treatment discontinuation can be readily obtained from electronic medical records, this effectiveness
endpoint is convenient to evaluate the efficacy of a drug that is already approved for public use3. It is
often used as a surrogate effectiveness endpoint, showing high correlation to progression-free survival and
moderate-to-high correlation to overall survival4,5. As rwTTD is an important metric for drug effectiveness,
it is routinely reported during the post-clinical trial phase2,4,6–9.

Calculation of rwTTD in patient population is often equivalent to constructing a (Kaplan-Meier) KM curve,
with each point representing the proportion of patients that are still on treatment at a specific time point 1.
Either the entire curve, or mean rwTTD, restricted mean10, or the time point at which a specific portion of
the patients (e.g. , 50%) dropping treatment is of interest. Currently, there is no existing machine learning
scheme established to predict such a curve, or the midpoint, as the vast majority of the machine learning
models have been focused on predicting individuals’ behavior rather than population-level behavior. Such
a machine learning scheme, if established, has many meaningful clinical applications. For instance, given
observed clinical parameters and outcomes in clinical trials, how do we derive expected time-to-treatment
in the real-world? Given the rwTTD for a drug on one patient population, how can we predict the rwTTD
when applying this drug to another population (e.g. , for a different disease)?

This study establishes a machine learning framework to infer population-wise rwTTD. We showed that
population-wise curve prediction differs substantially from aggregating all individuals’ results. Our frame-
work models the population-wise curve and is generic to diverse base-learners for predicting rwTTD. We
demonstrated the effectiveness of this framework based on both simulated data and real world Electronic
medical records (EMR) data for pembrolizumab-treated cancer populations7,11,12. The study opens a new
direction of modeling population-level rwTTD, which has great values for directing post-clinical stage drug
administrations. This machine learning scheme will also have meaningful implications to population-based
predictions for other problems, as machine learning algorithms have so far been focused on predictions for
individual samples.

Results

A machine learning framework for predicting population-wise rwTTD

Termination of a specific treatment can be considered as survival data, where an observed termination of
treatment is an event point and otherwise the patient is censored (Fig. 1a )1. However, existing survival
models only predict individual patient’s likelihood of survival. As shown below shortly, the aggregation of
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. individuals does not represent the profile of a population. Therefore, we designed an approach that predicts
the termination curve of a population.

We started with producing the gold standard (expected future time) for each individual in the training
population. This expected future time is defined as the time expected until the treatment is terminated
from the point at which we are going to make the predictions. Prior to this point, all observed clinical data
are available for making predictions. Two cases can be considered here. In the first case, if we know the
termination time of the treatment (an ‘event’ data point), the patient’s future time is defined as the time
between the end of the observation window, from which we collect feature data used to make prediction,
and the drug termination time. In the second case, if the termination time of the treatment is unknown
for a patient (a ‘censored’ data point), we infer the expected future time from the survival curve derived
from the training population. In this case, we use a popular method, Kaplan–Meier curve, to represent the
termination ratio of the training set 13. The expected future time is then composed of two parts. The first
part is the existing time lapse, i.e. , from the end of the observation time window to the last contact time
point, because we know without uncertainty that the patient continued drug treatment until the last contact
time point. The second part is the expected time after the last contact time point, which is calculated as the
integral of the curve beyond the last contact time point divided by the terminated ratio at the last contact
time point (Fig. 1a ). Adding the first and second part together results in the expected future time for
the censored individuals. This approach generates the gold standard for predicting the expected future time
for each individual into which any kinds of base learners can be built. Later, we will explain how a nested
training scheme can extrapolate and aggregate the predictions from individuals to infer the terminated ratio
curve for a population.

We simulated drug termination data of a population following a survival study 14(Fig. 1b ). We generated a
population of total nindividuals, where the termination rate for each individual is drawn from a population of
p ˜ N(pmean ,? ), and we force the minimal termination rate to be zero. We hypothesize that the probability
that a patient terminates the treatment (p ) on a single day is driven by a series of (m in total) predictive
features f . These features, in reality, can be demographic information, clinical measurements or any claim
data, as will be shown with the real world drug treatment experiment below. In this simulation experiment,
we Let individual feature values correlates to p by:

vkj = pk × fj(1 + θ × εj)

Where vkj is the value of feature j for patientk . pk is the termination rate of Patient k .fj represents
the scaling factor of a particular feature, uniformly drawn between [0, ?]. Each feature j is parameterized
by noise factor ?j , uniformly drawn from [0, ?]. When ? goes up, a larger sampling range will result in
less correlation between the feature and the expected future time. The value of the jth feature of the kth
sample,vkj , is further parameterized by ?, which is uniformly distributed sampled between [-0.5, 0.5].

We set the maximal allowed observation date of all individuals to?max . Between [0,?max ], we create a
binomially distributed vector of length ? k ˜B (?max, , pk) for each individualk . Thus, the higher the pk,
the more likely the individual is to be terminated with the uncertainty defined by the binomial distribution.
In this binomially sampled sequence, the first appearance of 1 decides the termination date tterm . Next,
for each individual, we uniformly sampled between [0,?max ] and define the censoring datetcensor . Iftterm
>tcensor , the last observation timetlast=tcensor , and the status is 0 (censored point and no termination date
is observed); otherwise, thetlast=tterm with a status =1 (termination observed and the date is defined).
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Figure 1. The machine learning and evaluation scheme of rwTTD prediction. a. Calculation of future time
in a censored population. b. Simulation of rwTTD data capturing a variety of factors potentially affecting
performance. c-e. Three evaluation schemes used in the study: absolute error, cumulative error and absolute
number of error days when 50% of the population is terminated.

We developed three metrics to evaluate the model performance (Fig. 1c-e ). For the first metric, “absolute
error ”, we calculated the accumulated values of the predicted curve and the gold standard curve from day
0 to a specific date (1000 days, if not otherwise specified in this paper), and then divided the total difference
by the total number of days. Thus, if the predicted curve is higher than the gold standard curve in the
first half, but lower in the later half, the errors could be canceled out by using this metric. For the second
metric, “cumulative error ”, we accumulated the absolute error at each day from day 0 to a specific date,
and then divided the total error by the total number of days. Then, no matter positive error or negative
error, the absolute errors will aggregate. For the third metric, “Absolute date error at 50% terminated”,
we calculated when 50% of the patients are terminated (reaching 0.5 on y-axis on the termination curve),
what is the absolute difference in days between the gold standard curve and the predicted curve. The three
metrics capture the important aspects in drug administration.

Of note, models can only generate predictions for each individual’s expected future time in the test set when
trained with a machine learning classifier. When we aggregate the predictions, the resulting curve is closely
centered at the average expected future time and substantially deviates from the true distribution (Fig.
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. 2a-c ). This is due to the innate properties of most machine learning algorithms. When minimizing the
squared errors or another similar loss function, the prediction values tend to center around the mean.

To combat such an effect, we further divided the training set into the train set, from which the model param-
eters are derived, and the validation set, from which the distribution of the prediction value is obtained. The
prediction value from the validation set and corresponding future time are used as a reference to interpolate
the prediction results of the test set. In this study, we used first order interpolation and extrapolation if the
test set prediction values go beyond the range of the validation set. By interpolation, we generated a distri-
bution resembling the observed future time distribution of the test set. To further illustrate the functions of
the three metrics we used in this study, we showed the illustrations of the percentage of errors using either
the absolute error or the cumulative errors using ExtraTreeRegressor by different numbers of maximal dates
considered and the absolute error date when 50% of the population is terminated (Fig. 2d-e ).

Figure 2 . Interpolation resolves discrepancy between the predicted value distribution and the true distri-
bution of expected future time when using ExtraTreeRegressor as the base learner. a. Using a validation
set to interpolate real-world distribution. b. Interpolation resolves the discrepancy between predicted values
and the gold standard rwTTD curve. c. Comparison between the distribution of prediction values and gold
standard rwTTD future time. d. Histogram of error rates at different evaluation maximal dates. e. Absolute
error dates when 50% of the population is terminated.

Performance is robust across different simulated situations

We started with ?max= 2000,pmean = 0.0008, ? = 0.0008. ? = 1, ? = 100, n = 5000, m = 100. This
created a dataset with 5000 patients and 100 clinical features. Unless otherwise specified for testing model

4
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. robustness, these are the base parameters we used. We built in three commonly used algorithms for testing:
ExtraTreeRegressor, linear regression and Support Vector Machines (SVM)15.

With the above starting point, we examined the behaviors of the model. With the increase of mean ter-
mination rate of the population, performance stayed strong. (Fig 3b-c, Fig S1a, Fig 2 ). The median
error rate at pmean = 0.0008 for cumulative errors are 9.11%, 8.97%, 9.10% for ExtraTreeRegressor, Linear
Regression, and SVM, respectively, compared to 7.89%, 8.15%, 7.47%, which are their respective errors at
pmean= 0.0012 . Overall, we saw little variance when the termination rate of the population changes.

Figure 3 . Performance of rwTTD prediction in homogeneous population during cross-validation. a.
Example terminated ratio curve at 0.0008 termination rate. b. Comparison between predicted curve and
gold standard curve by different base learners at different termination rates. c. Cumulative error at different
termination rates. d. Cumulative error with different numbers of training examples. e. Cumulative error
with different numbers of predictive features. f. Cumulative error with different feature noise levels.

With the increase of examples, there is a steady decrease in the percent of error (Fig 3d, Fig. S1b, Fig. S3
). This is expected as we have more training examples, the inference of the overall curve is improved. With
100 examples, the median error using cumulative errors are 19.84%, 22.92%, 20.22% for ExtraTreeRegressor,
Linear Regression, and SVM respectively. In contrast, with 10,000 examples, the median errors using
cumulative error is 6.81%, 7.95%, 6.28% for ExtraTreeRegressor, Linear Regression, and SVM, respectively.
We consider this is caused by more stable performance and inference of parameters in models with more
training examples. On the other hand, the number of predictive features does not affect performance (Fig.
3e, Fig. S1c, Fig. S4 ). Additionally, with a sufficient number of examples (5000), noise level on individual
features does not affect model performance (Fig. 3f, Fig. S1d ,Fig. S5 ). The above results demonstrated
the overall robust performance of the model when the patients are derived from the same population.

Cross-validation across two distinct populations shows strong performance.

We further examined the performance by simulating two distinct populations and examined the ability of
model extrapolation across different cohorts. Both populations were simulated by the same approach as
described in the previous section. Then, we focused on each of the parameters and changed this parameter
through a grid search. In this case, we used ExtraTreeRegressor, which is a representative machine learning
base learner.

The most important factor affecting results we observed was the termination rates. When fixing the training
set termination rate, the best performance is achieved when the test population is most similar to the training
set, and deviates gradually when the two termination rates differ (Fig. 4a, Fig. S6-7 ). For example,

5
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. when the training set average termination rate is 0.0008, the model achieved an error rate of 5.464% for
both metrics when the test set termination rate is also 0.0008. The error rate becomes higher at both tails
when the test set termination error differs from training set termination error: when the test set termination
rate is 0.0002, the model achieved an error rate of 9.18% for absolute error and 9.29% for cumulative error.
When the test set termination rate is 0.0012, the model achieved an error rate of 18.82% for both absolute
error and cumulative error. This observation is expected, as if the termination rates of the two populations
differ too much, and corresponding feature distributions (derived from the termination rate) do not overlap
between the two populations, then it would be challenging to predict the patterns. Nevertheless, the error
is much lower than directly using the training curve, for which we would expect a 50% error when trained
with 0.0008 termination rate and tested with 0.0012 termination rate.

Figure 4. Performance of rwTTD prediction across heterogeneous populations. a. Performance of different
test set termination rates, when the training set is at 0.0008 termination rate. b. Performance of different
training set examples, when the number of test set examples is fixed at 5000. c. Performance of different
test set noise levels, when the training set noise level is 0.1. d. Performance of different test set feature scales
when the training set feature scale is 1.

The other factors affected little on the performance. When the training set and test set were drawn from
the same population, when increasing the number of training examples, the performance steadily improves,
while the number of testing examples mainly affects the breadth of the performance (Fig. 4b, Fig. S8-9 ).
Noise level on individual features does not affect overall performance on population-wise rwTTD (Fig. 4c,
Fig. S10-11 ). We then altered the scaling factor of the features. This alteration would result in feature
values distributed at different scales, and thus addressing record disparities across cohorts. As expected,
when the training and testing feature scales are similar, the model showed relatively low errors. As the two
distributions deviate, the percentage of error increases. However, even when the training set feature scale is
1, and the test set feature scale is 1000, the overall population error was moderate (0.13481 for both metrics)
(Fig. 4d, Fig. S12-13 ). The above results point to a stable performance of the model across two distinct
populations against a variety of factors.

Predicting population-level rwTTD for lung cancer and advanced head and neck cancer treatment using pem-
brolizumab

We tested the above algorithm in the context of lung cancer treatment and head and neck cancer treatment
using pembrolizumab (for cohort selection please see Methods ). rwTTD, the duration between the first

6
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. dosing to the last administration are defined by the following three criteria: a. switch to a different treatment:
This is an event point, and rwTTD is defined between the first dosing to the last available administration.
b. death: This is also an event point, and rwTTD is defined between the first dosing to the death date.
c. With a gap >= 120 days between last known administration and last known activity: This is an event
point, and rwTTD is defined between the first dose to the last known available administration. If none of
the above happens, the data point is considered as censored (no data after last administration date or the
gap is < 120 days).

We carried out three evaluation experiments (Fig. S14 ). The first two experiments used advanced lung
cancer data and examined the performance of prediction rwTTD in this homogeneous population. In the
first experiment, we randomly selected the cutoff time between the first dose time and the last contact time
point (let it be censoring time or termination time), and uniformly and randomly selected a time in between
as the cutoff time. All information prior to the cutoff date (observation window) is used to extract feature
data (seeMethods ). The time between the cutoff time and the last contact time point is the time used to
calculate the rwTTD curve. Here we are evaluating the ability of predicting rwTTD given a random length
of observations. In the second experiment, the cutoff date is consistently 30 days after the first dose. Thus,
we are evaluating how well we can predict given 30 days of observation data. The third experiment was
trained with lung cancer data with a random cutoff and tested with head and neck cancer. Under these
three sceneria, we evaluated the performance of predicting the rwTTD curve.

Overall, we found strong performance for rwTTD in both homogeneous population and cross-disease predic-
tion tasks (Fig. 5a-c, Fig. S15-17 ). We observed an average 14.12% 13.15%, 31.59% percent absolute
error rate for random cutoff cross-validation, 30 day cutoff cross-validation, and cross-disease prediction,
respectively. The cumulative error rates are 23.78%, 18.43%, 34.15% respectively (Fig. 5d ). Of note,
cross-disease errors are expected to be higher as the patient populations are distinct and can respond to the
drug differently. We further examined the performance at 6, 12, 18, and 24 months, and error rates remained
stable within this range (Fig. 5e ). In Particular, we observed a very low average 50% terminated ratio date
prediction, for only 82.90, 105.33, 81.90 for random cutoff cross-validation, 30 day cutoff cross-validation,
and cross-disease respectively (Fig. 5f ). These results support strong performance in real world data even
when the model is delivered to data derived from a different population but share certain similarities in the
EMR data that was collected.

Figure 5 . Performance of rwTTD models in real world lung cancer and advanced head and neck cancer
treatment using pembrolizumab. a. Comparison of predicted curve and gold standard curve with random
cutoffs in lung cancer (fold 1). b. Comparison of predicted curve and gold standard curve with 30 day cutoff
after treatment starts in lung cancer (fold 1). c. Training with lung cancer data and testing with head and

7
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. neck data (fold 1). d. Percentage error up to 1000 days for random cutting, 30 day cut cross validation and
cross-disease predictions. e. Percentage error at 6, 12, 18 and 24 months respectively. f. Absolute date error
when 50% of the patients are terminated.

Discussion

In this study, we developed a strategy to incorporate machine learning into predicting real-world time-on-
treatment curves. To this end, we generalized the problem into predicting expected future time on treatment
and then stratified the distribution of the predicted time. We showed strong performance of this approach in
predicting rwTTD across a variety of influencing factors using simulated data. We showed its flexibility to
be applied to any machine learning base classifiers. We then showed its robustness when trained and tested
on different populations. Lastly, we demonstrated its robust performance using real world lung cancer and
head and neck cancer data treated with pembrolizumab.

Although rwTTD is a critical metric in monitoring the efficacy of a treatment in the real world patient
populations, no study has yet attempted to establish machine learning models to predict rwTTD. The key
obstacle is that rather than predicting individual scores, we are required to predict a curve. This notion
and strategy is new, and will spur the field of curve prediction in many other research fields. Of note, we
demonstrated that the aggregation of individuals does not reflect the overall profile of the population, which
is an important rationale behind the approach we presented in this study.

This study opens the possibility of many follow-up directions. For example, can such models be applied to
clinical trial data, and using the generated model to predict real-world populations? Can models be well
generalized from one demographic group to another? While we touched these aspects using simulated data
and real world pembrolizumab data, it will be of interest to test in other diseases and drugs as well. How
does the interpolation function affect the performance of the model? How do other base learners such as
deep learning, Gaussian Progress Regression work with this model? Our approach allows incorporation of
any supervised base learner which can be tested in future studies concerning other diseases and therapeutics.
Finally, this study opens the possibility of population-wise predictions, which is distinguished from individual-
wise prediction. This will have enormous applications in the future in all research areas whose current focus
is on individual predictions.

Methods

Base learner implementation and parameters

For the simulation experiment, we tested three base learners: ExtraTreeRegressor, Linear Regression and
Support Vector Machines (SVM). For ExtraTreesRegressor, we used 1000 trees with a maximal depth of 3,
squared error as the criterion of split, minimal number of examples as 2 in a split and minimal number of
examples in a node as 1. For SVM, we used the SVR (support vector regressor) implemented in sklearn,
with C=1.0, and epsilon = 0.2. For Linear Regression we used Ridge penalization with alpha = 1.0.

Selection of cohorts from Flatiron Health database

We used the following criteria to select advanced NSCLC Patients and advanced head and neck patients
from Flatiron Health database16. 1) The patient should be >= 18 years of age at advanced diagnosis. 2)
There should be some kind of activity (in drug administration or visit table) within 90 days of the advanced
diagnosis. 3) The patient should have at least 1 record of systemic anti-cancer drugs 4) Exclude drug records
that are part of clinical trials. This resulted in 4,784 NSCLC patients and 422 advanced head and neck
cancer patients included in this study.The demographic profiles for these patients are described in Table S1
.

Processing of feature data

We used the following data tables for feature extraction before the cutoff date: ECOG, enhanced biomarkers,
demographics, diagnosis code, visit code, telemedicine code, medication administration code, insurance, lab
results, medication order, vitals, and practice.
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. Feature data can be largely separated into two categories. One set is static data, which does not change over
the observation time course, including Age, Gender, Race, etc. The other set is dynamic data, including lab,
medication, visit, vitals, diagnosis, etc , which are collected before the cutoff date. For this set of data, we
extracted diverse meta-features. We first selected the most frequent 100 concept IDs in each of the above
Flatiron data tables, and the last eight points of records are binarized (if not originally a continuous value)
to generate 800 features, with 1 representing the appearance of the concept ID at that data point, and 0
otherwise. Additionally, if the concept ID represents a real-valued feature, the mean value and the standard
deviation of each selected concept ID before the cutoff time are included. Using these mean and the standard
deviation, we generate normalized values for the initial 800 features for each table, and we record the time
difference between each record and the previous one. Lastly, we include a binary indicator for each original
feature whether it comes from a missing record (8 values for each Flatiron data table) or an existing record.
This matrix will be flattened into a single feature vector, concatenated with the static features and input
into lightGBM.

Code availability

Code is open upon reasonable request to the corresponding authors.
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