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Abstract

Multiparametric magnetic resonance imaging (mpMRI) has emerged as a valuable diagnostic tool in prostate lesion assessment,
for which many reports conclude the advantageous use of convolutional neural networks (CNNs) in prostate lesion detection
and classification (PLDC). However, the network training inevitably involves prostate magnetic resonance (MR) images from
multiple sites/cohorts. There always exists variation in scanning protocol among the cohorts, inducing significant changes in data
distribution between source and target domains. This challenge has greatly limited clinical adoption on a large scale. Recent
domain adaptation (DA) models can alleviate the inherent cross-site heterogeneity. Some could leverage cross-domain knowledge
transfer using whole-slide images, without prior knowledge of lesion regions. In this paper, we propose a coarse mask-guided
deep domain adaptation network (CMD²A-Net) in order to develop a fully automated framework for PLDC using multi-cohort
images. No category or mask label is required from the target domain. A coarse segmentation module is trained to cover the
possible lesion-related regions, so that attention maps can be generated to dedicate the local feature extraction of lesions within
those regions. As a result, the features of both prostate lesion and region can be fused to align the robust features between the
source and target domains. Experiments have been performed on 512 mpMRI sets from datasets of PROSTATEx (with 330 sets)
and two cohorts, A (with 74 sets) and B (with 108 sets). Using the ensemble learning, our CMD²A-Net accomplishes an AUC of
0.921 in cohort A and 0.913 in cohort B, demonstrating its transferability from a large-scale public dataset PROSTATEx to our
small-scale target domains. Our results and ablation study also support the CMD²A-Net’s effectiveness in lesion classification
between benign or malignant, compared to the state-of-the-art models

Corresponding author(s) Email: kwokkw@hku.hk (K.W. Kwok), varv@hku.hk (V. Vardhanabhuti)

Results and Discussion

Datasets

Table 1. Characteristics of the five MRI datasets for prostate segmentation and PLDC.

Datasets Total Cases Positive Cases Negative Cases MRI Scanner Diffusion b-value (s/mm2) In-plane Resolution (mm) Task Task Task

*PSeg #CHA PLDC
I2CVB 646 N/A N/A Siemens, and General Electric N/A 0.68-0.79 [?] N/A N/A
P-x 330 76 254 Siemens Trio and Skyra 50, 400, and 800 0.5 N/A [?] [?]
LC-A 74 51 23 Philips Achieva 0 and 1,400 0.229 N/A [?] [?]
LC-B 108 14 94 Philips Achieva 1,000 and 1,400 0.315 N/A [?] [?]
LC-C 29 11 18 Siemens Skyra N/A 0.625 N/A [?] N/A

1
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. Remarks: *PSeg – Prostate segmentation; #CHA – Cross-domain heterogeneity analysis.

Five datasets are utilized in this study, i.e. Initiative for Collaborative Computer Vision Benchmarking
(I2CVB) [1], PROSTATEx[2] (P-x), and three datasets from Hong Kong hospital local cohorts, LC-A, LC-B,
and LC-C. Note that, LC-A and LC-B were acquired from the same MR[3] imaging center. Table 1 shows
characteristics of these five datasets. Note that I2CVB is already available online, which has been widely
investigated for prostate zone segmentation [4]. It contains 646 T2 images acquired from 36 patients. Fifteen
patients were scanned by 3.0-T Siemens scanners and 21 patients by 1.5-T General Electric scanners. Given
the segmentation labels on the prostate, central gland, peripheral zone, and lesion, only image slices covering
the prostate are selected as our samples. A Mask R-CNN model is employed for prostate segmentation using
this dataset. P-x, LC-A, LC-B, and LC-C are mpMRI-based datasets marked with point labels. The four
datasets share the same set of category labels (i.e. csPCa and non-csPCa). Dataset, P-x, LC-A, and LC-B,
are utilized to evaluate the PLDC performance of our CMD²A-Net, including 330 cases from P-x, 74 cases
from LC-A, and 108 cases from LC-B. To avoid “overfit” caused by LC-C (29 cases) with its small size, it is
only used for cross-site heterogeneity analysis.

Analysis of Cross-site Heterogeneity

We first evaluated prostate segmentation performance using mean intersection over union (IoU), in order
to ensure that the prostate regions can be predicted accurately. The IoU indicates the intersection between
the predicted prostate contour and the ground truth mask label, which was measured on the test split of
I2CVB. The mean IoU of prostate region, central gland, and peripheral zone are 0.843, 0.781, and 0.516,
respectively. These results are comparable with the work of Alkadi, Taher, El-Baz and Werghi [4] which
attained an IoU of 0.673 and 0.599 for the central gland and peripheral zone, respectively. It implies that the
training set containing MR[5] images from 36 patients is already sufficient for accurate prostate segmentation.
Additionally, the segmentation results are found to be promising on the image obtained from either 1.5-T
or 3.0-T MRI[6] machine, indicating that the IoU measuring is not sensitive to the scanner types (see details
in Supplementary Figure 1).

Table 2. Comparisons of AUC using separate and joint learning approaches.

Datasets T2 T2 T2 T2 ADC ADC ADC ADC hDWI hDWI hDWI hDWI

P-x LC-A LC-B LC-C P-x LC-A LC-B LC-C P-x LC-A LC-B LC-C
P-x only 0.91 0.35 0.55 0.65 0.67 0.53 0.42 0.51 0.81 0.41 0.68 0.50
LC-A only N/A 0.61 0.55 0.66 N/A 0.69 0.38 0.53 N/A 0.70 0.57 0.49
LC-B only N/A 0.39 0.61 0.67 N/A 0.52 0.61 0.48 N/A 0.47 0.88 0.59
Joint P-x, LC-A 0.89 0.67 N/A N/A 0.73 0.54 N/A N/A 0.73 0.54 N/A N/A
Joint P-x, LC-B 0.88 N/A 0.59 N/A 0.66 N/A 0.55 N/A 0.76 N/A 0.87 N/A
Joint LC-A, LC-B N/A 0.63 0.53 N/A N/A 0.74 0.61 N/A N/A 0.72 0.91 N/A

Then, we analyzed cross-site heterogeneity on our multi-cohort datasets (P-x, LC-A, LC-B, and LC-C).
We aim to verify whether the prior MR[7] image intensity normalization (e.g., Liu, et al. [8] is effective to
reduce domain shift, when domain knowledge is not considered. Coarse Mask-guided Network (i.e. CM-Net,
in Figure 4) was utilized for cross-site heterogeneity analysis. Here, training a model on an individual
dataset is defined as “separate learning approach”, while training a model using a combined dataset from
multi-cohort samples is defined as “joint learning approach”. As shown in Table 2, we trained CM-Net
using the individual and combined datasets from P-x, LC-A, and LC-B. The three separate models were
individually trained in these three domains. They are set as the baselines for comparisons with the joint

2

https://i2cvb.github.io/
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. models. During the testing phase, each separate model was tested on the four datasets. LC-C only acted as
the hold-out testing set for domain shift analysis, as its small size (only 29) would cause overfitting in training,
and biased prediction in testing. Note that, owing to the limited sample size of local cohorts (74 and 108
cases on LC-A and LC-B, respectively), separate models of LC-A and LC-B were pre-trained on the large-
scale dataset P-x (330 cases), and then fine-tuned on the corresponding domain. Such a transfer learning[9]

strategy would reduce overfitting caused by data scarcity. A common preprocessing method, scaled, was
employed to normalize the image intensities within [0,1].

Table 3. Comparisons of AUC using six image preprocessing methods.

Preprocessing Methods T2 T2 ADC ADC hDWI hDWI

P-x LC-A P-x LC-A P-x LC-A
Scaled 0.89 0.67 0.73 0.54 0.73 0.54
Whitening 0.87 0.73 0.65 0.72 0.56 0.54
Scaled + BFC 0.90 0.71 0.67 0.65 0.76 0.65
Whitening + BFC 0.91 0.80 0.68 0.68 0.73 0.55
Scaled + NF 0.89 0.75 0.66 0.61 0.80 0.56
Whitening + NF 0.84 0.72 0.64 0.66 0.79 0.57

The results of separate models from P-x, LC-A, and LC-B are shown in Table 2. For the three sequences
(i.e., T2, ADC, and hDWI), the AUCs of three separate models are relatively high when tested within their
domains, but the AUCs sharply drop when directly tested in the unseen domains. Such results show the
sensible cross-domain discrepancy (i.e. domain shift) among the four datasets. Note that, in terms of the
T2 sequence, separate models of LC-A and LC-B accomplish the highest testing AUCs (0.66 and 0.67) in
the unseen domain, LC-C, just marginally higher than the ones (0.61) within their corresponding domains.
A potential reason for the biased predictions is the deficiency of testing samples (i.e. 29) on LC-C. When
it comes to the joint models in the table, they cannot bring remarkable improvements in each sequence
compared with the separate models, instead, even may lead to performance degradation due to cross-site
heterogeneity.

Figure 1. Image preprocessing examples (from P-x and LC-A) in quantitative analysis on inter-
site heterogeneity. Among the six methods in Table 3, whitening, whitening + BFC, and whitening +
NF act as representatives. Coarse lesion region is contoured (in red) on the randomly selected pre-cropped
T2 images. Prior to the preprocessing (left half), the heterogeneity of intensity distribution can be observed
obviously in the original samples, while the distributions are harmonized after the preprocessing (right half).
All the jet color maps are same scale.

3
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. With severe discrepancies among our datasets, we intend to validate whether the rigorous MR[10] image
preprocessing methods can contribute to the joint models’ classification performance. Similar to scaled,
whitening is another common preprocessing method, capable of normalizing the pixel values with a mean of
zero and a variance of unit. Taking the combined dataset, P-x and LC-A, as a representative for evaluation.
In Table 3, scaled, whitening, and their combined function with bias field correction (BFC) or noise filtering
(NF), 6 preprocessing methods in total (see details in Supplementary Figure 3) , were adopted as in [8].
The joint models using scaled and whitening acted as the two baselines for comparisons with the rigorous
MR image preprocessing methods (i.e. BFC and NF). Figure 1 depicts the image preprocessing examples
of three methods (i.e. whitening, whitening + BFC, and whitening + NF). The left and right halves of each
sample represent before and after preprocessing, respectively. Before preprocessing, we can observe noticeable
intensity distribution discrepancies on the samples. The samples from LC-A are characterized by larger
numbers of low-intensity grayscale pixels as compared with the images of P-x. Subsequently, the jet color
maps were employed to highlight the intensity distribution between domains after preprocessing. All the color
maps share the same intensity color scale. Similar intensity distributions can be found among the samples
after preprocessing, demonstrating the effectiveness of the methods in image distribution harmonization.

In Table 3, for the T2 sequence, BFC with either scaled or whitening outperforms the baselines. Besides,
BFC with whitening achieves best AUCs of 0.91 and 0.80 on P-x and LC-A, respectively. However, these
findings are not consistent with the results in ADC and hDWI. In terms of ADC, the models preprocessed
with BFC or NF underperform the baselines. Instead, the baseline models receive the highest AUCs, where
scaled alone and whitening alone accomplish 0.73 and 0.72 on P-x and LC-A, respectively. When it comes
to the sequence of hDWI, either BFC or NF attributes limited improvement over the baselines. On P-x, the
AUC increases marginally from 0.73 (scaled only) to 0.80 (scaled with NF); on LC-A, only an AUC of 0.65
is achieved using scaled with BFC. The above results of the three sequences show that these pre-processing
approaches could improve CM-Net’s classification performance when combing our two datasets. However,
none of the methods is capable of boosting the joint models’ generalization considerably, as compared with
the separate models of P-x and LC-A (in Table 2). This indicates that the preprocessing methods are
probably insufficient to solve domain shift fundamentally. A possible reason is that the severe discrepancies
do not come from the inter-site discrepancies (in Table 1), rather than the intensity distribution of the
heterogeneous mpMRI[11] sequences only (see details in Supplementary Figure 2).

Cross-domain Malignancy Classification and Lesion Detection

We emphasize the importance of knowledge transfer from a large-scale publicly dataset to a small-scale target
domain. The malignancy estimation performance of CMD²A-Net (the architecture is shown in Figure 4
and described in detail in the Methods section) is evaluated. Dataset, P-x, is only regarded as the source
domain. Either LC-A or LC-B is also set as the source domain for knowledge transfer between local cohorts.
The scaled method was employed for image preprocessing. In general, available types of MR[11-12] sequences
may vary in healthcare institutions. Thus, we employed ensemble learning[13] to handle multiple sequences,
allowing the use of single and multiple sequence(s) in our framework. Three common metrics were adopted
for classification performance evaluation, i.e. AUC, sensitivity (SEN), and specificity (SPE).

Table 4. Malignancy classification results in the target domains in four combinations of source-target
domain.

Sequences Combinations P-x - LC-A P-x - LC-A P-x - LC-A P-x - LC-B P-x - LC-B P-x - LC-B LC-A - LC-B LC-A - LC-B LC-A - LC-B LC-B - LC-A LC-B - LC-A LC-B - LC-A

AUC SEN SPE AUC SEN SPE AUC SEN SPE AUC SEN SPE
T2 0.87 0.79 0.80 0.84 0.75 0.79 0.65 0.60 0.59 0.70 0.60 0.62
ADC 0.79 0.76 0.66 0.75 0.74 0.73 0.64 0.62 0.59 0.67 0.62 0.66
hDWI 0.79 0.74 0.74 0.90 0.80 0.80 0.61 0.57 0.55 0.70 0.69 0.68
T2 + ADC 0.91 0.76 0.86 0.86 0.76 0.75 0.69 0.60 0.64 0.74 0.67 0.64

4
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. Sequences Combinations P-x - LC-A P-x - LC-A P-x - LC-A P-x - LC-B P-x - LC-B P-x - LC-B LC-A - LC-B LC-A - LC-B LC-A - LC-B LC-B - LC-A LC-B - LC-A LC-B - LC-A

T2 + hDWI 0.92 0.80 0.84 0.92 0.94 0.68 0.68 0.61 0.64 0.73 0.62 0.68
ADC + hDWI 0.84 0.79 0.74 0.90 0.83 0.73 0.68 0.62 0.68 0.74 0.64 0.62
T2 + ADC + hDWI 0.92 0.83 0.90 0.91 0.79 0.82 0.74 0.73 0.70 0.77 0.74 0.74

Table 4 illustrates the classification results (i.e. csPCa or non-csPCa). Seven sequence combinations are
involved for comparisons. The former and the later domains in the table are denoted as the source and
target domains, respectively. We define such pairs of domains/cohorts as DA settings. First, we compare
CMD²A-Net with the separate and joint models (in Table 2 ) in terms of AUC. Take the first DA setting
(P-x - LC-A) as an example. In the T2 sequence, CMD2A achieves an AUC of 0.87 in the target domain (i.e.
LC-A), outperforming both the separate model (AUC: 0.61) and the joint model (AUC: 0.67). Consistent
findings can be observed in ADC and hDWI. When it comes to the other three DA settings, CMD2A-Net
also demonstrates its advantage in resolving domain shift between two of our datasets. This validates our
hypothesis that incorporating prostate lesion information in prior to the DA process can facilitate PCa
classification.

Second, we analyze our model’s PCa classification performance using a single sequence, i.e. T2, ADC, or
hDWI. In most source-target DA settings, T2 is the most effective, while ADC receives the lowest AUC.
Sequence, hDWI, shows unstable performance in the four DA settings. For example, it accomplishes the
most superior performance (w.r.t. AUC, SEN, and SPE) in “P-x - LC-B”, but underperforms T2 and ADC
in “LC-A - LC-B”. This could be caused by heterogeneous b-values among the domains. As shown in Table
1 , b-values of 50, 400, and 800s/mm2 were employed on P-x, while 0 and 1,400s/mm2 were used in LC-A,
1,000 and 1,400 s/mm2 were used in LC-B. Thus, we can conclude that the significant discrepancies in the
acquisition parameters would result in the inconsistent performance of hDWI. Note that there had no widely
accepted guidelines regarding b-value until the release of PI-RADS in 2019, which recommended a minimum
value of 1,200s/mm2.

We also investigate effect of ensemble learning using multiple sequences, which could provide references to
choose appropriate sequences for PLDC. In each DA setting, the models using multiple sequences are always
more effective than using any single sequence alone. Besides, although ADC or hDWI always leads to the
worst classification results, T2 ensembled with one/both of them can explicitly enhance the model’s perfor-
mance. This finding is consistent with the clinical practice of using mpMRI for PCa diagnosis. Sequences
ADC and hDWI are usually considered as secondary references by radiologists. It should be noted that
the all-sequence-ensembled (i.e. ensemble of T2, ADC, and hDWI) models show significant predictions in
most DA settings. Although ensemble of the three sequences could not lead to the best performance in the
second DA setting (i.e. P-x - LC-A), the model of the second DA setting still attains a remarkable AUC
of 0.91, which is only about 1% smaller than the highest AUC (0.92). It can be concluded that using more
sequences would help multi-cohort MRI[14] harmonization, thus boosting the final classification performance.
Moreover, with the same target domain (i.e. either LC-A or LC-B), the CMD2A-Net transferred from P-x
attains a higher AUC than transferred from a local cohort domain in each sequence combination. This im-
plies more source samples could enhance the model’s cross-domain knowledge transferability, thus improving
the model’s generalization in the target domain. The superior performance also demonstrates CMD2A-Net’s
capability of transferring the knowledge of a public dataset to our local cohort domains.
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.

Figure 2. Coarse lesion detection results of (a) accurately classified and (b) misclassified exam-
ples in target domains, LC-A and LC-B, relative to the source, P-x. All-sequence-ensembled (T2,
ADC, hDWI) approach is employed. In lesion detection results (1st and 2nd rows), The lesions (ground-truth)
are pointed in green. The predicted coarse lesion regions are colored in yellow. Promising prediction of lesion
region, i.e., containing the ground-truth in all sequences, can yield the higher correctness of classification as
in (a). Moreover, under-segmented prostate regions marked with yellow boxes/contours (i.e., the example
of LC-B in the 3rd row) would also worse the classification outcome.

Figure 2 shows coarse lesion detection results of the accurately classified and misclassified examples. Two
DA settings (i.e. P-x to LC-A, and P-x to LC-B) were selected as representatives for lesion detection
evaluation. Results of the all-sequence-ensembled method are selected as representative for analysis. In
the correctly classified examples, Coarse lesion contours could encircle the lesion ground-truth point in all
sequences (as shown in Figure 2a). However, in the unclassified examples, the coarse lesion position could
not be precisely detected in most sequences as shown in the third row. In the example of LC-A, the lesion on
T2 is correctly detected, but the lesion contours on ADC and hDWI maps are falsely identified. The possible
reason is that the coarse lesion masks applied as the training ground truth could not depict the actual lesion
contours accurately. Therefore, we can observe that accurate detection on ADC and hDWI also play a role
in enhancing the ensembled classification, although lesion detection generally heavily relies on T2 images.
In the future, robust weak label processing methods (e.g., deep extreme level set evolution method [15]) are
expected to be employed. For the example from LC-B, under-segmentation of the prostate region can be
found on the T2 image, which could lead to failure lesion detection. As the prostate regions on ADC and
hDWI were transformed using T2, under/over-segmentation of the prostate gland on T2 would deteriorate
the lesion detection in the other two sequences. Despite the inaccurate lesion detection on ADC and hDWI,
it should be noted that the models with multi-sequences input still outperform the models using T2 alone
in lesion classification, accrediting to the re-use of prostate features from ADC and hDWI.

6
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. Comparisons with the State-of-the-art Methods

We compared our model with three state-of-the-art models using AUC, i.e. Resnet50 [16], DANN [17], and
Deep Coral [18]. Dataset, P-x, was used as the source domain. Our local cohort datasets, LC-A and LC-B,
acted as the target domains. The individual (i.e. T2, ADC, and hDWI) and the ensembled (i.e. T2 +
ADC + hDWI) sequences were involved. The other ensembled sequences, T2 + ADC, T2 + hDWI, and
ADC + hDWI were not involved here due to their inferior performance as discussed in Section 4.2. Detailed
comparison results are summarized in Table 5.

Table 5. AUC comparisons on malignancy classification (i.e. csPCa or non-csPCa) with the three existing
models.

Methods P-x - LC-A P-x - LC-A P-x - LC-A P-x - LC-A P-x - LC-B P-x - LC-B P-x - LC-B P-x - LC-B

T2 ADC hDWI Ensemble T2 ADC hDWI Ensemble
Resnet50 0.65 0.70 0.55 0.70 0.66 0.71 0.68 0.71
DANN 0.70 0.72 0.66 0.79 0.68 0.66 0.75 0.80
Deep Coral 0.71 0.75 0.67 0.75 0.74 0.73 0.80 0.85
CMD²A-Net (Ours) 0.87 0.79 0.79 0.92 0.84 0.75 0.90 0.91

Resnet50 is a common classification model. It was pre-trained from the source domain, then tuned and
tested in the target domain, therefore, no DA was utilized. In Table 5 , Resnet50 underperforms all other
methods in all sequences. The possible reason may be the weak cross-domain knowledge transferability of
the fine-tune strategy. This shows the advantage of domain adaptation methods over the fine-tune strategy.
Another model, DANN, which is GAN-based and has been widely employed in lesion assessment. It can
extract low-level features from the entire image. Moreover, Deep Coral was also introduced, which can
leverage domain knowledge transfer by aligning the second-order statistics. Similar to DANN, it also adopts
a common encoder for feature extraction from the input of a whole image slice. Differently, our model
could fuse both lesion features and prostate features for effective DA, instead of extracting the prostate
features. We “strengthened” the point labels to be coarse mask labels, such that features, particular lesion
features, can be robustly aligned for DA using the mask labels. In Table 5 , CMD²A-Net outperforms the
two UDA models in all the sequences in terms of AUC, indicating the effectiveness of our model in cross-
domain feature harmonization and its advantage in prostate lesion classification. It is worth noting that all
four models accomplish their highest AUCs using the ensembled sequence. The consistent conclusion can be
found in Section Cross-domain Malignancy Classification and Lesion Detection, showing the benefits of the
all-sequence-ensembled method again.

Visualization of Sample Distribution and Ablation Study

Apart from AUC, we also intend to visualize the sample distribution of source and target domains, in support
to any improved performance of handling domain shift intuitively. Datasets, P-x and LC-A, were adopted
to visualize the data distribution before and after the DA. Algorithm, t-SNE [19], was employed to visualize
the data distributions of all sequences, i.e. T2, ADC, and hDWI. Fifty mpMRI cases from each dataset
were randomly chosen. As shown in Figure 3a-c, obvious clustering can be observed before DA in each
sequence, indicating severe domain shift between the two domains. After CMD²A-Net training (i.e. DA),
domain-invariant features were extracted by the well-trained model. After the DA, each sequence samples
from the two cohorts are evenly distributed, proving that CMD²A-Net could assure feature alignment on
the heterogenous mpMRI sequences[20].

7
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.

Figure 3. Sample distribution before and after DA for sequences (a) T2, (b) ADC, and (c)
hDWI using t-SNE. Similar change of distributions can be observed in all the sequences. Before DA,
sample distributions of the source (red dots) and target (blue triangles) are dispersed in separate clusters,
indicating severe their domain shift. The mixed and even distribution after DA demonstrates the effectiveness
of CMD²A-Net in feature alignment. (d) indicates the impact of hyperparameters (i.e., α and β) in the
loss sensitivity analysis.

To carry out the ablation study, we selected two key components, i.e. the coarse segmentation module and the
domain transfer module, to analyze their contribution to lesion malignancy classification using T2 images. We
compared our CMD²A-Net with its two variants using AUC, i.e. (1) CMD²A-Net excluding domain transfer
module (i.e. CM-Net, shown in the black dashed box in Figure 4 ) and (2) CMD²A-Netexcluding the
course segmentation modules (D²A-Net). Since the CM-Net does not contain DA modules, it was trained
in the source domain, then fine-tuned and tested in the target domain. Datasets, P-x and LC-A, were
selected as the source and target domain, respectively. D²A-Net obtains a lower AUC (0.65) compared with
CMD²A-Net (0.87). This suggests that the coarse segmentation module is essential for domain-invariant
feature extraction between domains. This also supports our hypothesis that the coarse lesion maps would
enhance the malignancy classification accuracy. CM-Net obtains an AUC of 0.67, also less than CMD²A-
Net. This indicates that the domain transfer module can substantially mitigate domain shift, thus enhancing
CMD²A-Net’s PCa classification performance.

The loss parameters sensitivity is also analyzed. CMD²A-Net was trained using P-x (source domain) and
LC-A (target domain). Hyperparameters α and β (i.e. weighting parameters of the total loss) would influence
the model’s generalization ability essentially. Figure 3d shows the AUC of our model with various values
of α and β , both of which ranged in {0, 0.1, 0.05, 0.1, 0.5, 1.0, 5.0}. We can observe that CMD²A-Net
demonstrates superior classification performance with α within [0.1, 1.0] and β within [0.05, 1.0]. It should
be noted that our model receives the lowest AUC when either α or β is set to 0, showing that the coarse
segmentation module and the domain transfer module could enhance cross-domain knowledge transferability
positively, thus improving lesion classification accuracy.

8
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.

Figure 4. Overview of the proposed CMD²A-Net using T2, ADC, and hDWI image inputs.
Each image sequence network is featured with two parallel branches with respect to the source and target
domains. Three main modules in the source one: 1) coarse segmentation module for coarse lesion detection
and feature alignment enhancement, 2) domain transfer module for knowledge transfer between domains,
and 3) classifier module for malignancy classification.
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. Supplementary Figure 1

Supplementary Figure 1. Prostate segmentation results of T2 images scanned from (a) 1.5-T
MRI scanner and (b) 3.0-T MRI scanner. Prostate region is contoured (in yellow) on the randomly
selected apex, middle, and base slices.

10



P
os

te
d

on
A

u
th

or
ea

18
A

u
g

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
66

08
10

31
.1

14
20

81
0/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Supplementary Figure 2

Supplementary Figure 2. non-csPCa and csPCa mpMRI examples (from P-x and LC-A) of
(a) T2, (b) ADC, and (c) hDWI. The prostate gland is contoured with rectangles (in green) on the
original slices (1st and 3rd row). The coarse lesion is annotated (in red) on the cropped prostate regions
(2nd and 4th row) using the level set method, showing lesion morphological discrepancy of the benign and
malignant samples. Apparent inter-site heterogeneity (e.g., FoV, image intensity distribution) of the samples
demonstrates domain shift between P-x and LC-A.
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. Supplementary Figure 3

Supplementary Figure 3. Six preprocessing methods were adopted for inter-site heterogeneity analysis.
Six randomly selected T2 images from two cohorts (i.e. ProstateX, Local Cohort A) are preprocessed with
the same intensity color scale, whereas the green contour shows the lesion region. The second and fourth
rows show the image intensity distribution from corresponding cohorts before and after preprocessing.

Introduction to our open-sourced PLDC system

This open-sourced deep-learning-based model acts as an end-to-end system, input from prostate mpMRI
sequences (i.e. T2, ADC, and hDWI), output to prediction results (i.e. prostate segmentation, coarse lesion
detection, and malignancy estimation). The system supports multi-format inputs, including DICOM, jpeg,
png, and jpg files. It is emphasized that no manual prostate segmentation or annotation is required.

1. To realize automatic PLDC with multi-cohort mpMRIs (i.e., T2, ADC, and hDWI), please download
the executable software first from the Github repository. In addition, you should also download the PLDC -
software.zip from the Github repository. Unzip the zip file, and put the downloaded executable software in
the folder “./PLDC software/ ”.

2. Install required packages for mpMRI-based PLDC testing.

12
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. • python=3.6.5
• Keras
• Tensorflow = 1.15
• Opencv-python
• Pydicom
• Numpy
• Pillow
• Scikit-image
• SimpleITK

3. In order to perform PLDC using your local cohort samples, you should train a domain adaptation
(DA) model first (see details in the next Section ” Prostate lesion assessment using your local cohort
mpMRI “). Put all of your well-trained model weights in the folder ”./PLDC software/doc/weights/ ”.

4. Begin to test the target mpMRIs from your local cohort using the open-sourced system. Open the
executable software. Start your testing via the “Main menu” button, and then click “Start testing”. The
predicted results will be saved in the folder “./media/output/ ”, including prostate segmentation, prostate
lesion detection, and lesion malignancy results. You can download the following prostate exe.mp4 to learn
the details if necessary.

Hosted file

prostate_exe.mp4 available at https://authorea.com/users/499033/articles/579780-automatic-

mpmri-based-prostate-lesions-assessment-with-unsupervised-domain-adaptation

Note: 1) Please do not delete any existing files/folders under the folder “./PLDC software/ ”, such as image,
and doc folders.

2) For image format input, make sure your input T2 image is a 3-channel image. Only the T2 image is
allowed, as ADC and hDWI require metadata of T2 DICOM for prostate region registration.

3) For DICOM format input, T2 is necessary, while ADC and hDWI are optional.

4) We provide several samples (under the folder “./test samples” ) from PROSTATEx to demonstrate the
software functions, while the local cohort samples are not open-sourced here due to patient privacy and
ethical issues. Our weights trained with PROSTATEx (source domain) and our local target dataset are also
provided for demonstration. Our weights can be downloaded from the same Github repository. The total
size of this software is around 6GB, including the executable software (˜699MB) and model weights (˜3.8G).

Prostate lesion assessment using your local cohort mpMRI

Prepare your multi-cohort mpMRI (T2, ADC, and hDWI) datasets for model training. mpMRI dicoms are
required, as the metadata has to be extracted for prostate region segmentation on ADC and hDWI. The
datasets include a source domain dataset (e.g., the public dataset PROSTATEx ), and your mpMRI-based
local cohort dataset (i.e., target domain). Our models (i.e. prostate segmentation model and CMD²A-Net)
are trained with API Keras. You will train and test the models for PLDC in the following steps. We also
offer our executable codes and files online available via the same Github repository, so as to allow any work
extension or application by others.

Prostate region segmentation

To train the prostate segmentation model using T2 images, you can train your prostate segmentation model
with the codes under ./maskrcnn model. Apart from your local cohort datasets, the public dataset I2CVB is

13

https://authorea.com/users/499033/articles/579780-automatic-mpmri-based-prostate-lesions-assessment-with-unsupervised-domain-adaptation
https://authorea.com/users/499033/articles/579780-automatic-mpmri-based-prostate-lesions-assessment-with-unsupervised-domain-adaptation
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=23691656
https://i2cvb.github.io/


P
os

te
d

on
A

u
th

or
ea

18
A

u
g

20
22

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
66

08
10

31
.1

14
20

81
0/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. also available online for training. The input shape of the model is set to 512 × 512 pixels. Adam optimizer
is applied. During the training process, the model with the highest dice coefficient score is retained (i.e.,
weight1.h5). The prostate on T2 images can be segmented in the following code.

<# process a raw T2 png, and save the prostate region, rostate with contour in ’./media/output/’

def predict(image_path):

MODEL_DIR = ’./doc/weights/’

Prostate_WEIGHTS_PATH = "weight1.h5" # TODO: update this path

class InferenceConfig(ProstateConfig):

# Run detection on one image at a time

GPU_COUNT = 1

IMAGES_PER_GPU = 1

config = InferenceConfig()

config.display()

DEVICE = "/cpu:0" # /cpu:0 or /gpu:0 or /gpu:1

with tf.device(DEVICE):

model = MaskRCNN(mode="inference", model_dir=MODEL_DIR,

config=config)

weights_path = MODEL_DIR + Prostate_WEIGHTS_PATH

model.load_weights(weights_path, by_name=True)

class_names = [’BG’, ’pz’, ’cg’, ’prostate’, ’cap’]

import skimage

image = skimage.io.imread(image_path)

if image.ndim != 3:

image = skimage.color.gray2rgb(image)

# If has an alpha channel, remove it for consistency

if image.shape[-1] == 4:

image = image[..., :3]

h,w=image.shape[0],image.shape[1]

image, window, scale, padding, crop = resize_image(

image,

min_dim=config.IMAGE_MIN_DIM,

min_scale=config.IMAGE_MIN_SCALE,

max_dim=config.IMAGE_MAX_DIM,

mode=config.IMAGE_RESIZE_MODE)

results = model.detect([image], verbose=1)

# Display results

r = results[0]

index_pz = None

14
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. index_cg = None

index_prostate = None

index_cap = None

if len(results[0][’rois’]) > 1:

for i in range(len(results[0][’class_ids’])):

if r[’class_ids’][i] == 1:

if index_pz == None:

index_pz = i

else:

continue

if r[’class_ids’][i] == 2:

if index_cg == None:

index_cg = i

else:

continue

if r[’class_ids’][i] == 3:

if index_prostate == None:

index_prostate = i

else:

continue

if r[’class_ids’][i] == 4:

if index_cap == None:

index_cap = i

else:

continue

list_index = []

for index in [index_pz, index_cg, index_prostate, index_cap]:

if index != None:

list_index.append(index)

if len(list_index) > 1:

rois = results[0][’rois’][list_index[0]].reshape(1, -1)

masks = results[0][’masks’][:, :, list_index[0]].reshape(512, 512, 1)

class_ids = results[0][’class_ids’][list_index[0]].reshape(1, -1)

scores = results[0][’scores’][list_index[0]].reshape(1, -1)

for i in range(len(list_index) - 1):

rois = np.concatenate((rois, results[0][’rois’][list_index[i + 1]].reshape(1, -1)), axis=0).reshape(

-1, 4)

masks = np.concatenate((masks, results[0][’masks’][:, :, list_index[i + 1]].reshape(512, 512, 1)),

axis=2).reshape(512, 512, -1)

class_ids = np.concatenate((class_ids, results[0][’class_ids’][list_index[i + 1]].reshape(1, -1)),

axis=0).reshape(-1, 1)

scores = np.concatenate((scores, results[0][’scores’][list_index[i + 1]].reshape(1, -1)),

axis=0).reshape(-1, 1)

r[’rois’] = rois

15
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. r[’masks’] = masks

r[’class_ids’] = class_ids.reshape(-1)

r[’scores’] = scores.reshape(-1)

else:

r[’rois’] = results[0][’rois’][0].reshape(-1, 4)

r[’masks’] = results[0][’masks’][:, :, 0].reshape(512, 512, 1)

r[’class_ids’] = results[0][’class_ids’][0].reshape(-1)

r[’scores’] = results[0][’scores’][0].reshape(-1)

x1, y1, x2, y2 = 0, 0, 0, 0

save_path = ’./media/output/’

if len(r[’rois’]) != 0:

for object in range(len(r[’rois’])):

roi = r[’rois’][object]

mask = r[’masks’][:, :, object]

mask = mask + 0

mask = mask * 255

mask = np.array(mask, dtype=’int8’)

class_id = r[’class_ids’][object]

from PIL import Image

if class_id==3:

Image.fromarray(mask, mode=’L’).resize((w, h)).save(

save_path + str(class_names[class_id])+’.png’)

mask_image=Image.open(save_path + str(class_names[class_id])+’.png’)

mask=np.array(mask_image)

raw_image=Image.open(image_path).convert(’L’)

contour = measure.find_contours(mask, 100)

image_with_contour = cv2.cvtColor(np.array(raw_image), cv2.COLOR_GRAY2BGR)

color = (0, 255, 255)

prostate_contour = []

ratio = w / 512

#cv2.circle(image_with_contour,(283,287),20,(0,255,255),thickness=-1)

#cv2.circle(image,(int(283/ratio),int(287/ratio)),20,(0,255,255),thickness=-1)

for c in contour[0]:

c = np.around(c).astype(np.int)

prostate_contour.append(np.array([c[1], c[0]]))

cv2.drawContours(image_with_contour, [np.array(prostate_contour)], -1, color, thickness=2)
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raw_image.save(save_path +’raw.png’)

cv2.imwrite(save_path + ’contour.png’, image_with_contour)

prostate_roi=image[roi[0]:roi[2],roi[1]:roi[3]]

#prostate_roi=image_with_contour[roi[0]:roi[2],roi[1]:roi[3]]

cv2.imwrite(save_path+’prostate_roi.png’,prostate_roi)

ratio = w / 512

x1 = int(str(roi[0])) * ratio

y1 = int(str(roi[1])) * ratio

x2 = int(str(roi[2])) * ratio

y2 = int(str(roi[3])) * ratio

del model

K.clear_session()

gc.collect()

# print(’done!’)

return x1, y1, x2, y2>

Data preprocessing on multi-cohort mpMRI

With the well-segmented prostate on T2 images, the prostate regions on all the ADC and hDWI can be
pre-cropped in the following codes.

<

# preprocess a T2 dicom to raw png, and saved in "./media/convert_img/T2"

def preprocessing(file_path,file_name):

dicom = pydicom.read_file(file_path)

try:

pixel = dicom.pixel_array

except:

image = sitk.ReadImage(file_path)

image_array = sitk.GetArrayFromImage(image)

pixel = np.int16(image_array)

# window_center = dicom.get(’WindowCenter’)

# window_width = dicom.get(’WindowWidth’)

#

# pixel[pixel > window_center + window_width / 2] = window_center + window_width / 2

# pixel[pixel < window_center - window_width / 2] = window_center - window_width / 2

#pixel=np.array(pixel, dtype=np.uint8)

# pixel=np.array(pixel,dtype=np.float32)

pixel = 255 * ((pixel - np.amin(pixel)) / (np.amax(pixel) - np.amin(pixel)))

pixel = np.array(pixel, dtype=np.uint8)

if len(pixel.shape)==3:

pixel=pixel[0]

17
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. image = Image.fromarray(pixel).convert(’L’)

save_path = os.path.join("./media/convert_img/T2", file_name.replace(’dcm’,’png’))

image.save(os.path.join(save_path))

return save_path

# process a raw ADC dicom and save a ADC png in ’./media/output/’

def read_adc_prostate(ADC_path):

ADC_dicom = pydicom.dcmread(ADC_path)

try:

ADC_array = ADC_dicom.pixel_array

except:

image = sitk.ReadImage(ADC_path)

image_array = sitk.GetArrayFromImage(image)

ADC_array = np.int16(image_array)

ADC_array = 255 * ((ADC_array - np.amin(ADC_array)) / (np.amax(ADC_array) - np.amin(ADC_array)))

if len(ADC_array.shape)==3:

ADC_array=ADC_array[0]

save_path = ’./media/output/’

Image.fromarray(ADC_array).convert(’L’).save(save_path + ’adc.png’)

return

# process a raw BVAL dicom and save a BVAL png in ’./media/output/’

def read_bval_prostate(BVAL_path):

BVAL_dicom = pydicom.dcmread(BVAL_path)

try:

BVAL_array = BVAL_dicom.pixel_array

except:

image = sitk.ReadImage(BVAL_path)

image_array = sitk.GetArrayFromImage(image)

BVAL_array = np.int16(image_array)

BVAL_array = 255 * ((BVAL_array - np.amin(BVAL_array)) / (np.amax(BVAL_array) - np.amin(BVAL_array)))

if len(BVAL_array.shape)==3:

BVAL_array=BVAL_array[0]

save_path = ’./media/output/’

Image.fromarray(BVAL_array).convert(’L’).save(save_path + ’bval.png’)

return

# process a ADC png, and save its contour, prostate region in ’./media/output/’

def adc_transform(ADC_path,T2_path,x1_T2,y1_T2,x2_T2,y2_T2):

y1_inraw = int(y1_T2)

x1_inraw = int(x1_T2)

y2_inraw = int(y2_T2)

x2_inraw = int(x2_T2)

18
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T2_dicom = pydicom.dcmread(T2_path)

ImageOrientationPatient = T2_dicom.ImageOrientationPatient

ImagePositionPatient = T2_dicom.ImagePositionPatient

PixelSpacing = T2_dicom.PixelSpacing

a = np.array([[ImageOrientationPatient[0] * PixelSpacing[0],

ImageOrientationPatient[3] * PixelSpacing[1],

ImagePositionPatient[0]],

[ImageOrientationPatient[1] * PixelSpacing[0],

ImageOrientationPatient[4] * PixelSpacing[1],

ImagePositionPatient[1]],

[ImageOrientationPatient[2] * PixelSpacing[0],

ImageOrientationPatient[5] * PixelSpacing[1],

ImagePositionPatient[2]]

])

threeD_x1y1 = np.dot(a, (np.array([x1_inraw, y1_inraw, 1])))

threeD_x1y2 = np.dot(a, (np.array([x1_inraw, y2_inraw, 1])))

threeD_x2y1 = np.dot(a, (np.array([x2_inraw, y1_inraw, 1])))

threeD_x2y2 = np.dot(a, (np.array([x2_inraw, y2_inraw, 1])))

ADC_dicom = pydicom.dcmread(ADC_path)

ImageOrientationPatient = ADC_dicom.ImageOrientationPatient

ImagePositionPatient = ADC_dicom.ImagePositionPatient

PixelSpacing = ADC_dicom.PixelSpacing

a_adc = np.array([[ImageOrientationPatient[0] * PixelSpacing[0],

ImageOrientationPatient[3] * PixelSpacing[1],

ImagePositionPatient[0]],

[ImageOrientationPatient[1] * PixelSpacing[0],

ImageOrientationPatient[4] * PixelSpacing[1],

ImagePositionPatient[1]],

[ImageOrientationPatient[2] * PixelSpacing[0],

ImageOrientationPatient[5] * PixelSpacing[1],

ImagePositionPatient[2]]

])

result_x1y1 = np.linalg.solve(a_adc, threeD_x1y1)

result_x1y1_x = result_x1y1[0]

result_x1y1_y = result_x1y1[1]

result_x1y2 = np.linalg.solve(a_adc, threeD_x1y2)

result_x1y2_x = result_x1y2[0]

result_x1y2_y = result_x1y2[1]

result_x2y1 = np.linalg.solve(a_adc, threeD_x2y1)

result_x2y1_x = result_x2y1[0]

result_x2y1_y = result_x2y1[1]
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result_x2y2 = np.linalg.solve(a_adc, threeD_x2y2)

result_x2y2_x = result_x2y2[0]

result_x2y2_y = result_x2y2[1]

x1_raw_ADC = int(min(result_x1y1_x, result_x1y2_x, result_x2y1_x, result_x2y2_x))

x2_raw_ADC = int(max(result_x1y1_x, result_x1y2_x, result_x2y1_x, result_x2y2_x))

y1_raw_ADC = int(min(result_x1y1_y, result_x1y2_y, result_x2y1_y, result_x2y2_y))

y2_raw_ADC = int(max(result_x1y1_y, result_x1y2_y, result_x2y1_y, result_x2y2_y))

try:

ADC_array = ADC_dicom.pixel_array

except:

image = sitk.ReadImage(ADC_path)

image_array = sitk.GetArrayFromImage(image)

ADC_array = np.int16(image_array)

ADC_array = 255 * ((ADC_array - np.amin(ADC_array)) / (np.amax(ADC_array) - np.amin(ADC_array)))

if len(ADC_array.shape)==3:

ADC_array=ADC_array[0]

try:

if y2_raw_ADC - y1_raw_ADC < 50:

y1_raw_ADC = int(y1_raw_ADC - (50 - (y2_raw_ADC - y1_raw_ADC)) / 2)

y2_raw_ADC = int(y2_raw_ADC + (50 - (y2_raw_ADC - y1_raw_ADC)) / 2)

if x2_raw_ADC - x1_raw_ADC < 50:

x1_raw_ADC = int(x1_raw_ADC - (50 - (x2_raw_ADC - x1_raw_ADC)) / 2)

x2_raw_ADC = int(x2_raw_ADC + (50 - (x2_raw_ADC - x1_raw_ADC)) / 2)

crop_img = ADC_array[y1_raw_ADC:y2_raw_ADC, x1_raw_ADC:x2_raw_ADC]

save_path = ’./media/output/’

Image.fromarray(ADC_array).convert(’L’).save(save_path+’adc.png’)

Image.fromarray(crop_img).convert(’L’).resize((224,224)).save(save_path+’adc_crop.png’)

im=Image.fromarray(ADC_array).convert(’RGB’)

draw=ImageDraw.Draw(im)

draw.rectangle((x1_raw_ADC,y1_raw_ADC,x2_raw_ADC,y2_raw_ADC),outline=(255,255,0),width=3)

im.save(save_path+’adc_contour.png’)

except:

print(’ADC error!’)

return

# process a BVAL png, and save its contour, prostate region in ’./media/output/’

def bval_transform(bval_path,T2_path,x1_T2,y1_T2,x2_T2,y2_T2):

y1_inraw = int(y1_T2)

x1_inraw = int(x1_T2)

y2_inraw = int(y2_T2)

x2_inraw = int(x2_T2)
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. T2_dicom = pydicom.dcmread(T2_path)

ImageOrientationPatient = T2_dicom.ImageOrientationPatient

ImagePositionPatient = T2_dicom.ImagePositionPatient

PixelSpacing = T2_dicom.PixelSpacing

a = np.array([[ImageOrientationPatient[0] * PixelSpacing[0],

ImageOrientationPatient[3] * PixelSpacing[1],

ImagePositionPatient[0]],

[ImageOrientationPatient[1] * PixelSpacing[0],

ImageOrientationPatient[4] * PixelSpacing[1],

ImagePositionPatient[1]],

[ImageOrientationPatient[2] * PixelSpacing[0],

ImageOrientationPatient[5] * PixelSpacing[1],

ImagePositionPatient[2]]

])

threeD_x1y1 = np.dot(a, (np.array([x1_inraw, y1_inraw, 1])))

threeD_x1y2 = np.dot(a, (np.array([x1_inraw, y2_inraw, 1])))

threeD_x2y1 = np.dot(a, (np.array([x2_inraw, y1_inraw, 1])))

threeD_x2y2 = np.dot(a, (np.array([x2_inraw, y2_inraw, 1])))

bval_dicom = pydicom.dcmread(bval_path)

ImageOrientationPatient = bval_dicom.ImageOrientationPatient

ImagePositionPatient = bval_dicom.ImagePositionPatient

PixelSpacing = bval_dicom.PixelSpacing

a_bval = np.array([[ImageOrientationPatient[0] * PixelSpacing[0],

ImageOrientationPatient[3] * PixelSpacing[1],

ImagePositionPatient[0]],

[ImageOrientationPatient[1] * PixelSpacing[0],

ImageOrientationPatient[4] * PixelSpacing[1],

ImagePositionPatient[1]],

[ImageOrientationPatient[2] * PixelSpacing[0],

ImageOrientationPatient[5] * PixelSpacing[1],

ImagePositionPatient[2]]

])

result_x1y1 = np.linalg.solve(a_bval, threeD_x1y1)

result_x1y1_x = result_x1y1[0]

result_x1y1_y = result_x1y1[1]

result_x1y2 = np.linalg.solve(a_bval, threeD_x1y2)

result_x1y2_x = result_x1y2[0]

result_x1y2_y = result_x1y2[1]

result_x2y1 = np.linalg.solve(a_bval, threeD_x2y1)

result_x2y1_x = result_x2y1[0]

result_x2y1_y = result_x2y1[1]
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. result_x2y2 = np.linalg.solve(a_bval, threeD_x2y2)

result_x2y2_x = result_x2y2[0]

result_x2y2_y = result_x2y2[1]

x1_raw_bval = int(min(result_x1y1_x, result_x1y2_x, result_x2y1_x, result_x2y2_x))

x2_raw_bval = int(max(result_x1y1_x, result_x1y2_x, result_x2y1_x, result_x2y2_x))

y1_raw_bval = int(min(result_x1y1_y, result_x1y2_y, result_x2y1_y, result_x2y2_y))

y2_raw_bval = int(max(result_x1y1_y, result_x1y2_y, result_x2y1_y, result_x2y2_y))

try:

bval_array = bval_dicom.pixel_array

except:

image = sitk.ReadImage(bval_path)

image_array = sitk.GetArrayFromImage(image)

bval_array = np.int16(image_array)

bval_array = 255 * ((bval_array - np.amin(bval_array)) / (np.amax(bval_array) - np.amin(bval_array)))

if len(bval_array.shape)==3:

bval_array=bval_array[0]

try:

if y2_raw_bval - y1_raw_bval < 50:

y1_raw_bval = int(y1_raw_bval - (50 - (y2_raw_bval - y1_raw_bval)) / 2)

y2_raw_bval = int(y2_raw_bval + (50 - (y2_raw_bval - y1_raw_bval)) / 2)

if x2_raw_bval - x1_raw_bval < 50:

x1_raw_bval = int(x1_raw_bval - (50 - (x2_raw_bval - x1_raw_bval)) / 2)

x2_raw_bval = int(x2_raw_bval + (50 - (x2_raw_bval - x1_raw_bval)) / 2)

crop_img = bval_array[y1_raw_bval:y2_raw_bval, x1_raw_bval:x2_raw_bval]

save_path = ’./media/output/’

Image.fromarray(bval_array).convert(’L’).save(save_path + ’bval.png’)

Image.fromarray(crop_img).convert(’L’).resize((224,224)).save(save_path + ’bval_crop.png’)

im = Image.fromarray(bval_array).convert(’RGB’)

draw = ImageDraw.Draw(im)

draw.rectangle((x1_raw_bval, y1_raw_bval, x2_raw_bval, y2_raw_bval), outline=(255, 255, 0), width=3)

im.save(save_path + ’bval_contour.png’)

except:

print(’bval error!’)

return

>

Domain adaptation model training for mpMRI-based PLDC

For DA model (i.e., CMD²A-Net) training, the prostate regions from both the source and target domains are
scaled to 224 × 224 pixels. Random rotation is applied for data augmentation. Adam optimizer is chosen.
We initialized our model with the pre-trained CM-Net, in order to facilitate its convergence. To be specific,
we trained both the coarse segmentation module and classifier of CM-Net first using codes under ./joint -
model, with the combined samples from both domains, the best models are saved ( i.e., T2: weight2 1.h5,
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. ADC: weight3 1.h5, hDWI: weight4 1.h5 ). Then, we optimized the total loss of CMD²A-Net with the source
and target samples. By co-training all the modules, the models with the highest accuracy (i.e., T2: weight2 -
2.h5, ADC: weight3 2.h5, hDWI: weight4 2.h5) are saved for testing. The PLDC testing in the target samples
from local cohort can be achieved by the following codes:

<

def main_testing(dicom_T2_path):

output_path = ’./media/output/’

# remove all the exsiting files for current case testing

for file in os.listdir(output_path):

os.remove(os.path.join(output_path,file))

# preprocess a T2 dicom to raw png, and save the png in "./media/convert_img/T2"

image_path = preprocessing(dicom_T2_path,dicom_T2_path.split(’/’)[-1]) #image_path: raw T2 png path

# save T2 png, prostate_roi.png, T2_with contour.png under output folder

x1, y1, x2, y2 = predict(image_path)

# return malignacy and save ’./media/output/T2_lesion.png’

prostate_roi_T2_path=’./media/output/prostate_roi.png’

malignancy_T2 = predict_malignancy_T2(prostate_roi_T2_path,image_path)

malignancy_ADC=malignancy_T2

malignancy_BVAL=malignancy_T2

adc_dicom = os.listdir(’./media/upload/ADC/’)

if len(adc_dicom)==1:

if os.path.isfile(os.path.join(’./media/upload/ADC/’,adc_dicom[0])):

if adc_dicom[0].endswith("dcm"):

dicom_ADC_path = os.path.join(’./media/upload/ADC/’, adc_dicom[0])

# save raw png, raw png with contour,and cropped prostate png under ’./media/output/’

adc_transform(dicom_ADC_path, dicom_T2_path, x1, y1, x2, y2)

prostate_roi_ADC_path = ’./media/output/adc_crop.png’

prostate_ADC_path = ’./media/output/adc.png’

if os.path.exists(prostate_roi_ADC_path):

malignancy_ADC = predict_malignancy_ADC(prostate_roi_ADC_path)

else:

malignancy_ADC = predict_malignancy_ADC(prostate_ADC_path)

bval_dicom = os.listdir(’./media/upload/BVAL/’)

if len(bval_dicom)==1:

if os.path.isfile(os.path.join(’./media/upload/BVAL/’,bval_dicom[0])):

if bval_dicom[0].endswith("dcm"):

dicom_BVAL_path = os.path.join(’./media/upload/BVAL/’, bval_dicom[0])

# save raw png, raw png with contour,and cropped prostate png under ’./media/output/’

bval_transform(dicom_BVAL_path, dicom_T2_path, x1, y1, x2, y2)
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.

prostate_roi_BVAL_path = ’./media/output/bval_crop.png’

prostate_BVAL_path = ’./media/output/bval.png’

if os.path.exists(prostate_roi_BVAL_path):

malignancy_BVAL = predict_malignancy_BVAL(prostate_roi_BVAL_path)

else:

malignancy_BVAL = predict_malignancy_BVAL(prostate_BVAL_path)

malignancy = np.argmax(malignancy_T2 + malignancy_ADC + malignancy_BVAL)

# print(’malignancy:’, malignancy)

return malignancy>

def predict_malignancy_T2(prostate_roi,raw_image_path):

if os.path.exists(prostate_roi):

image=Image.open(prostate_roi).convert(’L’)

image = image.resize((224, 224))

img=np.array(image)/255

model = sinnet_share(’./doc/weights/weight2_1.h5’)

model.load_weights(’./doc/weights/weight2_2.h5’)

aa = img.reshape(1, 224, 224, 1)

out_0_2 = model.predict([aa,aa])

del model

K.clear_session()

gc.collect()

raw_image_RGB = np.array(image.convert(’RGB’))

pred_mask = Image.fromarray(255*out_0_2[0][0][:,:,0]).convert("L")

pred_mask = np.array(pred_mask)

ret, binary = cv2.threshold(pred_mask, 40, 255, cv2.THRESH_BINARY) # second para is threhold

contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

if np.size(contours) != 0:

#method 1

contour = max(contours, key = cv2.contourArea)

image_with_contour = cv2.drawContours(raw_image_RGB,[contour],-1, color=(0, 255, 255),lineType = cv2.LINE_AA,thickness=-1)

#method 2

#image_with_contour = cv2.drawContours(raw_image_RGB, [contours[0]], -1, color=(0, 0, 255),thickness=-1)

# draw pred mask

image_with_contour = cv2.addWeighted(raw_image_RGB,1,image_with_contour,0.3,0)

# save final label and pred result

cv2.imwrite(’./media/output/T2_lesion.png’,image_with_contour)

else:

# print("np.size(contours)= 0")
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. pass

print(’done predict_malignancy_T2!’)

return out_0_2[1][0]

else:

image=Image.open(raw_image_path).convert(’L’)

image = image.resize((224, 224))

img=np.array(image)/255

model = sinnet_share(’./doc/weights/weight2_1.h5’)

model.load_weights(’./doc/weights/weight2_2.h5’)

aa = img.reshape(1, 224, 224, 1)

out_0_2 = model.predict([aa,aa])

del model

K.clear_session()

gc.collect()

return out_0_2[1][0]

def predict_malignancy_ADC(prostate_roi):

image=Image.open(prostate_roi).convert(’L’)

image = image.resize((224, 224))

img=np.array(image)/255

model = sinnet_share(’./doc/weights/weight3_1.h5’)

model.load_weights(’./doc/weights/weight3_2.h5’)

aa = img.reshape(1, 224, 224, 1)

out_0_2 = model.predict([aa,aa])

del model

K.clear_session()

gc.collect()

# print(’ADC done!’)

return out_0_2[1][0]

def predict_malignancy_BVAL(prostate_roi):

image=Image.open(prostate_roi).convert(’L’)

image = image.resize((224, 224))

img=np.array(image)/255

model = sinnet_share(’./doc/weights/weight4_1.h5’)

model.load_weights(’./doc/weights/weight4_2.h5’)

aa = img.reshape(1, 224, 224, 1)
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. out_0_2 = model.predict([aa,aa])

del model

K.clear_session()

gc.collect()

# print(’BVAL done!’)

return out_0_2[1][0]
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[1] G. Lemâıtre, R. Mart́ı, J. Freixenet, J. C. Vilanova, P. M. Walker, F. Meriaudeau, medicine, Computers
in biology 2015, 60, 8.

[2] Z. Liu, W. Jiang, K.-H. Lee, Y.-L. Lo, Y.-L. Ng, Q. Dou, V. Vardhanabhuti, K.-W. Kwok, presented at
Workshop on Artificial Intelligence in Radiation Therapy, 2019.

[3] Y. Chen, W. Wang, E. J. Schmidt, K.-W. Kwok, A. N. Viswanathan, R. Cormack, Z. T. H. Tse,
IEEE/ASME Transactions on Mechatronics 2015, 21, 956.

[4] R. Alkadi, F. Taher, A. El-Baz, N. Werghi, Journal of digital imaging 2019, 32, 793.

[5] C.-L. Cheung, J. D.-L. Ho, V. Vardhanabhuti, H.-C. Chang, K.-W. Kwok, IEEE/ASME Transactions
on Mechatronics 2020, 25, 1016.

[6] V. Vitiello, K.-W. Kwok, G.-Z. Yang, in Medical Robotics, Elsevier, 2012.

[7] Z. Dong, Z. Guo, K.-H. Lee, G. Fang, W. L. Tang, H.-C. Chang, D. T. M. Chan, K.-W. Kwok, IEEE
Robotics Automation Letters 2019, 4, 1964.

[8] Q. Liu, Q. Dou, L. Yu, P. A. Heng, IEEE transactions on medical imaging 2020, 39, 2713.

[9] X. Wang, Y. Li, K.-W. Kwok, AI, Frontiers in Robotics 2021, 280.

[10] G. Fang, M. C. Chow, J. D. Ho, Z. He, K. Wang, T. Ng, J. K. Tsoi, P.-L. Chan, H.-C. Chang, D. T.-M.
Chan, Y.-h. Liu, F. Holsinger, J. Y.-K. Chan, K.-W. Kwok, Science Robotics 2021, 6, eabg5575.

[11] Y. Chen, J. Ge, K.-W. Kwok, K. R. Nilsson, M. Fok, Z. T. Tse, Journal of cardiovascular magnetic
resonance 2014, 16, 1.

[12] W. Jiang, Z. Liu, K.-H. Lee, S. Chen, Y.-L. Ng, Q. Dou, H.-C. Chang, K.-W. Kwok, arXiv preprint
arXiv:.09745 2019.

[13] a)K. Wang, C. H. Mak, J. D. Ho, Z. Liu, K. Y. Sze, K. K. Wong, K. Althoefer, Y. Liu, T. Fukuda,
K.-W. Kwok, Advanced Intelligent Systems 2021, 3, 2100089; b)Y.-L. Ng, M. C. Lo, K.-H. Lee, X. Xie, T.
N. Kwong, M. Ip, L. Zhang, J. Yu, J. J. Sung, W. K. Wu, S. H. Wong, K.-W. Kwok, Advanced Intelligent
Systems 2021, 3, 2000188.

[14] a)Z. He, Z. Dong, G. Fang, J. D.-L. Ho, C.-L. Cheung, H.-C. Chang, C. C.-N. Chong, J. Y.-K. Chan,
D. T. M. Chan, K.-W. Kwok, IEEE Robotics Automation Letters 2020, 5, 2100; b)K.-W. Kwok, K.-H. Lee,
Y. Chen, W. Wang, Y. Hu, G. C. Chow, H. S. Zhang, W. G. Stevenson, R. Y. Kwong, W. Luk, Circulation
2014, 130, A18568.

[15] Z. Wang, D. Acuna, H. Ling, A. Kar, S. Fidler, presented at Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019.

[16] K. He, X. Zhang, S. Ren, J. Sun, presented at Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016.

[17] Y. Ganin, V. Lempitsky, presented at International conference on machine learning, 2015.

[18] B. Sun, K. Saenko, presented at European conference on computer vision, 2016.

[19] L. Van der Maaten, G. Hinton, Journal of machine learning research 2008, 9.

[20] Z. Dong, X. Wang, G. Fang, Z. He, J. D.-L. Ho, C.-L. Cheung, W. L. Tang, X. Xie, L. Liang, H.-C.
Chang, C. K. Ching, K.-W. Kwok, 2022, IEEE Transactions on Robotics.

27


