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Abstract

This Supporting Information includes information regarding the magnetic field of the actuator magnet, MR-LF-S (which has
the same geometry as MR-LF and a soft compartment), and a table comparing MR-LF to other small-scale, flexible magnetic
crawler robots.

Corresponding author email: yong.kong@utah.edu

Body flexibility of MR-LF-S

As noted in the text, the closeness of the MR-DF and MR-LF curves indicates that the method of localizing
flexibility was successful at reducing the bending region length while preserving body flexibility. The data
for the MR-LF-S (shown in Figure 2A) has a higher amplitude, indicating higher flexibility. Further, the
flat section at the top of the MR-LF-S curve appears to be a result of the foot contacting the compartment.
Indeed, images show the MR-LF-S foot contacting the body at the maximum and minimum flexion (indicated
by red arrows in Figure 2B), which may cause undesirable effects in locomotion. Because the geometry of
the flexure was the same between MR-LF and MR-LF-S models, the additional bending in the MR-LF-S
model could be due to bending in the soft compartment and an expected difference in wall effects compared
to MR-LF.

A comparison of locomotion results between MR-LF and MR-LF-S with the same mass show that MR-LF-S
exhibited a slightly higher initial speed (4%) at ya = 11 cm, slower initial speed (47%) at ya = 15 cm
(Figure 3A), and a longer period of inhibited gait for locomotion of one trial at ya = 10 cm (indicated by
right-pointing arrow in Figure 3B), which was not included in da*. The data in Figure 3B also show that the
mean of data within da* was close between robots (MR-LF: 14.22 cm, MR-LF-S: 14.19 cm), indicating that
the robots stopped locomotion at a similar location, likely as a result of their equal mass. Additionally, the
MR-LF-S da* had a larger standard deviation (MR-LF: 0.23 cm, MR-LF-S: 0.75 cm), indicating MR-LF-S
had more variability in locomotion distance after 40 steps. From these results, we see that a robot with
a soft compartment (i.e., MR-LF-S) exhibits comparable locomotion to a robot with a rigid compartment
(i.e., MR-LF), where differences between the designs can be attributed to the additional flexibility (increase
of 61% in maximum and 48% in minimum foot flexion) exhibited by the soft body configuration. These
observations can be applied in future applications when, for example, fabricating entirely-soft robots by
magnetic 3D printing.
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Figure 1: Experimentally measured magnetic field at four actuator magnet orientations (shown above plots).
Cross-sections of the MR-LF robot and channel are included to aid visualization.

Figure 2: Comparison of body flexibility between the MR-DF, MR-LF, and MR-LF-S designs. (A) Foot
flexion angle (θf), as a function of actuator magnet orientation (θa) for half-robots at x = 0, ya = 11 cm.
The amplitude of data sets indicates the foot’s flexibility. (B) Images of half-robots at their maximum
(left) and minimum (right) foot flexion. Arrows on MR-LF-S images point to where the foot contacted the
compartment.
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Figure 3: Effect of compartment rigidity on locomotion. (A) Initial speed of MR-LF (left) and MR-LF-S
(right) with equal mass across ya offsets (box colors). Boxes show the 25-75% range, whiskers indicate
min-max, and mean values are connected by a black line (n = 5). A comparison between plots shows the
effect of compartment configuration on speed, where the MR-LF robot has a rigid compartment, and the
MR-LF-S has a soft compartment. (B) Total actuation distance (da) as a function of step number for the
MR-LF (left) and MR-LF-S (right) of equal mass across ya distances (line color). Trials of ya = 10 to 14 cm
converge within a span of da (indicated by brackets and denoted da*) which corresponds to the minimum
field strength needed for locomotion.
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Row
Ref-
er-
ence

Ba-
sic
robot
ge-
om-
e-
try

Robot
mag-
nets

Ac-
tu-
a-
tion
type

Ac-
tu-
a-
tion
field
mo-
tion

Trans-
port
cargo

Com-
part-
ment
(lo-
ca-
tion)

Com-
part-
ment
in-
ter-
nal
vol-
ume
(mmˆ3)

Compartment-
to-
robot
vol-
ume

Flex-
i-
bil-
ity

Drug
re-
lease

In-
cor-
po-
rated
elec-
tron-
ics

Body
length
(mm)

Outer
di-
am-
e-
ter
or

width
(mm)

Gait
re-
ported
for
robot

Max.
Avg.
speed
(mm/s)

Max.
Avg.
speed
(B.L./s)

Gait
used
in re-
ported
speed

1 This
work
(2.55
g

MR-
LF

rod
with
feet

P D ro-
tat-
ing

Y Y
(in
body)

300 17% L Y Y 25 12 run,
walk,
crawl

13.64 0.55 ”run”
(crawl-
like)

2 This
work
(MR-
DF)

rod
with
feet

P D ro-
tat-
ing

N N - - D N N 25 12 run,
walk,
crawl

13.22 0.53 ”run”
(crawl-
like)

3 1 rod
with
feet

P D ro-
tat-
ing

N N - - D N N 20 5 crawl7.5* 0.38* crawl

4 2 rod
with
feet

P D ro-
tat-
ing

N N - - D N N 30,
14,
25

10,
5,
12

crawlNR,
NR,
8.7

NR,
NR,
0.35

crawl

5 3 rod
with
feet

P D ro-
tat-
ing

N N - - D N N 24 5 crawl0.8 0.03 crawl

6 4 rod P U ro-
tat-
ing

N N - - D N N 25-
30

3 mul-
ti-
ple

10.5* 0.42* tum-
ble

7 5 sheetM-
EC

U ro-
tat-
ing

N N - - D N N 5.9 1.9 swim 100.3 17 swim

8 6 sheetM-
EC

U var-
i-
ous

Y Y
(at-
tached)

2.5x10-
2

2.4%* D N N 3.7 1.5 mul-
ti-
ple

65.5 17.7 walk

9 7 sheetM-
EC

U var-
i-
ous

N N - - D N N 3.5
(var-
i-
ous
tested)

1 mul-
ti-
ple

1* 0.29* crawl
in

fluid

10 8 sheetM-
EC

U var-
i-
ous

Y N - - D N N 6.4 2.5 mul-
ti-
ple

2.46 0.38 roll

11 9 sheetM-
EC

U var-
i-
ous

N N - - D N N 6 1 mul-
ti-
ple

0.83 0.14 crawl
un-
der-
wa-
ter

12 10 sheetM-
EC

U var-
i-
ous

Y Y
(at-
tached)

0.58* 36%* D Y N 3.7 1.5 mul-
ti-
ple

0.39*,
0.63*,
0.12*

0.1*,
0.17*,
0.03*

roll,
crawl,
walk

13 11 sheet
with
legs

M-
EC

D var-
i-
ous

Y N - - D N N 17 7 mul-
ti-
ple

28.6* 1.68* walk*

14 12 inch-
worm

M-
EC

D trans-
lat-
ing

Y N - - OtherN N 40 5 crawl1.67* 0.04* inch

15 13 inch-
worm

M-
EC

D trans-
lat-
ing

Y Y
(in
foot)

9.3 6% OtherY N 40 5 mul-
ti-
ple

3.1 0.08 inch

16 14 inch-
worm

P U ro-
tat-
ing

N N - - D N N 33 6 inch-
worm

80* 0.48* inch

17 15 bel-
lows

M-
EC

U ro-
tat-
ing

Y Y
(in
body)

9.4 2.5%* O Y N 6.8 7.8 mul-
ti-
ple

81.2 11.9 swim-
ming
(rolling,
flip-
ping
speed
not
re-

ported)
18 16 bel-

lows
M-
EC

U tri-
an-
gu-
lar
wave

Y Y
(in
body)

24 7%* O Y N 28 6.8* crawl13.2 0.47 crawl

19 17 folded
sheet

P S var-
i-
ous

Y N - - O N N 34.3 16.7 roll,
walk

37.1 1.08 walk

20 18 folded
sheet

P S ro-
tat-
ing

N N - - O Y N NR NR roll NR NR roll

21 19 snakeP U ro-
tat-
ing

N N - - D N N 90* 10* slither55* 0.61* slither

22 20 snakeP U os-
cil-
lat-
ing

N N - - D N N 50* 10* slitherNR NR slither

Table 1: Comparison of MR-LF and other small-scale, flexible magnetic robots that exhibit ground-based lo-
comotion (e.g., crawling, rolling). The table shows that MR-LF has the largest internal compartment volume
and the second largest compartment-to-volume percentage. The flexibility is classified as “distributed” if
the bending occurred throughout the body length, “localized” if the bending was localized to small segments
within the body, and “origami” if the motion was from folded origami-like structures. In rows 14 and 15,
the flexibility is classified as “other” because the bending motion was distributed, but the body geometry
also included segments to support the robot and control its bending direction. Abbreviations are as follows.
P: Permanent magnet, M-EC: Magnetic-elastomer composite, D: Nonuniform field (e.g., dipole), U: Uni-
form field, S: Semi-uniform field, Y: Yes, N: No, NR: Not reported, L: Localized flexibility, D: Distributed
flexibility, O: Origami-like flexibility, *: Values were estimated based on available information.
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References for Table 1:

1: (Pham and Abbott, 2018)

2: (Pham et al., 2020)

3: (Steiner et al., 2022)

4: (Bhattacharjee et al., 2020)

5: (Diller et al., 2014)

6: (Hu et al., 2018)

7: (Ren et al., 2021)

8: (Xu et al., 2022)

9: (Du et al., 2020)

10: (Wu et al., 2022)

11: (Lu et al., 2018)

12: (Joyee and Pan, 2019a)

13: (Joyee and Pan, 2019b)

14: (Kim et al., 2013)

15: (Ze et al., 2022a)

16: (Ze et al., 2022b)

17: (Miyashita et al., 2016)

18: (du Plessis d’Argentre et al., 2018)

19: (Kim et al., 2011)

20: (Nam et al., 2014)
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